
ACCELERATE
THE SCIENCE OF LEAN SOFTWARE AND DEVOPS

Building and Scaling High Performing
Technology Organizations

Nicole Forsgren, PhD
Jez Humble, and Gene Kim

with forewords by Martin Fowler and Courtney Kissler
and a case study contributed by Steve Bell and Karen Whitley Bell

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Praise for Accelerate

“This is the kind of foresight that CEOs, CFOs, and CIOs desperately need if

their company is going to survive in this new software-centric world.

Anyone that doesn’t read this book will be replaced by someone who has.”

—Thomas A. Limoncelli, coauthor of
The Practice of Cloud System Administration

“‘Here, do this!’ The evidence presented in Accelerate is a triumph of research,

tenacity, and insight, proving not just correlation but a causal link between good

technical and management behaviors and business performance. It also exposes

the myth of ‘maturity models’ and offers a realistic, actionable alternative. As an

independent consultant working at the intersection of people, technology, process,

and organization design this is manna from heaven!

As chapter 3 concludes: ‘You can act your way to a better culture by

implementing these practices in technology organizations’ [emphasis mine]. There

is no mystical culture magic, just 24 concrete, specific capabilities that will lead

not only to better business results, but more importantly to happier, healthier,

more motivated people and an organization people want to work at. I will be

giving copies of this book to all my clients.”

—Dan North, independent technology and organization consultant

“Whether they recognize it or not, most organizations today are in the business

of software development in one way, shape, or form. And most are being dragged

down by slow lead times, buggy output, and complicated features that add expense

and frustrate users. It doesn’t need to be this way. Forsgren, Humble, and Kim

shine a compelling light on the what, why, and how of DevOps so you, too, can

experience what outstanding looks and feels like.”

—Karen Martin, author of
Clarity First and The Outstanding Organization

“Accelerate does a fantastic job of explaining not only what changes organizations

should make to improve their software delivery performance, but also the why,

enabling people at all levels to truly understand how to level up their

organizations.”

—Ryn Daniels, Infrastructure Operations Engineer at Travis CI
and author of Effective DevOps

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

“The ‘art’ of constructing a building is a well-understood engineering practice

nowadays. However, in the software world, we have been looking for patterns

and practices that can deliver the same predictable and reliable results whilst

minimising waste and producing the increasingly high performance our businesses

demand.

Accelerate provides research-backed, quantifiable, and real-world principles

to create world-class, high-performing IT teams enabling amazing business

outcomes.

Backed by the two leading thought leaders (Kim and Humble) in the DevOps

community and world-class research from PhD Forsgren, this book is a highly

recommended asset!”

—Jonathan Fletcher, Group CTO, Hiscox

“In their book Accelerate, Nicole Forsgren, Jez Humble, and Gene Kim don’t

break any new conceptual ground regarding Agile, Lean, and DevOps. Instead,

they provide something that might be even more valuable, which is a look inside

the methodological rigor of their data collection and analysis approach which led

them to their earlier conclusions on the key capabilities that make IT organizations

better contributors to the business. This is a book that I will gladly be placing on

my bookshelf next to the other great works by the authors.”

—Cameron Haight, VP and CTO, Americas, VMware

“The organizations that thrive in the future will be those that leverage digital

technologies to improve their offerings and operations. Accelerate summarizes

the best metrics, practices, and principles to use for improving software delivery

and digital product performance, based on years of well-documented research. We

strongly recommend this book to anyone involved in a digital transformation for

solid guidance about what works, what doesn’t work, and what doesn’t matter.”

—Tom Poppendieck and Mary Poppendieck, authors of
the Lean Software Development series of books

“With this work, the authors have made a significant contribution to the

understanding and application of DevOps. They show that when properly

understood, DevOps is more than just a fad or a new name for an old concept.

Their work illustrates how DevOps can improve the state of the art in

organizational design, software development culture, and systems architecture.

And beyond merely showing, they advance the DevOps community’s qualitative

findings with research-based insights that I have heard from no other source.”

—Baron Schwartz, Founder and CEO of VividCortex
and coauthor of High Performance MySQL

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

ACCELERATE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

THE SCIENCE BEHIND DEVOPS

ACCELERATE
Building and Scaling High Performing

Technology Organizations

Nicole Forsgren, PhD
Jez Humble and Gene Kim

IT Revolution

Portland, Oregon

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2018 by Nicole Forsgren, Jez Humble, and Gene Kim.

Chapter 16 Copyright © 2018 by Karen Whitley Bell and Steve Bell,

Lean IT Strategies, LLC.

All rights reserved, for information about permission

to reproduce selections from this book, write to

Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition

Printed in the United States of America

22 21 20 19 18 1 2 3 4 5 6

Cover and book design by Devon Smith Creative, LLC

Library of Congress Catalog-in-Publication Data is available upon request.

ISBN: 978-1942788331

eBook ISBN: 978-194278355

Kindle ISBN: 978-194278362

Web PDF ISBN: 978-194278379

Publisher’s note to readers: Although the authors and publisher have made every

effort to ensure that the information in this book is correct, the authors and publisher

do not assume and hereby disclaim any liability to any party for any loss, damage, or

disruption caused by errors or omissions, whether such errors or omissions result

from negligence, accident, or any other cause.

For information about special discounts for bulk purchases or for information on

booking authors for an event, please visit our website at www.ITRevolution.com.

ACCELERATE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Contents

xiForeword by Martin Fowler

xvForeword by Courtney Kissler

xixQuick Reference: Capabilities to Drive Improvement

xxiPreface

Part I: What We Found

3Accelerate1

11Measuring Performance2

29Measuring and Changing Culture3

41Technical Practices4

59Architecture5

69Integrating Infosec into the Delivery Lifecycle6

75Management Practices for Software7

83Product Development8

89Making Work Sustainable9

101Employee Satisfaction, Identity, and Engagement10

115Leaders and Managers11

Part II: The Research

131The Science Behind This Book12

143Introduction to Psychometrics13

157Why Use a Survey14

169The Data for the Project15

Part III: Transformation

179High-Performance Leadership and Management16

CONTENTS | vii

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

199Conclusion

201Appendix A: Capabilities to Drive Improvement

211Appendix B: The Stats

223Appendix C: Statistical Methods Used in Our Research

231Acknowledgments

237Bibliography

243Index

257About the Authors

viii | CONTENTS

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Figures

17Software Delivery Performance2.1

21Year over Year Trends: Tempo2.2

22Year over Year Trends: Stability2.3

25Impacts of Software Delivery Performance2.4

33Likert-Type Questions for Measuring Culture3.1

37Westrum Organizational Culture’s Outcomes3.2

40Westrum Organizational Culture’s Drivers3.3

48Drivers of Continuous Delivery4.1

49Impacts of Continuous Delivery4.2

50Continuous Delivery Makes Work More Sustainable4.3

51New Work vs. Unplanned Work4.4

65Deploys per Developer per Day5.1

76Components of Lean Management7.1

78Impacts of Lean Management Practices7.2

85Components of Lean Product Management8.1

88Impacts of Lean Product Management8.2

100Impacts of Technical and Lean Practices on Work Life9.1

105Impacts of Technical and Lean Practices on Identity10.1

108
Impacts of Technical and Lean Practices on Job
Satisfaction

10.2

111Gender Demographics in 2017 Study10.3

112
Underrepresented Minority Demographics in 2017
Study

10.4

121
Impacts of Transformational Leadership on Technical
and Lean Capabilities

11.1

137
Spurious Correlation: Per Capita Cheese Consumption
and Strangulation by Bedsheets

12.1

FIGURES | ix

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

182Leadership Obeya (360-Degree Panorama)16.1

184
ING’s New Agile Organizational Model Has No Fixed
Structure—It Constantly Evolves

16.2

186Stand-up and Catchball Rhythm16.3

195
High-Performance Team, Management, and Leadership
Behaviors and Practices

16.4

208Overall Research ProgramA.1

222
Firmographics: Organization Size, Industry, Number
of Servers in 2017

B.1

Tables

15Design vs. Delivery2.1

19Software Delivery Performance for 20162.2

19Software Delivery Performance for 20172.3

32Westrum’s Typology of Organizational Culture3.1

147Westrum’s Typology of Organizational Culture13.1

214Manual Work PercentagesB.1

x | TABLES

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

FOREWORD

By Martin Fowler

A
few years ago I read a report that said, “We can now assert

with confidence that high IT performance correlates with

strong business performance, helping to boost productivity,

profitability, and market share.” When I read something like that,

my usual response is to toss it with great force into the rubbish

bin, because that’s usually a tell for some bogus bullshit masquerad-

ing as science. I hesitated this time, however, for this was the

“2014 State of DevOps Report.” One of its authors was Jez Hum-

ble, a colleague and friend who I knew was equally allergic to this

kind of twaddle. (Although I have to confess that another reason

for not tossing it was that I was reading it on my iPad.)

So, instead I emailed Jez to find out what lay behind this

statement. A few weeks later I was on a call with him and Nicole

Forsgren, who patiently walked me though the reasoning. While

I’m no expert on the methods they used, she said enough to con-

vince me there was some real analysis going on here, far more

than I usually see, even in academic papers. I followed the sub-

sequent State of DevOps reports with interest, but also with

growing frustration. The reports gave the results of their work but

never contained the explanation that Nicole walked through with

me on the phone. This greatly undermined their credibility, as

there was little evidence that these reports were based on more

than speculation. Finally, those of us that had seen behind the

curtains convinced Nicole, Jez, and Gene to reveal their methods

FOREWORD | xi

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

by writing this book. For me, it’s been a long wait, but I’m glad I

now have something that I can genuinely recommend as a way to

look at IT delivery effectiveness—one that’s based on more than

a few analysts’ scattered experiences.

The picture they paint is compelling. They describe how effective

IT delivery organizations take about an hour to get code from

“committed to mainline” to “running in production,” a journey

lesser organizations take months to do. They, thus, update their

software many times a day instead of once every few months, in-

creasing their ability to use software to explore the market, respond

to events, and release features faster than their competition. This

huge increase in responsiveness does not come at a cost in stabil-

ity, since these organizations find their updates cause failures at

a fraction of the rate of their less-performing peers, and these

failures are usually fixed within the hour. Their evidence refutes

the bimodal IT notion that you have to choose between speed and

stability—instead, speed depends on stability, so good IT practices

give you both.

So, as you may expect, I’m delighted that they’ve put this book

into production, and I will be recommending it willy-nilly over the

next few years. (I’ve already been using many bits from its drafts

in my talks.) However, I do want to put in a few notes of caution.

They do a good job of explaining why their approach to surveys

makes them a good basis for their data. However, they are still

surveys that capture subjective perceptions, and I wonder how

their population sample reflects the general IT world. I’ll have more

confidence in their results when other teams, using different ap-

proaches, are able to confirm their reasoning. The book already

has some of this, as the work done by Google on team cultures

provides further evidence to support their judgment on how im-

portant a Westrum-generative organizational culture is for effective

xii | FOREWORD

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

software teams. Such further work would also make me less con-

cerned that their conclusions confirm much of my advocacy—

confirmation bias is a strong force (although I mostly notice it in

others ;-)). We should also remember that their book focuses on

IT delivery, that is, the journey from commit to production, not

the entire software development process.

But these quibbles, while present, shouldn’t distract us from

the main thrust of this book. These surveys, and the careful analy-

sis done on them, provide some of the best justification around

for practices that can significantly improve most IT organizations.

Anyone running an IT group should take a good hard look at these

techniques and work to use them to improve their practice. Anyone

working with an IT group, either internally or from an IT delivery

company like ours, should look for these practices in place and a

steady program of continuous improvement to go with them.

Forsgren, Humble, and Kim have laid out a picture of what effective

IT looks like in 2017, and IT practitioners should be using this as

a map to join the high performers.

Martin Fowler

Chief Scientist, ThoughtWorks

FOREWORD | xiii

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

FOREWORD

By Courtney Kissler

M
y journey started in the summer of 2011. I was working at

Nordstrom and we had made a strategic decision to focus

on digital as the growth engine. Up until that point, our IT orga-

nization was optimized for cost; I shared in my DevOps Enterprise

Summit 2014 presentation that one of my “aha” moments was the

shift to optimizing for speed. I made a lot of mistakes along the

way and wish I had access to the information in this book back

then. Common traps were stepped in—like trying a top-down

mandate to adopt Agile, thinking it was one size fits all, not focus-

ing on measurement (or the right things to measure), leadership

behavior not changing, and treating the transformation like a

program instead of creating a learning organization (never done).

