
SECOND SECOND

EDITIONEDITION

SECOND SECOND

EDITIONEDITION

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

All rights reserved. For information about permission to reproduce selections from this book,

write to Permissions, IT Revolution Press, LLC,

25 NW 23rd Pl, Suite 6314, Portland, OR 97210

The DevOps Handbook, Second Edition © 2021 by Gene Kim, Matthew "Jez" Humble,

Patrick Debois, John Willis, and Nicole Forsgren

First edition © 2016 by Gene Kim, Jez Humble, Patrick Debois, and John Willis

Printed in the United States of America

27 26 25 24 23 22 2 3 4 5 6 7 8 9 10

Cover design by Devon Smith Creative

Cover illustration by eboy

Book design by Devon Smith Creative

ISBN: 9781950508402

eBook ISBN: 9781950508433

Web PDF ISBN: 9781942788867

Audio ISBN: 9781950508440

The author of the 18F case study has dedicated the work to the public domain by

waiving all of his or her rights to the work worldwide under copyright law, including all related

and neighboring rights, to the extent allowed by law. You can copy, modify, distribute, and

perform case study 18F, even for commercial purposes, all without asking permission.

For information about special discounts for bulk purchases

or for information on booking authors for an event,

please visit ITRevolution.com.

THE DEVOPS HANDBOOK, SECOND EDITION

v

C O N T E N T S

Figures & Tables x

Note from the Publisher on the Second Edition xiii

Foreword to the Second Edition: Nicole Forsgren xvii

Foreword to the First Edition: John Allspaw xix

Preface xxi

Introduction xxix

Part I—The Three Ways

Part I Introduction 3

 01 Agile, Continuous Delivery, and the Three Ways 7

NEW Case Study: Approaching Cruising Altitude:

American Airlines’ DevOps Journey (Part 1) (2020) 15

 02 The First Way: The Principles of Flow 19

NEW Case Study: Flow and Constraint Management in

Healthcare (2021) 29

 03 The Second Way: The Principles of Feedback 33

NEW Case Study: Pulling the Andon Cord at

Excella (2018) 39

 04 The Third Way: The Principles of Continual Learning and

Experimentation 45

NEW Case Study: The Story of Bell Labs (1925) 54

Part 1 Conclusion 57

Part II—Where to Start

Part II Introduction 61

 05 Selecting Which Value Stream to Start With 63

Case Study: Nordstrom’s DevOps Transformation

(2014–2015) 63

NEW Case Study: Kessel Run: The Brownfield

Transformation of a Mid-Air Refueling System (2020) 69

NEW Case Study: Scaling DevOps Across the Business:

vi CONTENTS

American Airlines’ DevOps Journey (Part 2) (2020) 74

NEW Case Study: Saving the Economy From Ruin (With

a Hyperscale PaaS) at HMRC (2020) 77

 06 Understanding the Work in Our Value Stream, Making it

Visible, and Expanding it Across the Organization 81

Case Study: Nordstrom’s Experience with Value Stream

Mapping (2015) 81

Case Study: Operation InVersion at LinkedIn (2011) 91

 07 How to Design Our Organization and Architecture

with Conway’s Law in Mind 97

Case Study: Conway’s Law at Etsy (2015) 98

Case Study: API Enablement at Target (2015) 112

 08 How to Get Great Outcomes by Integrating Operations

into the Daily Work of Development 115

Case Study: Big Fish Games (2014) 115

NEW Case Study: Better Ways of Working at Nationwide

Building Society (2020) 124

Part II Conclusion 129

Part III—The First Way: The Technical Practices of Flow

Part III Introduction 133

 09 Create the Foundations of Our Deployment Pipeline 135

Case Study: Enterprise Data Warehouse (2009) 135

NEW Case Study: How a Hotel Company Ran $30B of

Revenue in Containers (2020) 143

 10 Enable Fast and Reliable Automated Testing 147

Case Study: Google Web Server (2005) 148

 11 Enable and Practice Continuous Integration 167

Case Study: HP LaserJet Firmware (2006) 168

Case Study: Continuous Integration of Bazaarvoice

(2012) 173

 12 Automate and Enable Low-Risk Releases 177

Case Study: Daily Deployments at CSG International

(2013) 181

Case Study: Etsy—Self-Service Developer Deployment:

An Example of Continuous Deployment (2014) 186

Case Study: Dixons Retail—Blue-Green Deployment for

Point-of-Sale System (2008) 193

CONTENTS vii

Case Study: Dark Launch of Facebook Chat (2008) 198

NEW Case Study: Creating a Win-Win for Dev & Ops

at CSG (