Throughout the journey, the focus was moving to outcome-

based team structures, knowing our cycle time (by understanding

our value stream map), limiting the blast radius (starting with one

to two teams vs. boiling the ocean), using data to drive actions

and decisions, acknowledging that work is work (don’t have a

backlog of features and a backlog of technical debt and a backlog

of operational work; instead, have a single backlog because NFRs

are features and reducing technical debt improves stability of the

product). None of this happened overnight, and it took a lot of

experimentation and adjusting along the way.

FOREWORD | xv

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

What I know to be true based on my experience is that

adopting the guidance in this book will make your organization

higher performing. It works for all types of software delivery and

is methodology agnostic. I have personally experienced it and have

multiple examples of applying these practices within mainframe

environments, traditional packaged software application delivery

teams, and product teams. It can work across the board. It takes

discipline, persistence, transformational leadership, and a focus on

people. After all, people are an organization’s #1 asset, but so often

that is not how organizations operate. Even though the journey

will not be easy, I can say that it is definitely worth it, and not

only will you see better results, your team will be happier. As an

example, when we started measuring eNPS, the teams practicing

these techniques had the highest scores throughout our technology

organization.

Another thing I learned along the way is how critical it is to

have senior leadership support. And support in actions, not words.

Senior leaders need to demonstrate their commitment to creating

a learning organization. I will share the behaviors I try to model

with my teams. I believe passionately in honoring and extracting

reality. If I am a senior leader and my team doesn’t feel comfort-

able sharing risks, then I will never truly know reality. And, if I’m

not genuinely curious and only show up when there’s a failure,

then I am failing as a senior leader. It’s important to build trust

and to demonstrate that failure leads to inquiry (see the Westrum

model in this book).

You will encounter skeptics along the way. I heard things like

“DevOps is the new Agile,” “Lean doesn’t apply to software deliv-

ery,” “Of course this worked for the mobile app team. They are a

unicorn.” When I encountered the skeptics, I attempted to use

external examples to influence the discussion. I leveraged mentors

xvi | FOREWORD

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

along the way—without them, it would have been challenging to

stay focused. Having the information in this book would have been

extremely helpful and I strongly encourage you to use it within

your organization. I have spent most of my career in retail; in that

industry, it has become more and more critical to evolve, and

shipping software is now part of the DNA of every organization.

Don’t ignore the science outlined in this book. It will help you

accelerate your transformation to a high-performing technology

organization.

Courtney Kissler

VP Digital Platform Engineering, Nike

FOREWORD | xvii

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

QUICK REFERENCE:

CAPABILITIES TO

DRIVE IMPROVEMENT

O
ur research has uncovered 24 key capabilities that drive im-

provements in software delivery performance. This reference

will point you to them in the book. A detailed guide is found in

Appendix A. They are presented in no particular order.

The capabilities are classified into five categories:

• Continuous delivery

• Architecture

• Product and process

• Lean management and monitoring

• Cultural

CONTINUOUS DELIVERY CAPABILITIES

1. Version control: Chapter 4

2. Deployment automation: Chapter 4

3. Continuous integration: Chapter 4

4. Trunk-based development: Chapter 4

5. Test automation: Chapter 4

6. Test data management: Chapter 4

7. Shift left on security: Chapter 6

8. Continuous delivery (CD): Chapter 4

QUICK REFERENCE: CAPABILITIES TO DRIVE IMPROVEMENT | xix

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

ARCHITECTURE CAPABILITIES

9. Loosely coupled architecture: Chapter 5

10. Empowered teams: Chapter 5

PRODUCT AND PROCESS CAPABILITIES

11. Customer feedback: Chapter 8

12. Value stream: Chapter 8

13. Working in small batches: Chapter 8

14. Team experimentation: Chapter 8

LEAN MANAGEMENT AND MONITORING

CAPABILITIES

15. Change approval processes: Chapter 7

16. Monitoring: Chapter 7

17. Proactive notification: Chapter 13

18. WIP limits: Chapter 7

19. Visualizing work: Chapter 7

CULTURAL CAPABILITIES

20. Westrum organizational culture: Chapter 3

21. Supporting learning: Chapter 10

22. Collaboration among teams: Chapters 3 and 5

23. Job satisfaction: Chapter 10

24. Transformational leadership: Chapter 11

xx | QUICK REFERENCE: CAPABILITIES TO DRIVE IMPROVEMENT

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

PREFACE

B
eginning in late 2013, we embarked on a four-year research

journey to investigate what capabilities and practices are im-

portant to accelerate the development and delivery of software

and, in turn, value to companies. These results are seen in their

profitability, productivity, and market share. We see similarly strong

effects in noncommercial outcomes of effectiveness, efficiency, and

customer satisfaction.

This research fills a need that isn’t currently served in the

market. By using rigorous research methods traditionally only

found in academia, and making it accessible to industry, our goal

is to advance the state of software development and delivery. By

helping the industry identify and understand the capabilities that

actually drive performance improvements in a statistically mean-

ingful way—more than just anecdote, and beyond the experiences

of one or a few teams—we can help the industry improve.

To conduct the research found in this book (in addition to re-

search we still actively conduct), we use cross-sectional studies.

The same methods are used in healthcare research (e.g., to inves-

tigate the relationship between beer and obesity, Bobak et al.

2003), workplace research (e.g., to study the relationship between

the work environment and cardiovascular disease, Johnson and

Hall 1988), and memory research (e.g., to investigate differences

in development and decline in memory, Alloway and Alloway 2013).

As we want to truly investigate the industry and understand what

drives improvement in software and organizational performance

in a meaningful way, we use rigorous academic research design

PREFACE | xxi

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

methods and publish much of our work in academic peer-reviewed

journals. For more information about the methods used in our

research, check out Part II: The Research.

THE RESEARCH

Our research collected over 23,000 survey responses from around

the world. We heard from over 2,000 unique organizations, from

small startups of under five employees to large enterprises with

over 10,000 employees. We collected data from startups and

cutting-edge internet companies as well as highly regulated indus-

tries, such as finance, healthcare, and government. Our data and

analysis includes software developed on brand new “greenfield”

platforms as well as legacy code maintenance and development.

The findings in this book will apply whether you’re using a

traditional “waterfall” methodology (also known as gated, structured,

or plan-driven) and just beginning your technology transformation,

or whether you have been implementing Agile and DevOps practices

for years. This is true because software delivery is an exercise in

continuous improvement, and our research shows that year over

year the best keep getting better, and those who fail to improve

fall further and further behind.

Improvement Is Possible for Everyone

Our quest to understand how to measure and improve soft-

ware delivery was full of insights and surprises. The moral of

the story, borne out in the data, is this: improvements in

software delivery are possible for every team and in every

company, as long as leadership provides consistent support—

xxii | PREFACE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

including time, actions, and resources—demonstrating a

true commitment to improvement, and as long as team

members commit themselves to the work.

Our goal in writing this book is to share what we have learned

so that we can help organizations excel, grow happier teams who

deliver better software faster, and help individuals and organiza-

tions thrive. The rest of this preface briefly describes the research,

how it began, and how it was conducted. More detail about the

science behind the study can be found in Part II of this book.

THE JOURNEY AND THE DATA

We are often asked about the genesis story of this research. It is

based on a compelling curiosity for what makes high-performing

technology organizations great, and how software makes organiza-

tions better. Each author spent time on parallel paths working to

understand superior technical performance before joining forces

in late 2013:

• Nicole Forsgren has a PhD in Management Information

Systems. Prior to 2013, she spent several years researching

the factors that make technology impactful in organizations,

particularly among the professionals that make software and

support infrastructure. She has authored dozens of peer-

reviewed articles on the subject. Before her PhD, she was a

software and hardware engineer and a sysadmin.

• Jez Humble is the coauthor of Continuous Delivery, Lean

Enterprise, and The DevOps Handbook. His first job after

college was working at a startup in London in 2000, and

PREFACE | xxiii

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

then from 2005–2015 he spent a decade at ThoughtWorks

delivering software products and consulting as an infrastruc-

ture specialist, developer, and product manager.

• Gene Kim has been studying high-performing technology

organizations since 1999. He was the founder and CTO of

Tripwire for thirteen years and is the coauthor of many

books, including The Phoenix Project and The Visible Ops

Handbook.

In late 2013, Nicole, Jez, and Gene started working together

with the team at Puppet in preparation for the 2014 State of

DevOps Report.1 By combining practical expertise and academic

rigor, the team was able to generate something unique in the in-

dustry: a report containing insights into how to help technology

deliver value to employees, organizations, and customers in predic-

tive ways. Over the next four reports, Nicole, Jez, and Gene con-

tinued collaborating with the Puppet team to iterate on research

design and continuously improve the industry’s understanding of

what contributes to great software delivery, what enables great

technical teams, and how companies can become high-performing

organizations and win in the market by leveraging technology. This

book covers four years of research findings, starting with that re-

port (2014 through 2017).

1 It is important to note that the State of DevOps Report got its start prior to 2014. In

2012, the team at Puppet Inc. invited Gene to participate in the second iteration of a

study it was developing to better understand a little known phenomenon called DevOps,

how it was being adopted, and the performance advantages organizations were seeing.

Puppet had been a big proponent and driver of the movement as the idea of “DevOps”

began to take shape following the first DevOpsDays, discussions on Twitter, and a seminal

talk by John Allspaw and Paul Hammond. Gene then invited Jez to join the study, and

together they collected and analyzed 4,000 survey responses from around the world, making

it the largest survey of its kind.

xxiv | PREFACE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

To collect the data, each year we emailed invitations to our

mailing lists and leveraged social media, including Twitter, LinkedIn,

and Facebook. Our invitations targeted professionals working in

technology, especially those familiar with software development

and delivery paradigms and DevOps. We encouraged our readers

to invite friends and peers who might also work in software devel-

opment and delivery to help us broaden our reach. This is called

snowball sampling, and we talk about why this was an appropriate

data collection method for this research project in Chapter 15,

"The Data for the Project."

The data for our project came from surveys. We used surveys

because they are the best way to collect a large amount of data

from thousands of organizations in a short amount of time. For

a detailed discussion of why good research can be conducted from

surveys, as well as the steps we took to ensure the data we

collected was trustworthy and accurate, see Part II which covers

the science and research behind the book.

Here is a brief outline of the research and how it evolved over

the years.

2014: LAYING THE FOUNDATION.

DELIVERY PERFORMANCE AND

ORGANIZATIONAL PERFORMANCE

Our research goals for the first year were to lay a foundation for

understanding software development and delivery in organizations.

Some key research questions were:

• What does it mean to deliver software, and can it be

measured?

• Does software delivery impact organizations?

PREFACE | xxv

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

• Does culture matter, and how do we measure it?

• What technical practices appear to be important?

We were pleasantly surprised by many of the results in the

first year. We discovered that software development and delivery

can be measured in a statistically meaningful way, and that high

performers do it in consistently good ways that are significantly

better than many other companies. We also found that throughput

and stability move together, and that an organization’s ability to

make software positively impacts profitability, productivity, and

market share. We saw that culture and technical practices matter,

and found how to measure them. This is covered in Part I of

this book.

The team also revised the way most of the data had been

measured in the past, moving from simple yes/no questions to

Likert-type questions (in which respondents choose from a range

of options from “Strongly Disagree” to “Strongly Agree”). This

simple change in survey questions let the team collect more nu-

anced data—shades of gray instead of black and white. This allowed

for more detailed analysis. For a discussion of the authors’ choice

to use surveys for this research project and why you can trust

their survey-based data, see Chapter 14, "Why Use a Survey."

2015: EXTENDING THE WORK AND

DEEPENING THE ANALYSIS

Much like technology transformations and business growth, con-

ducting research is all about iteration, incremental improvements,

and revalidation of important results. Armed with our findings

from the first year, our goals in year two were to revalidate and

confirm some key findings (e.g., software delivery can be defined

xxvi | PREFACE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

and measured in a statistically meaningful way, software delivery

impacts organizational performance) while also extending the

model.

These were some of the research questions:

• Can we revalidate that software delivery impacts organiza-

tional performance?

• Do technical practices and automation impact software

delivery?

• Do lean management practices impact software delivery?

• Do technical practices and Lean management practices im-

pact aspects of work that affect our workforce—such as

anxiety associated with code deployments and burnout?

Once again, we got some great confirmations and some

surprises. Our hypotheses were supported, confirming and extending

the work we had done the previous year. These results can be

found in Part I.

2016: EXPANDING OUR LOOK INTO TECHNICAL

PRACTICES AND EXPLORING THE FUZZY FRONT END

In year three, we again built on the core foundation of our model

and extended it to explore the significance of additional technical

practices (such as security, trunk-based development, and test data

management). Inspired by conversations with colleagues working

in product management, we also extended our investigation further

upstream, to see if we could measure the impact of the current

move away from traditional project management practices to ap-

plying Lean principles in product management. We extended our

PREFACE | xxvii

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

investigation to include quality measures such as defects, rework,

and security remediation. Finally, we included additional questions

to help us understand how technical practices influence human

capital: employee Net Promoter Score (eNPS) and work identity—a

factor that is likely to decrease burnout.

These were our research questions:

• Does the integration of security into software development

and delivery help the process or slow it down?

• Does trunk-based development contribute to better software

delivery?

• Is a Lean approach to product management an important

aspect of software development and delivery?

• Do good technical practices contribute to strong company

loyalty?

2017: INCLUDING ARCHITECTURE, EXPLORING

THE ROLE OF LEADERS, AND MEASURING SUCCESS

IN NOT-FOR-PROFIT ORGANIZATIONS

Year four of the research saw us moving into questions about how

systems are architected and the impact architecture has on teams’

and organizations’ ability to deliver software and value. We also

extended our research to include measures of value that extended

beyond profitability, productivity, and market share, allowing the

analysis to speak to a not-for-profit audience. The research this

year also explored the role of leaders to measure the impact of

transformational leadership in organizations.

Our driving research questions in year four were:

xxviii | PREFACE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

• What architectural practices drive improvements in software

delivery performance?

• How does transformational leadership impact software

delivery?

• Does software delivery impact not-for-profit outcomes?

CONCLUSION

We hope that as you read this book you discover, as a technologist

and technology leader, the essential components to making your

organization better—starting with software delivery. It is through

improving our ability to deliver software that organizations can

deliver features faster, pivot when needed, respond to compliance

and security changes, and take advantage of fast feedback to attract

new customers and delight existing ones.

In the chapters that follow, we identify the key capabilities that

drive the software delivery performance (and define what software

delivery performance is) and briefly touch on the key points in

each. Part I of the book presents our findings, Part II discusses

the science and research behind our results, and finally, Part III

presents a case study of what is possible when organizations adopt

and implement these capabilities in order to drive performance.

PREFACE | xxix

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

PART ONE

WHAT WE FOUND

Armed with robust data-gathering and statistical analysis

techniques (discussed in detail in Part II), we have been able

to discover significant and sometimes surprising results over

the past several years working on the State of DevOps

Report. We’ve been able to measure and quantify software

delivery performance, its impact on organizational perfor-

mance, and the various capabilities that contribute to these

outcomes.

These capabilities fall into various categories—such as

technical, process, and cultural. We’ve measured the impact

of technical practices on culture, and the effect of culture

on delivery and organizational performance. For capabilities

as disparate as architecture and product management, we’ve

looked at their contribution to these and other important

sustainability outcomes such as burnout and deployment pain.

In this part of the book we present our results.

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

CHAPTER 1

ACCELERATE

“B
usiness as usual” is no longer enough to remain competi-

tive. Organizations in all industries, from finance and

banking to retail, telecommunications, and even government, are

turning away from delivering new products and services using big

projects with long lead times. Instead, they are using small teams

that work in short cycles and measure feedback from users to build

products and services that delight their customers and rapidly

deliver value to their organizations. These high performers are

working incessantly to get better at what they do, letting no ob-

stacles stand in their path, even in the face of high levels of risk

and uncertainty about how they may achieve their goals.

To remain competitive and excel in the market, organizations

must accelerate:

• delivery of goods and services to delight their customers;

• engagement with the market to detect and understand

customer demand;

• anticipation of compliance and regulatory changes that

impact their systems; and

• response to potential risks such as security threats or

changes in the economy.

CHAPTER 1: ACCELERATE | 3

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

At the heart of this acceleration is software. This is true of

organizations in any industry vertical. Banks no longer deliver

value by holding gold bars in vaults but by trading faster and more

securely, and by discovering new channels and products to engage

customers. Retailers win and retain customers by offering them

superior selection and service, with service coming in the form of

a fast check-out experience, recommended goods at check-out, or a

seamless online/offline shopping experience—all of which are en-

abled by technology. Government organizations cite the ability to

harness technology as the key to serving the public more effectively

and efficiently while being parsimonious with taxpayer dollars.

Software and technology are key differentiators for organizations

to deliver value to customers and stakeholders. We’ve found it in

our own research outlined in this book—and others have found

it, too. For example, a recent study by James Bessen of Boston

University found that the strategic use of technology explains

revenue and productivity gains more than mergers and acquisitions

(M&A) and entrepreneurship (2017). Andrew McAfee and Erik

Brynjolfsson have also found a link between technology and

profitability (2008).

Software is transforming and accelerating organizations of all

kinds. The practices and capabilities we talk about in this book

have emerged from what is now known as the DevOps movement,

and they are transforming industries everywhere. DevOps emerged

from a small number of organizations facing a wicked problem:

how to build secure, resilient, rapidly evolving distributed systems

at scale. In order to remain competitive, organizations must learn

how to solve these problems. We see that large enterprises with

long histories and decades-old technologies also gain significant

benefits, such as accelerated delivery and lower costs, through

adopting the capabilities we outline in this book.

4 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Although many organizations have achieved great success with

their technology transformations (notable examples include web-

scale tech giants such as Netflix, Amazon, Google, and Facebook,

as well as more traditional large organizations including Capital

One, Target, and the US Federal Government’s Technology

Transformation Service and US Digital Service), there is still a lot

of work to be done—both in the broader industry and within in-

dividual organizations. A recent Forrester (Stroud et al. 2017) re-

port found that 31% of the industry is not using practices and

principles that are widely considered to be necessary for accelerating

technology transformations, such as continuous integration and

continuous delivery, Lean practices, and a collaborative culture

(i.e., capabilities championed by the DevOps movement). However,

we also know that technology and software transformations are

imperative in organizations today. A recent Gartner study found

that 47% of CEOs face pressure from their board to digitally

transform (Panetta 2017).

Within organizations, technology transformation journeys are

at different stages, and reports suggest there is more work to be

done than many of us currently believe. Another Forrester report

states that DevOps is accelerating technology, but that organiza-

tions often overestimate their progress (Klavens et al. 2017).

Furthermore, the report points out that executives are especially

prone to overestimating their progress when compared to those

who are actually doing the work.

These findings about the disconnect between executive and

practitioner estimates of DevOps maturity highlight two consider-

ations that are often missed by leaders. First, if we assume the

estimates of DevOps maturity or capabilities from practitioners

are more accurate—because they are closer to the work—the po-

tential for value delivery and growth within organizations is much

CHAPTER 1: ACCELERATE | 5

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

greater than executives currently realize. Second, the disconnect

makes clear the need to measure DevOps capabilities accurately

and to communicate these measurement results to leaders, who

can use them to make decisions and inform strategy about their

organization’s technology posture.

FOCUS ON CAPABILITIES, NOT MATURITY

Technology leaders need to deliver software quickly and reliably

to win in the market. For many companies, this requires significant

changes to the way we deliver software. The key to success-

ful change is measuring and understanding the right things with

a focus on capabilities—not on maturity.

While maturity models are very popular in the industry, we

cannot stress enough that maturity models are not the appropriate

tool to use or mindset to have. Instead, shifting to a capabilities

model of measurement is essential for organizations wanting to

accelerate software delivery. This is due to four factors.

First, maturity models focus on helping an organization “arrive”

at a mature state and then declare themselves done with their

journey, whereas technology transformations should follow a con-

tinuous improvement paradigm. Alternatively, capability models

focus on helping an organization continually improve and progress,

realizing that the technological and business landscape is ever-

changing. The most innovative companies and highest-performing

organizations are always striving to be better and never consider

themselves “mature” or “done” with their improvement or transfor-

mation journey—and we see this in our research.

Second, maturity models are quite often a “lock-step” or linear

formula, prescribing a similar set of technologies, tooling, or capa-

bilities for every set of teams and organizations to progress

6 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

through. Maturity models assume that “Level 1” and “Level 2” look

the same across all teams and organizations, but those of us who

work in technology know this is not the case. In contrast, capabil-

ity models are multidimensional and dynamic, allowing different

parts of the organization to take a customized approach to improve-

ment, and focus on capabilities that will give them the most benefit

based on their current context and their short- and long-term

goals. Teams have their own context, their own systems, their

own goals, and their own constraints, and what we should focus

on next to accelerate our transformation depends on those things.

Third, capability models focus on key outcomes and how the

capabilities, or levers, drive improvement in those outcomes—that

is, they are outcome based. This provides technical leadership with

clear direction and strategy on high-level goals (with a focus on

capabilities to improve key outcomes). It also enables team leaders

and individual contributors to set improvement goals related to

the capabilities their team is focusing on for the current time

period. Most maturity models simply measure the technical profi-

ciency or tooling install base in an organization without tying it

to outcomes. These end up being vanity metrics: while they can

be relatively easy to measure, they don’t tell us anything about

the impact they have on the business.

Fourth, maturity models define a static level of technological,

process, and organizational abilities to achieve. They do not take

into account the ever-changing nature of the technology and

business landscape. Our own research and data have confirmed

that the industry is changing: what is good enough and even “high-

performing” today is no longer good enough in the next year. In

contrast, capability models allow for dynamically changing environ-

ments and allow teams and organizations to focus on developing

the skills and capabilities needed to remain competitive.

CHAPTER 1: ACCELERATE | 7

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

By focusing on a capabilities paradigm, organizations can con-

tinuously drive improvement. And by focusing on the right capabil-

ities, organizations can drive improvements in their outcomes,

allowing them to develop and deliver software with improved speed

and stability. In fact, we see that the highest performers do exactly

this, continually reaching for gains year over year and never settling

for yesterday’s accomplishments.

EVIDENCE-BASED TRANSFORMATIONS

FOCUS ON KEY CAPABILITIES

Within both capability and maturity model frameworks, there are

disagreements about which capabilities to focus on. Product vendors

often favor capabilities that align with their product offerings.

Consultants favor capabilities that align with their background,

their offering, and their homegrown assessment tool. We have

seen organizations try to design their own assessment models,

choose solutions that align with the skill sets of internal champions,

or succumb to analysis paralysis because of the sheer number of

areas that need improvement in their organization.

A more guided, evidence-based solution is needed, and the

approach discussed in this book describes such a solution.

Our research has yielded insights into what enables both soft-

ware delivery performance and organizational performance as seen

in profitability, productivity, and market share. In fact, our research

shows that none of the following often-cited factors predicted

performance:

• age and technology used for the application (for example,

mainframe “systems of record” vs. greenfield “systems of

engagement”)

8 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

• whether operations teams or development teams performed

deployments

• whether a change approval board (CAB) is implemented

The things that do make a difference in the success of software

delivery and organizational performance are those that the highest

performers and most innovative companies use to get ahead. Our

research has identified 24 key capabilities that drive improvement

in software delivery performance and, in turn, organizational per-

formance. These capabilities are easy to define, measure, and im-

prove.1 This book will get you started on defining and measuring

these capabilities. We will also point you to some fantastic

resources for improving them, so you can accelerate your own

technology transformation journey.

THE VALUE OF ADOPTING DEVOPS

You may be asking yourself: How do we know that these capabili-

ties are drivers of technology and organizational performance, and

why can we say it with such confidence?

The findings from our research program show clearly that the

value of adopting DevOps is even larger than we had initially

thought, and the gap between high and low performers continues

to grow.

We discuss how we measure software delivery performance and

how our cohort performs in detail in the following chapter. To

summarize, in 2017 we found that, when compared to low perform-

ers, the high performers have:

1 These 24 capabilities are listed, along with a pointer to the chapter that discusses them,

in Appendix A.

CHAPTER 1: ACCELERATE | 9

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

• 46 times more frequent code deployments

• 440 times faster lead time from commit to deploy

• 170 times faster mean time to recover from downtime

• 5 times lower change failure rate (1/5 as likely for a change

to fail)

When compared to the 2016 results, the gap between high

performers and low performers narrowed for tempo (deployment

frequency and change lead time) and widened for stability (mean

time to recover and change failure rate). We speculate that this is

due to low-performing teams working to increase tempo but not

investing enough in building quality into the process. The result

is larger deployment failures that take more time to restore service.

High performers understand that they don’t have to trade speed

for stability or vice versa, because by building quality in they

get both.

You may be wondering: How do high-performing teams achieve

such amazing software delivery performance? They do this by

turning the right levers—that is, by improving the right capabilities.

Over our four-year research program we have been able to

identify the capabilities that drive performance in software delivery

and impact organizational performance, and we have found that

they work for all types of organizations. Our research investigated

organizations of all sizes, in all industries, using legacy and

greenfield technology stacks around the world—so the findings in

this book will apply to the teams in your organization too.

10 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

CHAPTER 2

MEASURING PERFORMANCE

T
here are many frameworks and methodologies that aim to

improve the way we build software products and services. We

wanted to discover what works and what doesn’t in a scientific

way, starting with a definition of what “good” means in this con-

text. This chapter presents the framework and methods we used

to work towards this goal, and in particular the key outcome

measures applied throughout the rest of this book.

By the end of this chapter, we hope you’ll know enough about

our approach to feel confident in the results we present in the

rest of the book.

Measuring performance in the domain of software is hard—in

part because, unlike manufacturing, the inventory is invisible.

Furthermore, the way we break down work is relatively arbitrary,

and the design and delivery activities—particularly in the Agile

software development paradigm—happen simultaneously. Indeed,

it’s expected that we will change and evolve our design based on

what we learn by trying to implement it. So our first step

must be to define a valid, reliable measure of software delivery

performance.

CHAPTER 2: MEASURING PERFORMANCE | 11

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

THE FLAWS IN PREVIOUS ATTEMPTS TO
MEASURE PERFORMANCE

There have been many attempts to measure the performance of

software teams. Most of these measurements focus on productivity.

In general, they suffer from two drawbacks. First, they focus on

outputs rather than outcomes. Second, they focus on individual or

local measures rather than team or global ones. Let’s take three

examples: lines of code, velocity, and utilization.

Measuring productivity in terms of lines of code has a long

history in software. Some companies even required developers to

record the lines of code committed per week.1 However, in reality

we would prefer a 10-line solution to a 1,000-line solution to a

problem. Rewarding developers for writing lines of code leads to

bloated software that incurs higher maintenance costs and higher

cost of change. Ideally, we should reward developers for solving

business problems with the minimum amount of code—and it’s

even better if we can solve a problem without writing code at all

or by deleting code (perhaps by a business process change). How-

ever, minimizing lines of code isn’t an ideal measure either. At

the extreme, this too has its drawbacks: accomplishing a task in

a single line of code that no one else can understand is less desir-

able than writing a few lines of code that are easily understood

and maintained.

With the advent of Agile software development came a new

way to measure productivity: velocity. In many schools of Agile,

problems are broken down into stories. Stories are then estimated

by developers and assigned a number of “points” representing

the relative effort expected to complete them. At the end of an

1 There’s a good story about how the Apple Lisa team’s management discovered that lines

of code were meaningless as a productivity metric: http://www.folklore.org/StoryView.py

?story=Negative_2000_Lines_Of_Code.txt.

12 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

iteration, the total number of points signed off by the customer

is recorded—this is the team’s velocity. Velocity is designed to be

used as a capacity planning tool; for example, it can be used to ex-

trapolate how long it will take the team to complete all the work

that has been planned and estimated. However, some managers

have also used it as a way to measure team productivity, or even

to compare teams.

Using velocity as a productivity metric has several flaws. First,

velocity is a relative and team-dependent measure, not an absolute

one. Teams usually have significantly different contexts which

render their velocities incommensurable. Second, when velocity is

used as a productivity measure, teams inevitably work to game

their velocity. They inflate their estimates and focus on completing

as many stories as possible at the expense of collaboration with

other teams (which might decrease their velocity and increase

the other team’s velocity, making them look bad). Not only does

this destroy the utility of velocity for its intended purpose, it also

inhibits collaboration between teams.

Finally, many organizations measure utilization as a proxy for

productivity. The problem with this method is that high utilization

is only good up to a point. Once utilization gets above a certain

level, there is no spare capacity (or “slack”) to absorb unplanned

work, changes to the plan, or improvement work. This results in

longer lead times to complete work. Queue theory in math tells

us that as utilization approaches 100%, lead times approach

infinity—in other words, once you get to very high levels of uti-

lization, it takes teams exponentially longer to get anything done.

Since lead time—a measure of how fast work can be completed—is

a productivity metric that doesn’t suffer from the drawbacks of

the other metrics we’ve seen, it’s essential that we manage utiliza-

tion to balance it against lead time in an economically optimal way.

CHAPTER 2: MEASURING PERFORMANCE | 13

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

MEASURING SOFTWARE DELIVERY
PERFORMANCE

A successful measure of performance should have two key charac-

teristics. First, it should focus on a global outcome to ensure teams

aren’t pitted against each other. The classic example is rewarding

developers for throughput and operations for stability: this is a

key contributor to the “wall of confusion” in which development

throws poor quality code over the wall to operations, and opera-

tions puts in place painful change management processes as a way

to inhibit change. Second, our measure should focus on outcomes

not output: it shouldn’t reward people for putting in large amounts

of busywork that doesn’t actually help achieve organizational goals.

In our search for measures of delivery performance that meet

these criteria, we settled on four: delivery lead time, deployment

frequency, time to restore service, and change fail rate. In this

section, we’ll discuss why we picked these particular measures.

The elevation of lead time as a metric is a key element of Lean

theory. Lead time is the time it takes to go from a customer

making a request to the request being satisfied. However, in the

context of product development, where we aim to satisfy multiple

customers in ways they may not anticipate, there are two parts

to lead time: the time it takes to design and validate a product or

feature, and the time to deliver the feature to customers. In the

design part of the lead time, it’s often unclear when to start the

clock, and often there is high variability. For this reason, Reinertsen

calls this part of the lead time the “fuzzy front end” (Reinertsen

2009). However, the delivery part of the lead time—the time it

takes for work to be implemented, tested, and delivered—is easier

to measure and has a lower variability. Table 2.1 (Kim et al. 2016)

shows the distinction between these two domains.

14 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Table 2.1 Design vs. Delivery

Product Delivery
(Build, Testing, Deployment)

Product Design and Development

Enable fast flow from development to
production and reliable releases by

standardizing work, and reducing
variability and batch sizes.

Create new products and services
that solve customer problems using
hypothesis-driven delivery, modern

UX, design thinking.

Integration, test, and deployment must
be performed continuously as quickly

as possible.

Feature design and implementation
may require work that has never

been performed before.

Cycle times should be well-known and
predictable.

Estimates are highly uncertain.

Outcomes should have low variability.Outcomes are highly variable.

Shorter product delivery lead times are better since they enable

faster feedback on what we are building and allow us to course

correct more rapidly. Short lead times are also important when

there is a defect or outage and we need to deliver a fix rapidly

and with high confidence. We measured product delivery lead time

as the time it takes to go from code committed to code successfully

running in production, and asked survey respondents to choose

from one of the following options:

• less than one hour

• less than one day

• between one day and one week

• between one week and one month

• between one month and six months

• more than six months

CHAPTER 2: MEASURING PERFORMANCE | 15

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

The second metric to consider is batch size. Reducing batch

size is another central element of the Lean paradigm—indeed, it

was one of the keys to the success of the Toyota production sys-

tem. Reducing batch sizes reduces cycle times and variability in

flow, accelerates feedback, reduces risk and overhead, improves

efficiency, increases motivation and urgency, and reduces costs and

schedule growth (Reinertsen 2009, Chapter 5). However, in soft-

ware, batch size is hard to measure and communicate across con-

texts as there is no visible inventory. Therefore, we settled on

deployment frequency as a proxy for batch size since it is easy to

measure and typically has low variability.2 By “deployment” we

mean a software deployment to production or to an app store. A

release (the changes that get deployed) will typically consist of

multiple version control commits, unless the organization has

achieved a single-piece flow where each commit can be released to

production (a practice known as continuous deployment). We asked

survey respondents how often their organization deploys code for

the primary service or application they work on, offering the fol-

lowing options:

• on demand (multiple deploys per day)

• between once per hour and once per day

• between once per day and once per week

• between once per week and once per month

• between once per month and once every six months

• fewer than once every six months

2 Strictly, deployment frequency is the reciprocal of batch size—the more frequently we deploy,

the smaller the size of the batch. For more on measuring batch size in the context of IT

service management, see Forsgren and Humble (2016).

16 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Delivery lead times and deployment frequency are both mea-

sures of software delivery performance tempo. However, we wanted

to investigate whether teams who improved their performance were

doing so at the expense of the stability of the systems they

were working on. Traditionally, reliability is measured as time be-

tween failures. However, in modern software products and services,

which are rapidly changing complex systems, failure is inevitable,

so the key question becomes: How quickly can service be restored?

We asked respondents how long it generally takes to restore service

for the primary application or service they work on when a

service incident (e.g., unplanned outage, service impairment) occurs,

offering the same options as for lead time (above).

Finally, a key metric when making changes to systems is what

percentage of changes to production (including, for example, soft-

ware releases and infrastructure configuration changes) fail. In the

context of Lean, this is the same as percent complete and accurate

for the product delivery process, and is a key quality metric. We

asked respondents what percentage of changes for the primary

application or service they work on either result in degraded service

or subsequently require remediation (e.g., lead to service impair-

ment or outage, require a hotfix, a rollback, a fix-forward, or a

patch). The four measures selected are shown in Figure 2.1.

Software Delivery Performance
Lead Time
Deployment Frequency
Mean Time to Restore (MTTR)
Change Fail Percentage

Figure 2.1: Software Delivery Performance

CHAPTER 2: MEASURING PERFORMANCE | 17

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

In order to analyze delivery performance across the cohort we

surveyed, we used a technique called cluster analysis. Cluster analysis

is a foundational technique in statistical data analysis that attempts

to group responses so that responses in the same group are more

similar to each other than to responses in other groups. Each

measurement is put on a separate dimension, and the clustering

algorithm attempts to minimize the distance between all cluster

members and maximize differences between clusters. This technique

has no understanding of the semantics of responses—in other

words, it doesn’t know what counts as a “good” or “bad” response

for any of the measures.3

This data-driven approach that categorizes the data without

any bias toward “good” or “bad” gives us an opportunity to view

trends in the industry without biasing the results a priori.

Using cluster analysis also allowed us to identify categories of

software delivery performance seen in the industry: Are there

high performers and low performers, and what characteristics do

they have?

We applied cluster analysis in all four years of the research

project and found that every year, there were significantly different

categories of software delivery performance in the industry. We

also found that all four measures of software delivery performance

are good classifiers and that the groups we identified in the

analysis—high, medium, and low performers—were all significantly

different across all four measures.

Tables 2.2 and 2.3 show you the details for software delivery

performance for the last two years of our research (2016 and

2017).

3 For more on cluster analysis, see Appendix B.

18 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Table 2.2 Software Delivery Performance for 2016

Low PerformersMedium
Performers

High Performers2016

Between once per
month and once
every six months

Between once per
week and once per

month

On demand
(multiple deploys

per day)

Deployment
Frequency

Between one month
and six months

Between one week
and one month

Less than one
hour

Lead Time for
Changes

Less than one day*Less than one dayLess than one
hour

MTTR

16–30%31–45%0–15%Change Failure
Rate

Table 2.3 Software Delivery Performance for 2017

Low PerformersMedium
Performers

High Performers2017

Between once per
week and once per

month*

Between once per
week and once per

month

On demand
(multiple deploys

per day)

Deployment
Frequency

Between one week
and one month*

Between one week
and one month

Less than one
hour

Lead Time for
Changes

Between one day
and one week

Less than one dayLess than one
hour

MTTR

31–45%0–15%0–15%Change Failure
Rate

* Low performers were lower on average (at a statistically significant level) but
had the same median as the medium performers.

CHAPTER 2: MEASURING PERFORMANCE | 19

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Astonishingly, these results demonstrate that there is no trade-

off between improving performance and achieving higher levels of

stability and quality. Rather, high performers do better at all

of these measures. This is precisely what the Agile and Lean

movements predict, but much dogma in our industry still rests on

the false assumption that moving faster means trading off against

other performance goals, rather than enabling and reinforcing

them.4

Furthermore, over the last few years we’ve found that the

high-performing cluster is pulling away from the pack. The DevOps

mantra of continuous improvement is both exciting and real,

pushing companies to be their best, and leaving behind

those who do not improve. Clearly, what was state of the art

three years ago is just not good enough for today’s business envi-

ronment.

Compared to 2016, high performers in 2017 maintained or

improved their performance, consistently maximizing both tempo

and stability. Low performers, on the other hand, maintained the

same level of throughput from 2014–2016 and only started to in-

crease in 2017—likely realizing that the rest of the industry was

pulling away from them. In 2017, we saw low performers lose

some ground in stability. We suspect this is due to attempts to

increase tempo (“work harder!”) which fail to address the underlying

obstacles to improved overall performance (for example, rearchitec-

ture, process improvement, and automation). We show the trends

in Figures 2.2 and 2.3.

4 See https://continuousdelivery.com/2016/04/the-flaw-at-the-heart-of-bimodal-it/ for an analysis

of problems with the bimodal approach to ITSM, which rests on this false assumption.

20 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

(MINUTES)

160,000

120,000

80,000

40,000

0

2014 2015 2016 2017

1,600

1,200

800

400

0

2014 2015 2016 2017

High Performers Low Performers

CHANGE LEAD RATE

DEPLOY FREQUENCY (# OF DEPLOYS PER YEAR)

Figure 2.2: Year over Year Trends: Tempo

CHAPTER 2: MEASURING PERFORMANCE | 21

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

(HOURS)

(PERCENTAGE)

60

40

50

30

20

10

0

2014 2015 2016 2017

1,600

1,200

800

400

0

2014 2015 2016 2017

High Performers Low Performers

CHANGE FAILURE RATE

MEAN TIME TO RECOVERY

Figure 2.3: Year over Year Trends: Stability

22 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Surprise!

Observant readers will notice that medium performers do

worse than low performers on change fail rate in 2016. 2016

is the first year of our research where we see slightly incon-

sistent performance across our measures in any of our perfor-

mance groups, and we see it in medium and low performers.

Our research doesn’t conclusively explain this, but we have a

few ideas about why this might be the case.

One possible explanation is that medium performers are

working along their technology transformation journey and

dealing with the challenges that come from large-scale re-

architecture work, such as transitioning legacy code bases.

This would also match another piece of the data from the

2016 study, where we found that medium performers spend

more time on unplanned rework than low performers—

because they report spending a greater proportion of time on

new work.

We believe this new work could be occurring at the ex-

pense of ignoring critical rework, thus racking up technical

debt which in turn leads to more fragile systems and, there-

fore, a higher change fail rate.

We have found a valid, reliable way to measure software delivery

performance that satisfies the requirements we laid out. It focuses

on global, system-level goals, and measures outcomes that different

functions must collaborate in order to improve. The next question

we wanted to answer is: Does software delivery performance

matter?

CHAPTER 2: MEASURING PERFORMANCE | 23

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

THE IMPACT OF DELIVERY PERFORMANCE
ON ORGANIZATIONAL PERFORMANCE

In order to measure organizational performance, survey respondents

were asked to rate their organization’s relative performance across

several dimensions: profitability, market share, and productivity.

This is a scale that has been validated multiple times in prior re-

search (Widener 2007). This measure of organizational performance

has also been found to be highly correlated to measures of return

on investment (ROI), and it is robust to economic cycles—a great

measure for our purposes. Analysis over several years shows that

high-performing organizations were consistently twice as likely to

exceed these goals as low performers. This demonstrates that your

organization’s software delivery capability can in fact provide a

competitive advantage to your business.

In 2017, our research also explored how IT performance affects

an organization’s ability to achieve broader organizational

goals—that is, goals that go beyond simple profit and revenue

measures. Whether you’re trying to generate profits or not, any

organization today depends on technology to achieve its mission

and provide value to its customers or stakeholders quickly, reliably,

and securely. Whatever the mission, how a technology organization

performs can predict overall organizational performance. To mea-

sure noncommercial goals, we used a scale that has been validated

multiple times and is particularly well-suited for this purpose

(Cavalluzzo and Ittner 2004). We found that high performers were

also twice as likely to exceed objectives in quantity of goods and

services, operating efficiency, customer satisfaction, quality of

products or services, and achieving organization or mission goals.

We show this relationship in Figure 2.4.

24 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Software
Delivery

Performance

Organizational
Performance

Performance
Noncommercial

Figure 2.4: Impacts of Software Delivery Performance

Reading the Figures in This Book

We will include figures to help guide you through the research.

• When you see a box, this is a construct we have mea-

sured. (For details on constructs, see Chapter 13.)

• When you see an arrow linking boxes, this signifies a

predictive relationship. You read that right: the research

in this book includes analyses that go beyond correla-

tion into prediction. (For details, see Chapter 12 on

inferential prediction.) You can read these arrows using

the words “drives,” “predicts,” “affects,” or “impacts.”

These are all positive relationships unless otherwise

noted.

For example, Figure 2.4 could be read as “software delivery

performance impacts organizational performance and noncom-

mercial performance.”

In software organizations, the ability to work and deliver in

small batches is especially important, because it allows you to

gather user feedback quickly using techniques such as A/B testing.

CHAPTER 2: MEASURING PERFORMANCE | 25

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

It’s worth noting that the ability to take an experimental approach

to product development is highly correlated with the technical

practices that contribute to continuous delivery.

The fact that software delivery performance matters provides

a strong argument against outsourcing the development of software

that is strategic to your business, and instead bringing this capa-

bility into the core of your organization. Even the US Federal

Government, through initiatives such as the US Digital Service and

its agency affiliates and the General Services Administration’s

Technology Transformation Service team, has invested in bringing

software development capability in-house for strategic initiatives.

In contrast, most software used by businesses (such as office

productivity software and payroll systems) are not strategic and

should in many cases be acquired using the software-as-a-service

model. Distinguishing which software is strategic and which isn’t,

and managing them appropriately, is of enormous importance.

This topic is dealt with at length by Simon Wardley, creator of

the Wardley mapping method (Wardley 2015).

DRIVING CHANGE

Now that we have defined software delivery performance in a way

that is rigorous and measurable, we can make evidence-based

decisions on how to improve the performance of teams building

software-based products and services. We can compare and

benchmark teams against the larger organizations they work

in and against the wider industry. We can measure their

improvement—or backsliding—over time. And perhaps most excit-

ing of all, we can go beyond correlation and start testing prediction.

We can test hypotheses about which practices—from managing

work in process to test automation—actually impact delivery

26 | PART ONE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

performance and the strength of these effects. We can measure

other outcomes we care about, such as team burnout and deploy-

ment pain. We can answer questions like, “Do change management

boards actually improve delivery performance?” (Spoiler alert: they

do not; they are negatively correlated with tempo and stability.)

As we show in the next chapter, it is also possible to model

and measure culture quantitatively. This enables us to measure

the effect of DevOps and continuous delivery practices on culture

and, in turn, the effect of culture on software delivery performance

and organizational performance. Our ability to measure and reason

about practices, culture, and outcomes is an incredibly powerful

tool that can be used to great positive effect in the pursuit of ever

higher performance.

You can, of course, use these tools to model your own perfor-

mance. Use Table 2.3 to discover where in our taxonomy you fall.

Use our measures for lead time, deployment frequency, time to

restore service, and change fail rate, and ask your teams to set

targets for these measures.

However, it is essential to use these tools carefully. In organi-

zations with a learning culture, they are incredibly powerful. But

“in pathological and bureaucratic organizational cultures, measure-

ment is used as a form of control, and people hide information

that challenges existing rules, strategies, and power structures. As

Deming said, ‘whenever there is fear, you get the wrong numbers’”

(Humble et al. 2014, p. 56). Before you are ready to deploy a sci-

entific approach to improving performance, you must first under-

stand and develop your culture. It is to this topic we now turn.

CHAPTER 2: MEASURING PERFORMANCE | 27

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

CHAPTER 12

THE SCIENCE BEHIND

THIS BOOK

E
very day, our news feeds are full of strategies designed to

make our lives easier, make us happier, and help us take over

the world. We also hear stories about how teams and organizations

use different strategies to transform their technology and win in

the market. But how are we to know which actions we take just

happen to correspond to the changes we observe in our environ-

ment and which actions are driving these changes? This is where

rigorous primary research comes into play. But what do we mean

by “rigorous” and “primary”?

PRIMARY AND SECONDARY RESEARCH

Research falls into two broad classes: primary and secondary re-

search. The key difference between these two types is who collects

the data. Secondary research utilizes data that was collected by

someone else. Examples of secondary research you are probably

familiar with are book reports or research reports we all completed

in school or university: we collected existing information, summa-

rized it, and (hopefully) added in our own insights about what was

found. Common examples of this also include case studies and

some market research reports. Secondary research reports can be

valuable, particularly if the existing data is difficult to find, the

CHAPTER 12: THE SCIENCE BEHIND THIS BOOK | 131

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

summary is particularly insightful, or the reports are delivered at

regular intervals. Secondary research is generally faster and less

expensive to conduct, but the data may not be well suited to the

research team because they are bound by whatever data already

exists.

In contrast, primary research involves collecting new data by

the research team. An example of primary research includes the

United States Census. The research team collects new data every

ten years to report on demographic and population statistics for

the country. Primary research is valuable because it can report in-

formation that is not already known and provide insights that are

not available in existing datasets. Primary research gives researchers

more power and control over the questions they can address,

though it is generally more costly and time intensive to conduct.

This book and the State of DevOps Reports are based on primary

research.

QUALITATIVE AND QUANTITATIVE

RESEARCH

Research can be qualitative or quantitative. Qualitative research is

any kind of research whose data isn’t in numerical form. This can

include interviews, blog posts, Twitter posts, long-form log data,

and long-form observations from ethnographers. Many people as-

sume that survey research is qualitative because it doesn’t come

from computer systems, but that isn’t necessarily true; it depends

on the kinds of questions asked in the survey. Qualitative data is

very descriptive and can allow for more insights and emergent

behavior to be discovered by researchers, particularly in complex

or new areas. However, it is often more difficult and costly to

132 | PART TWO

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

analyze; efforts to analyze qualitative data using automated

means often codify the data into a numerical format, making it

quantitative.

Quantitative research is any kind of research with data that

includes numbers. These can include system data (in numerical

format) or stock data. System data is any data generated from our

tools; one example is log data. It can also include survey data, if

the survey asks questions that capture responses in numerical

format—preferably on a scale. The research presented in this book

is quantitative, because it was collected using a Likert-type survey

instrument.

What Is a Likert-Type Scale?

A Likert-type scale records responses and assigns them a

number value. For example, “Strongly disagree” would be given

a value of 1, neutral a value of 4, and “Strongly agree” a value

of 7. This provides a consistent approach to measurement

across all research subjects, and provides a numerical base for

researchers to use in their analysis.

TYPES OF ANALYSIS

Quantitative research allows us to do statistical data analysis. Ac-

cording to a framework presented by Dr. Jeffrey Leek at Johns

Hopkins Bloomberg School of Public Health (Leek 2013), there are

six types of data analysis (given below in the order of increasing

complexity). This complexity is due to the knowledge required by

the data scientist, the costs involved in the analysis, and the time

required to perform the analysis. These levels of analysis are:

CHAPTER 12: THE SCIENCE BEHIND THIS BOOK | 133

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

1. Descriptive

2. Exploratory

3. Inferential predictive

4. Predictive

5. Causal

6. Mechanistic

The analyses presented in this book fall into the first three

categories of Dr. Leek’s framework. We also describe an additional

type of analysis, classification, which doesn’t fit cleanly into the

above framework.

DESCRIPTIVE ANALYSIS

Descriptive analysis is used in census reports. The data is summa-

rized and reported—that is, described. This type of analysis takes

the least amount of effort, and is often done as the first step of

data analysis to help the research team understand their dataset

(and, by extension, their sample and possibly population of users).

In some cases, a report will stop at descriptive analysis, as in the

case of population census reports.

What Is a Population and Sample, and Why Are

They Important?

When talking about statistics and data analysis, the terms

“population” and “sample” have special meanings. The popula-

tion is the entire group of something you are interested in

researching; this might be all of the people undergoing tech-

nology transformations, everyone who is a Site Reliability

134 | PART TWO

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Engineer at an organization, or even every line in a log file

during a certain time period. A sample is a portion of that

population that is carefully defined and selected. The sample

is the dataset on which researchers perform their analyses.

Sampling is used when the entire population is too big or not

easily accessible for research. Careful and appropriate sampling

methods are important to make sure the conclusions drawn

from analyzing the sample are true for the population.

The most common example of descriptive analysis is the gov-

ernment census where population statistics are summarized and

reported. Other examples include most vendor and analyst reports

that collect data and report summary and aggregate statistics about

the state of tool usage in an industry or the level of education

and certification among technology professionals. The percentage

of firms that have started their Agile or DevOps journeys as

reported by Forrester (Klavens et al. 2017), the IDC report on av-

erage downtime cost (Elliot 2014), and the O’Reilly Data Science

Salary Survey (King and Magoulas 2016) belong in this category.

These reports are very useful as a gauge of the current state

of the industry, where reference groups (such as populations or

industries) currently are, where they once were, and where the

trends are pointing. However, descriptive findings are only as good

as the underlying research design and data collection methods.

Any reports that aim to represent the underlying population must

be sure to sample that population carefully and discuss any limita-

tions. A discussion of these considerations is beyond the scope of

this book.

CHAPTER 12: THE SCIENCE BEHIND THIS BOOK | 135

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

An example of descriptive analysis found in this book is the

demographic information about our survey participants and the

organizations they work in—what countries they come from, how

large their organizations are, the industry vertical they work in,

their job titles, and their gender (see Chapter 10).

EXPLORATORY ANALYSIS

Exploratory analysis is the next level of statistical analysis. This

is a broad categorization that looks for relationships among

the data and may include visualizations to identify patterns in the

data. Outliers may also be detected in this step, though the re-

searchers have to be careful to make sure that outliers are, in fact,

outliers, and not legitimate members of the group.

Exploratory analyses are a fun and exciting part of the research

process. For those who are divergent thinkers, this is often the

stage where new ideas, new hypotheses, and new research projects

are generated and proposed. Here, we discover how the variables

in our data are related and we look for possible new connections

and relationships. However, this should not be the end for a team

that wants to make statements about prediction or causation.

Many people have heard the phrase “correlation doesn’t imply

causation,” but what does that mean? The analyses done in the

exploratory stage include correlation but not causation. Correlation

looks at how closely two variables move together—or don’t—but

it doesn’t tell us if one variable’s movement predicts or causes the

movement in another variable. Correlation analysis only tells us

if two variables move in tandem or in opposition; it doesn’t tell

us why or what is causing it. Two variables moving together can

always be due to a third variable or, sometimes, just chance.

136 | PART TWO

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

A fantastic and fun set of examples that highlight high correla-

tions due to chance can be found at the website Spurious Correla-

tions.1 The author Tyler Vigen has calculated examples of highly

correlated variables that common sense tells us are not predictive

and certainly not causal. For example, he shows (Figure 12.1) that

the per capita cheese consumption is highly correlated with the

number of people who died by becoming tangled in their bedsheets

(with a correlation of 94.71% or r = 0.9471; see footnote 2 on

correlations in this chapter). Surely cheese consumption doesn’t

cause strangulation by bedsheets. (And if it does—what kind of

cheese?) It would be just as difficult to imagine strangulation by

bedsheets causing cheese consumption—unless that is the food of

choice at funerals and wakes around the country. (And again: What

kind of cheese? That is a morbid marketing opportunity.) And yet,

when we go “fishing in the data,” our minds fill in the story

Bedsheet Tanglings

33 lbs

31.5 lbs

30 lbs

28.5 lbs

800 deaths

600 deaths

400 deaths

200 deaths

Cheese Consumed

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

B
edsheet TanglingsC

he
es

e
C

on
su

m
ed

Figure 12.1: Spurious Correlation: Per Capita Cheese Consumption and

Strangulation by Bedsheets

1 http://www.tylervigen.com/spurious-correlations.

CHAPTER 12: THE SCIENCE BEHIND THIS BOOK | 137

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

because our datasets are related and so often make sense. This is

why it is so important to remember that correlation is only the

exploratory stage: we can report correlations, and then we move

on to more complex analyses.

There are several examples of correlations that are reported in

our research and in this book, because we know the importance

and value of understanding how things in our environment inter-

relate. In all cases, we reported Pearson correlations,2 which is the

correlation type most often used in business contexts today.

INFERENTIAL PREDICTIVE ANALYSIS

The third level of analysis, inferential, is one of the most common

types conducted in business and technology research today. It is

also called inferential predictive, and it helps us understand impacts

of HR policies, organizational behavior and motivation, and how

technology impacts outcomes like user satisfaction, team efficiency,

and organizational performance. Inferential design is used when

purely experimental design is not possible and field experiments

are preferred—for example, in business, when data collection

happens in complex organizations, not in sterile lab environments,

and companies won’t sacrifice profits to fit into control groups

defined by the research team.

To avoid problems with “fishing for data” and finding spurious

correlations, hypotheses are theory driven. This type of analysis

is the first step in the scientific method. Many of us are familiar

2 Pearson correlations measure the strength of a linear relationship between two variables,

called Pearson’s r. It is often referred to as just correlation and takes a value between −1

and 1. If two variables have a perfect linear correlation, that is they move together exactly,

r = 1. If they move in exactly opposite directions, r = −1. If they are not correlated at all,

r = 0.

138 | PART TWO

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

with the scientific method: state a hypothesis and then test it. In

this level of analysis, the hypothesis must be based on a well-

developed and well-supported theory.

Whenever we talk about impacting or driving results in this

book, our research design utilized this third type of analysis. While

some suggest that using a theory-based design opens us up to

confirmation bias, this is how science is done. Well, wait—almost.

Science isn’t done by simply confirming what the research team

is looking for. Science is done by stating hypotheses, designing

research to test those hypotheses, collecting data, and then testing

the stated hypotheses. The more evidence we find to support a

hypothesis, the more confidence we have for it. This process also

helps to avoid the dangers that come from fishing for data—finding

the spurious correlations that might randomly exist but have no

real reason or explanation beyond chance.

Examples of hypotheses tested with inferential analysis in our

project include continuous delivery and architecture practices

driving software delivery performance, software delivery positively

affecting organizational performance, and organizational culture

having a positive impact on both software delivery and organiza-

tional performance. In these cases, the statistical methods used

were either multiple linear regression or partial least squares

regression. These methods are described in more detail in

Appendix C.

PREDICTIVE, CAUSAL, AND MECHANISTIC ANALYSIS

The final levels of analysis were not included in our research, be-

cause we did not have the data necessary for this kind of work.

We will briefly summarize them here for the sake of completeness

and to appease your curiosity.

CHAPTER 12: THE SCIENCE BEHIND THIS BOOK | 139

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

• Predictive analysis is used to predict, or forecast, future

events based on previous events. Common examples include

cost or utilities predictions in business. Prediction is very

hard, particularly as you try to look farther away into the

future. This analysis generally requires historical data.

• Causal analysis is considered the gold standard, but is more

difficult than predictive analysis and is the most difficult

analysis to conduct for most business and technology situa-

tions. This type of analysis generally requires randomized

studies. A common type of casual analysis done in business

is A/B testing in prototyping or websites, when randomized

data can be collected and analyzed.

• Mechanistic analysis requires the most effort of all methods

and is rarely seen in business. In this analysis, practitioners

calculate the exact changes to make to variables to cause

exact behaviors that will be observed under certain condi-

tions. This is seen most often in the physical sciences or in

engineering, and is not suitable for complex systems.

CLASSIFICATION ANALYSIS

Another type of analysis is classification, or clustering, analysis.

Depending on the context, research design, and the analysis

methods used, classification may be considered an exploratory,

predictive, or even causal analysis. We use classification in this

book when we talk about our high-, medium-, and low-performance

software delivery teams. This may be familiar to you in other

contexts when you hear about customer profiles or market basket

analysis. At a high level, the process works like this: classification

variables are entered into the clustering algorithm and significant

groups are identified.

140 | PART TWO

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

In our research, we applied this statistical method using the

tempo and stability variables to help us understand and identify

if there were differences in how teams were developing and deliv-

ering software, and what those differences looked like. Here is

what we did: we put our four technology performance variables—

deployment frequency, lead time for changes, mean time to repair,

and change fail rate—into the clustering algorithm, and looked to

see what groups emerged. We see distinct, statistically significant

differences, where high performers do significantly better on all

four measures, low performers perform significantly worse on

all four measures, and medium performers are significantly better

than low performers but significantly worse than high performers.

For more detail, see Chapter 2.

What Is Clustering?

For those armchair (or professional) statisticians who are in-

terested, we used hierarchical clustering. We chose this over

k-means clustering for a few reasons. First, we didn’t have

any theoretical or other ideas about how many groups to

expect prior to the analysis. Second, hierarchical clustering

allowed us to investigate parent-child relationships in the

emerging clusters, giving us greater interpretability. Finally,

we didn’t have a huge dataset, so computational power and

speed wasn’t a concern.

THE RESEARCH IN THIS BOOK

The research presented in this book covers a four-year time period,

and was conducted by the authors. Because it is primary research,

it is uniquely suited to address the research questions we had in

CHAPTER 12: THE SCIENCE BEHIND THIS BOOK | 141

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

mind—specifically, what capabilities drive software delivery perfor-

mance and organizational performance? This project was based on

quantitative survey data, allowing us to do statistical analyses to

test our hypotheses and uncover insights into the factors that

drive software delivery performance.

In the next chapters, we discuss the steps we took to ensure

the data we collected from our surveys was good and reliable.

Then, we look into why surveys may be a preferred source of data

for measurement—both in a research project like ours and in your

own systems.

142 | PART TWO

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

CHAPTER 16

HIGH-PERFORMANCE

LEADERSHIP AND

MANAGEMENT

By Steve Bell and Karen Whitley Bell

“L
eadership really does have a powerful impact on results.

. . . A good leader affects a team’s ability to deliver code,

architect good systems, and apply Lean principles to how the team

manages its work and develops products. All of these,” the research

shows, “have a measurable impact on an organization’s profitability,

productivity, and market share. These also have an impact on

customer satisfaction, efficiency, and the ability to achieve organi-

zational goals.”1 Yet, Nicole, Jez, and Gene also observe that “the

role of leadership on technology transformation has been one of

the more overlooked topics in DevOps.”

Why is that? Why have technology practitioners continuously

sought to improve the approach to software development and de-

ployment as well as the stability and security of infrastructure and

platforms, yet, in large part, have overlooked (or are unclear about)

the way to lead, manage, and sustain these endeavors? This holds

1 See Chapter 11, pp. 115–116.

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 179

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

for large legacy enterprises as well as digital natives. Let’s consider

this question not in the context of the past—why we haven’t—but

instead for the present and future: why we must improve the way

we lead and manage IT2 and, indeed, reimagine the way everyone

across the enterprise views and engages with technology.

We are in the midst of a complete transformation in the way

value is created, delivered, and consumed. Our ability to rapidly

and effectively envision, develop, and deliver technology-related

value to enhance the customer experience is becoming a key com-

petitive differentiator. But peak technical performance is only one

part of competitive advantage—necessary but not sufficient. We

may become great at rapidly developing and delivering reliable,

secure, technology-enabled experiences, but how do we know which

experiences our customers value? How do we prioritize what we

create so that each team’s efforts advance the larger enterprise

strategy? How do we learn from our customers, from our actions,

and from each other? And as we learn, how do we share that

learning across the enterprise and leverage that learning to contin-

uously adapt and innovate?

The other necessary component to sustaining competitive ad-

vantage is a lightweight, high-performance management framework

that connects enterprise strategy with action, streamlines the flow

of ideas to value, facilitates rapid feedback and learning, and capi-

talizes on and connects the creative capabilities of every individual

throughout the enterprise to create optimal customer experiences.

What does such a framework look like—not in theory but in

practice? And how do we go about improving and transforming

our own leadership, management, and team practices and behaviors

to become the enterprise we aspire to be?

2 Note from Nicole, Jez, and Gene. The term “IT” is used throughout this chapter to refer

to the software and technology process—much more than just a single function within the

technology group at a company, like IT support or the helpdesk.

180 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

A HIGH-PERFORMING MANAGEMENT

FRAMEWORK IN PRACTICE

Throughout this book, Nicole, Jez, and Gene discuss several Lean

management practices that have been found to correlate with high

organizational performance—specifically, “profitability, market

share, and productivity . . . [in addition to measures that capture]

broader organizational goals—that is, goals that go beyond simple

profit and revenue measures.”3 Each of these practices is, in some

way, synergistic and interdependent with the others. To illustrate

how these leadership, management, and team practices work to-

gether, and to show the foundational thinking that enables them,

we share the experiences of ING Netherlands, a global financial

institution that pioneered digital banking and is recognized for its

customer-centric technology leadership. Today, IT is leading ING’s

digital transformation effort.

“You have to understand why, not just copy the behaviors,”4

says Jannes Smit, IT Manager of Internet Banking and Omnichan-

nel at ING Netherlands, who, seven years ago, decided to experi-

ment with ways to develop organizational learning among his

teams. There are many ways we could describe this management

practice in action. Perhaps the best way is to take you on a virtual

visit—albeit from the pages of a book. (ING is happy to share the

story of their learning, but they’re not willing to show you what’s

on the walls!) We’ll share with you the sights and sounds and ex-

periences of a day at ING, showing you how practices, rhythms,

and routines connect to create a learning organization and deliver

high performance and value.

3 See Chapter 2, p. 24.
4 This and all other direct quotes from ING staff are personal communications with the

authors of this chapter.

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 181

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

What you see today bears little resemblance to what we first

observed as we periodically visited to facilitate what they called

“boot camps” to rethink how Jannes and his managers led and

managed teams. Like many enterprise IT organizations, they were

located offsite from the main campus and were viewed by many

as a function rather than as a vital contributor in realizing enter-

prise strategy. Today, we enter at the main corporate headquarters,

where Jannes’ teams are now located one floor below the C-suite.

The space is open and light. After security, we pass through a

large, open social area—coffee bars and snack kiosks overlooking

gardens—designed to create intimate spaces to gather, visit, and

share ideas. We then enter the Tribe’s suite. Immediately to our

left is a large room with glass walls, creating visibility to the space

within. This is the Obeya room where the Tribe lead’s work, prior-

ities, and action items are visualized for the teams and anyone

else who may schedule a meeting in this space or visit between

meetings to update or review status. Here Jannes meets on a

regular cadence with his direct reports, where they can quickly see

and understand the status of each of his strategic objectives. Four

distinct zones are visualized: strategic improvement, performance

monitoring, portfolio roadmap, and leadership actions, each with

current information about targets, gaps, progress, and problems.

Color coding is used—red and green—to make problems immedi-

ately visible. Each IT objective ties directly, in measurable ways,

to enterprise strategy (see Figure 16.1).

Figure 16.1: Leadership Obeya (360-Degree Panorama)

182 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Two years ago, ING underwent a significant shift to a multi-

dimensional, matrixed structure organized along lines of business,

enabling the continuous flow of customer value (what Lean practi-

tioners call value streams). Each line of business is organized as

a tribe delivering a portfolio of related products and services (for

example, the Mortgage Services Tribe). Each tribe is comprised of

multiple self-steering teams, called squads, each responsible for a

distinct customer mission (for example, the Mortgage Application

Squad). Each squad is guided by a product owner, led (in case of

IT) by an IT-area lead, and sized according to Bezos’ Two Pizza

Rule—no team can be so large that it would require more than

two pizzas to feed them. Most squads are cross-functional, consist-

ing of engineers and marketers, collaborating as a single team with

a shared understanding of customer value. At ING, this

team composition is referred to as BizDevOps. Recently, they

identified a need for a new bridging structure which they plan to

call a product area lead, to align multiple, closely related squads.

This new role wasn’t planned—it emerged through experience and

learning. There are also chapters, comprised of members of the

same discipline (for example, the Data Analytics Chapter), who are

matrixed across squads and bring specialized knowledge to promote

learning and advancement among squad members. And finally,

there are centers of expertise, bringing together individuals with

particular capabilities (for example, communications or enterprise

architects—see Figure 16.2).

We move on from Jannes’ Obeya, accompanied by Jannes’ in-

ternal continuous improvement coaches: David Bogaerts, Jael

Schuyer, Paul Wolhoff, Liedewij van der Scheer, and Ingeborg Ten

Berge. Together, they form a small but effective Lean Leadership

Expertise Squad and coach the leaders, chapter leads, product

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 183

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Figure 16.2: ING’s New Agile Organizational Model Has No Fixed

Structure—It Constantly Evolves. (Source ING)

184 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

owners, and IT-area leads who, in turn, coach their chapter or

squad members, creating a leveraged effect to change behavior and

culture at scale.

Just ahead is a squad workspace—an open area with windows

and walls that are covered in visuals (their own Obeya) that enable

the squad to monitor performance in real time, and see obstacles,

status of improvements, and other information of value to the

squad. Across the middle of the space flows a row of adjustable-

height tables, with adjustable-height chairs, enabling squad members

to sit or stand, facing each other across their screens. The chairs

are of different shapes and colors, making the space visually inter-

esting and ergonomically sound. Squad visuals share some charac-

teristics; the similarities in Obeya design enable colleagues outside

the squad to immediately understand, at a glance, certain aspects

of the work, promoting shared learning. Standard guidelines include

visualizing goals, present performance and gaps, new and escalated

problems, demand, WIP, and done work. Visualizing demand helps

prioritize and keep the WIP load small. The visuals also have some

differences, recognizing that the work of each squad is somewhat

unique and each squad is the best judge of what information—and

what visualization of that information—best serves them to excel

at their work.

As we pass through, the squad is conducting its daily stand-up,

where rapid learning and feedback takes place. Standing in front

of a visual board displaying demand and WIP, each member briefly

reports what she/he is working on (WIP), any obstacles, and what

has been completed. As they speak, the visual is updated. These

stand-ups usually last around 15 minutes; they have significantly

reduced the time people spend in meetings compared to the

meeting times before daily stand-ups became a way of work.

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 185

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

During the stand-ups, problems are not solved, but there is a

routine in place to ensure they are rapidly resolved. If the problem

requires collaboration with another squad member, it is noted, and

those members will discuss it later in the day. If the problem re-

quires IT-area lead support to resolve, the problem is noted and

escalated. The IT-area lead may resolve it quickly, or take it to

her/his stand-up to raise it with other IT-area leads or tribe leads

to resolve. Once resolved, that information is rapidly relayed back

through the channel. The problem remains visualized until it is

resolved. Similarly, if the problem is technical in nature, it will be

shared with the appropriate chapter or center of expertise. This

pattern of vertical and horizontal communication is a leadership

standard work practice called “catchball” (see Figure 16.3).

Squad
Obeya

Stand-up
before 11:00

Stand-up between
11:00–13:00

Stand-up at
13:00

Tribe
Obeya

Senior Leadership
Obeya

LEARNING

Tribe
Obeya

Tribe
Obeya

Squad
Obeya

Squad
Obeya

Figure 16.3: Stand-up and Catchball Rhythm

Using the same communication framework, other relevant

learning is also relayed among squads, chapters, centers of exper-

tise, and tribes, creating a natural vertical and horizontal flow of

186 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

learning across all dimensions of the organization. This enables

the squads to self-determine how best to craft their work to sup-

port overall enterprise strategy and enables effective prioritization.

The tribe lead, in this case Jannes, also learns from the squad

and chapter members, including lessons learned in their direct

interaction with customers. This enables him to adapt his

strategic thinking and goals and share insights with his peers and

superiors.

This practice of rapid exchange of learning, enabling the

frontline teams to learn about strategic priorities and the leaders

to learn about customer experience from frontline team customer

interaction, is a form of strategy deployment (Lean practitioners

use the term Hoshin Kanri). It creates, at all levels, a continuous,

rapid feedback cycle of learning, testing, validating, and adjusting,

also known as PDCA.

In addition to regular stand-ups with squads, product owners,

IT-area leads, and chapter leads, the tribe lead also regularly visits

the squads to ask questions—not the traditional questions like

“Why isn’t this getting done?” but, rather, “Help me better under-

stand the problems you’re encountering,” “Help me see what you’re

learning,” and “What can I do to better support you and the team?”

This kind of coaching behavior does not come easily to some

leaders and managers. It takes real effort, with coaching, mentoring,

and modeling (mentoring is being piloted within the Omni-

channel Tribe, with plans for expansion) to change behavior from

the traditional command-and-control to leaders-as-coaches where

everyone’s job is to (1) do the work, (2) improve the work, and

(3) develop the people. The third objective—develop the people—is

especially important in a technology domain, where automation

is disrupting many technology jobs. For people to bring their best

to the work that may, in fact, eliminate their current job, they

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 187

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

need complete faith that their leaders value them—not just for

their present work but for their ability to improve and innovate

in their work. The work itself will constantly change; the organiza-

tion that leads is the one with the people with consistent behavior

to rapidly learn and adapt.

Not far from that squad space in a glass-enclosed meeting space

with whiteboard-covered walls, a telepresence monitor, easel pads,

and colorful, comfy chairs, we visit with Jordi de Vos, a young

engineer whose entire career has been under Jannes’ new way-of-

working. Jordi is a chapter lead who also leads the effort toward

one of the way-of-work strategic improvement objectives (recall

that there are strategic improvement, performance monitoring,

and portfolio roadmap strategic objectives). Jordi shares with

others what he’s learning about team security—the psychological

safety for individuals to openly discuss problems and obstacles

with no fear of harm or reprisal. He talks about this and other

research he’s discovering, how he’s experimenting to learn what

will resonate most among the squads, and what measurable changes

are created and sustained. A fixed percentage of each squad’s and

chapter’s time is allocated for improvement. Jordi says that the

squads think of improvement activities as just regular work.

We ask Jordi what it’s like to work within this culture. He

reflects for a moment then shares a story. Jannes’ tribes had been

challenged by senior leadership to be twice as effective. “There was

a tough deadline and lots of pressure. Our tribe lead, Jannes, went

to the squads and said, ‘If the quality isn’t there, don’t release. I’ll

cover your back.’ So, we felt we owned quality. That helped us to

do the right things.”

Too often, quality is overshadowed by the pressure for speed.

A courageous and supportive leader is crucial to help teams “slow

down to speed up,” providing them with the permission and safety

188 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

to put quality first (fit for use and purpose) which, in the long

run, improves speed, consistency, and capacity while reducing cost,

delays, and rework. Best of all, this improves customer satisfaction

and trust.

After this visit, we walk past more squad workspaces and

more glass-enclosed meeting spaces, each with the same

elements but different in their colors, textures, and furnishings.

Back in the Leadership Obeya, we meet up with the coaching team

for a healthy lunch and reflect on the many positive changes we’ve

seen since our last visit. They share reflections on their current

challenges and some of the approaches they are experimenting

with to continue to spread and grow a generative culture, focusing

on “going deep before going wide.” Nevertheless, the pressure is

there to scale wide and fast. Right now, one of the coaching

team members is focusing on supporting culture change in just

a few countries outside the Netherlands. Given that ING operates

in over 40 countries, the discipline to allow time and atten-

tion for learning, rather than go for large scale change, is re-

markable.

Another challenge the coaches are experimenting with is dis-

persed teams. With recent restructuring, some squads now have

members from more than one country, so the coaching team is

experimenting with, and measuring, ways to maintain the same

high level of collaboration and learning among cross-border squads

(it’s very hard to virtually share two pizzas).

Not surprisingly, several of the most senior leaders and several

other tribe lead peers want their own Obeya. The coaching team

is hoping to approach this slowly enough so that real learning can

occur. Transformational, generative leadership extends well beyond

what is on the Obeya walls and the rhythm and routine of how

you talk about it. “As a leader, you have to look at your own

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 189

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

behaviors before you ask others to change,” says Jannes. He will be

the first to tell you that he is still learning. And in that, we believe,

lies the secret to his success.

After lunch we head to the C-suite where we see a few of the

senior leaders’ Obeyas beginning to take shape. We run into Danny

Wijnand, a chief design engineer who worked under Jannes until

he was promoted last year to lead his own tribe. Danny reflects

on the spread of this new way of work, beyond Jannes’ tribes and

out into the C-suite and across the rest of ING. “You get impatient

wanting to speed their learning but then you realize you went

through this yourself, and it took time. Storytelling is important,

but they have to have their own learning.”

Back again on the tribe floor, we visit with Jan Rijkhoff, a

chapter lead. We wanted to learn about his chapter’s current ap-

proach to problem solving. Over the years, they have experimented

with different problem-solving methods, including A3, Kata, Lean

startup, and others, and finally settled on a blend of elements that

they found helpful, creating their own approach. In our walk today,

we have seen evidence of multiple problem-solving initiatives in

flight and visualized on the walls.

Their approach is to gather the right people who have experi-

ence and insights into the problem to rigorously examine the cur-

rent condition. This rigor pays off, as the team gains insights that

increase the probability of identifying the root cause rather than

just the symptoms. With this learning, they form a hypothesis

about an approach to improvement, including how and what to

measure to learn if the experiment produces the desired outcomes.

If the experiment is a success, they make it part of the standard

work, share the learning, and continue to monitor to ensure the

improvement is sustained. They apply this problem-solving ap-

proach at all levels of the organization. Sometimes a problem at

190 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

a senior-leader level is analyzed and broken down into smaller

parts, cascading to the chapter or squad level, for front-line analysis

and controlled experimentation, with the learning feeding back up.

“This approach works,” Paul tells us when we meet up again, “be-

cause it helps people to embrace change, letting people come up

with their own ideas, which they can then test out.”

Amidst this colorful, creative work environment, with a philos-

ophy of “make it your own,” the idea of standard work may seem

to be antithetical, even counterproductive. After all, this is knowl-

edge work. Consider the notion of process (the way something is

done) and practice (doing something that requires knowledge and

judgment). For example, Scrum rituals are process; the act of

understanding customer needs and writing the code is practice.

So, when teams have a standard way of work, whether that work

is to release effective code or to conduct a team stand-up meeting,

following that standard saves a lot of time and energy. At ING,

standard work is established not by imitating a way of work that

is prescribed in a book or used successfully by another company.

Instead, a team within ING experiments with different approaches

and agrees upon the one best way to do the work. That rhythm and

routine is spread to all similar teams. As conditions change, the

standard is reevaluated and improved.

We catch up with Jannes as he concludes his day with a visit

to the Leadership Obeya—to add a few Post-It note updates and to

see what updates have been made by others. We ask about his

thoughts on the journey they’ve been on. “The beginning insight

was that our teams were not learning and not improving,” he

shared. “We were not able to get them to a level where they would

be a continuously learning team. I saw that they wrestled with

problems and other teams had solutions, and we were not able to

bring them together to learn. When we were not able to learn as

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 191

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

management, we were not able to help the teams to learn. We

had to learn ourselves to become a learning team. We [his manage-

ment team] experienced our own learning, then we went to the

teams to help them learn to become a learning team.”

We then asked about his approach to culture change. “Before,

I never discussed culture,” he said. “It was a difficult topic and I

did not know how to change it in a sustainable way. But I learned

that when you change the way you work, you change the routines,

you create a different culture.”

“Senior management is very happy with us,” he adds with a

broad smile, obviously proud of the people in his tribes. “We give

them speed with quality. Sometimes, we may take a little longer

than some of the others to reach green, but once we achieve it,

we tend to stay green, when a lot of the others go back to red.”

TRANSFORMING YOUR LEADERSHIP,

MANAGEMENT, AND TEAM PRACTICES

We are often asked by enterprise leaders: How do we change our

culture?

We believe the better questions to ask are: How do we learn

how to learn? How do I learn? How can I make it safe for others

to learn? How can I learn from and with them? How do we, to-

gether, establish new behaviors and new ways of thinking that

build new habits, that cultivate our new culture? And where do

we start?

At ING Netherlands, they began with a leader who asked himself

these questions. He then brought on good coaches, tasked with

challenging every person (including himself) to question assump-

tions and try new behaviors. He gathered his management team,

192 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

saying, “Let’s try this together. Even if it doesn’t work, we will

learn something that will help us to be better. Will you join me

in this and see what we can learn?”

Each quarter his management team would come together for

new learning and, over the next months, put that learning into

practice. What, at first, felt uncomfortable for everyone became a

little easier and, finally, became a habit—something they just did,

just in time for the next learning cycle. They stretched and, just

when they felt comfortable, stretched again. All along, they would

reflect together and adjust when needed.

We recall in one boot camp session early on we challenged the

management team members to develop simple leader standard

work routines: visual management, regular stand-ups, and consistent

coaching for their team members—replacing the long meetings

and fire-fighting behaviors they were accustomed to. To develop

this new way of working, first they needed to understand how

they currently spent their time. The skepticism and discomfort

were obvious; nevertheless, for several weeks each of them

recorded and measured how they spent their time each day. They

shared what they learned with each other, and together developed

new ways to work.

When we returned for the next boot camp three months later,

Mark Nijssen, one of the managers, welcomed us by saying, “I’ll

never go back to the old way of working again!” Not only was

adoption of basic leader standard work successful in helping them

improve their effectiveness, they also managed to achieve the goal

of making 10% of their time available to work on what they choose.

This willingness to experiment with new ways of thinking and

working has led ING to where they are today. But it’s important

to recognize that there is no checklist or playbook. You can’t

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 193

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

“implement” culture change. Implementation thinking (attempting

to mimic another company’s specific behavior and practices) is, by

its very nature, counter to the essence of generative culture.

At the end of this chapter is a table representing many of the

practices described in this virtual visit to ING. Those marked with

an (*) are practices that research shows to correlate with high

performance. It’s our hope that future research will explore the

full range of practices listed here. This table is not to be used as

a checklist but rather as a distillation or general guidelines for

developing your own behaviors and practices (see Figure 16.4).

As you have seen in our virtual visit to ING, a high-performance

culture is far more than just the application of tools, the adoption

of a set of interrelated practices, copying the behaviors of other

successful organizations, or the implementation of a prescribed,

expert-designed framework. It is the development, through experi-

mentation and learning guided by evidence, of a new way of

working together that is situationally and culturally appropriate

to each organization.

As you begin your own path to creating a learning organization,

it’s important to adopt and maintain the right mindset. Below are

some suggestions we offer, based on our own experiences in help-

ing enterprises evolve toward a high-performing, generative culture:

• Develop and maintain the right mindset. This is about

learning and how to create an environment for shared orga-

nizational learning—not about just doing the practices, and

certainly not about employing tools.

• Make it your own. This means three things:

– Don’t look to copy other enterprises on their methods

and practices, or to implement an expert-designed model.

Study and learn from them, but then experiment and

adapt to what works for you and your culture.

194 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

Team Practices Management Practices Leadership Practices
*Foster generative culture *Foster generative culture *Foster generative culture

*Build quality in, continuously measure and

monitor

*Focus on quality, protect teams to ensure

quality

Focus on promoting organizational learning Focus on promoting organizational learning Focus on promoting organizational learning

*Provide teams with time for improvement and

innovation

*Provide teams with time for improvement and

innovation

*Align, measure, and manage to flow (matrixed,

cross-functional value stream organization

structure)

Establish small, cross-functional, multiskilled

teams; support bridging structures so teams can

easily communicate and collaborate

Enable and support cross-skilling to reduce expert-

dependent bottlenecks, and form communities of

expertise

Establish and support internal coaches and the

appropriate infrastructure to scale and sustain

them

*Engage, learn from, and validate with

customers (Gemba)

*Engage with and learn from customers and

teams (Gemba)

*Engage with and learn from customers, teams,

supply chain partners, and other stakeholders

(Gemba)

*Understand & visualize customer value,

identify measurable targets for quality

*Understand & visualize customer value,

identify measurable targets for quality

*Practice creativity as part of overall work

*Practice creativity as part of overall work,

encourage team members to utilize this time to

learn and innovate

*Budget for and allocate time for creativity (i.e.,

Google’s 20% target)

*Visualize team goals and targets, understand

how these targets advance enterprise strategy

Practice strategy deployment, visualize all goals

and near-term targets, communicate thisclearly

to managers and help them set appropriate

targets and initiatives

*Actively monitor and visualize performance to

goals/targets

*Actively monitor and visualize performance to

goals/targets

*Actively monitor and visualize performance to

goals/targets

Eliminate unnecessary controls, invest instead in

process quality and team autonomy and

capability (*teams that reported no approval

process or used peer review achieved higher

software delivery performance)

Visualize & analyze workflow, identify obstacles

to flow, (process/value stream mapping &

analysis); *understand the connection between

the work they do and its positive impact on

customers

Visualize and analyze workflow, identify

obstacles to flow, (process/value stream

mapping & analysis),help teams understand

how they support larger value stream

Visualize and analyze overall value stream flows

(enterprise architecture), identify systemic

obstacles to flow, prioritize and support mapping

and analysis of lower-level supporting flows

Prioritize obstacles to customer value and

experience, and team targets and goals

Prioritize obstacles to customer value and

experience, and team targets and goals
Prioritize systemic obstacles to flow

Apply disciplined problem solving to prioritized

problems, analyze to identify root causes

Apply disciplined problem solving to prioritized

problems, analyze to identify root causes

Apply disciplined problem solving to complex

systemic issues to identify strategic improvement

themes and targets (strategy deployment), apply

learning to update standard work

Escalate cross-functional and systemic problems
Coordinate cross-functional problem solving,

solve or escalate systemic problems

Cascade prioritized problem solving targets to the

appropriate stakeholders through catchball PDCA

Form hypotheses about root causes, design and

conduct controlled experiments, measure

results, communicate learnings, repeat if

needed, incorporate improvements

Learn from organization-wide PDCA cycles, and

repeat learning/improvement cycles

*Visualize, measure, and monitor workflow,

monitor for deviations, respond to deviations

appropriately

*Break demand into small elements (MVP’s)

and release regularly and often

*Visualize demand, WIP, and “done” (kanban)

*Minimize and visualize WIP *Minimize and visualize WIP *Minimize and visualize WIP

Prioritize demand to goals and targets Prioritize demand to goals and targets Prioritize demand to goals and targets

Develop & practice team standard work

(rhythm & routine)

Develop & practice leader standard work

(rhythm & routine)

Conduct daily stand-ups with standard routine,

escalate obstacles as needed (catchball)

Conduct daily stand-ups with team leads,

standard routine, resolve or bridge/escalate

obstacles as needed (catchball)

Conduct stand-ups with direct reports with

standard routine on a regular cadence, resolve

escalated obstacles (catchball)

Support team and peer learning Coach team members; support team learning Coach managers, have your own coach

Conduct regular cadence of retrospectives

(work and way of work)

Way of Work,

Rhythm, &

Routine

Strategy

Deployment

Improve Flow

Through

Analysis and

Disciplined

Problem Solving

Culture

Direct Learning

and Alignment

to Value

Organizational

Structure

Help teams to set and visualize goals and

targets, understand and communicate how

these targets advance enterprise strategy

 (catchball)

*Visualize demand, WIP, and “done” (kanban) *Visualize demand, WIP, and “done” (kanban)

*Visualize, measure, and monitor workflow,

monitor for deviations, respond to deviations

appropriately

*Visualize, measure, and monitor workflow,

monitor for deviations, respond to deviations

appropriately

Conduct regular cadence of retrospectives

(work and way of work)

Conduct regular cadence of retrospectives

(work and way of work)

Develop & practice leader standard work

(rhythm & routine)

*Focus on quality, protect teams to ensure

quality

Form hypotheses about root causes, design and

conduct controlled experiments, measure

results, communicate learnings, repeat if

needed, incorporate improvements

Figure 16.4: High-Performance Team, Management, and Leadership

Behaviors and Practices

(not a complete list, for a larger, downloadable version

visit https://bit.ly/high-perf-behaviors-practices)

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 195

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

– Don’t contract it out to a large consulting firm to expe-

diently transform your organization or to implement

new methodologies or practices for you. Your teams will

feel that these methodologies (Lean, Agile, whatever) are

being done to them. While your current processes may

temporarily improve, your teams will not develop the

confidence or capability to sustain, continue to improve,

or to adapt and develop new processes and behaviors on

their own.

– Do develop your own coaches. Initially you may need to

hire outside coaching to establish a solid foundation, but

you must ultimately be the agent of your own change.

Coaching depth is a key lever for sustaining and scaling.

• You, too, need to change your way of work. Whether you

are a senior leader, manager, or team member, lead by ex-

ample. A generative culture starts with demonstrating new

behaviors, not delegating them.

• Practice discipline. It was not easy for Jannes’ management

team to record and reflect on how they spent their time or

try new things they weren’t initially comfortable with in

front of the people who reported to them. Change takes

discipline and courage.

• Practice patience. Your current way of work took decades

to entrench. It’s going to take time to change actions and

thought patterns until they become new habits and, eventu-

ally, your new culture.

• Practice practice. You just have to try it: learn, succeed, fail,

learn, adjust, repeat. Rhythm and routine, rhythm and rou-

tine, rhythm and routine . . .

196 | PART THREE

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

As you learn a new way of leading and working, you, and those

you bring along with you on this journey, will explore, stretch,

make some mistakes, get a lot right, learn, grow, and keep on

learning. You’ll discover better and faster ways to engage, learn,

and adapt to changing conditions. In doing so, you’ll improve

quality and speed in everything you do. You’ll grow your own

leaders, innovate, and outperform your competition. You’ll more

rapidly and effectively improve value for customers and the enter-

prise. As the research shows, you’ll “have a measurable impact on

an organization’s profitability, productivity, and market share.

These also have an impact on customer satisfaction, efficiency, and

the ability to achieve organizational goals.”

We wish you all the best on your learning journey!

Steve and Karen

CHAPTER 16: HIGH-PERFORMANCE LEADERSHIP AND MANAGEMENT | 197

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

C
o
p
yr

ig
h
te

d
 E

x
c
e
rp

t

	Praise for Accelerate
	Half Title
	Full Title
	Copyright
	Contents
	Foreword by Martin Fowler
	Foreword by By Courtney Kissler
	Quick Reference: Capabilities to Drive Improvement
	Preface
	Part One: What We Found
	Chapter 1: Accelerate
	Chapter 2: Measuring Performance
	Chapter 12: The Science Behind this Book
	Chapter 16: High-Performance Leadership and Management

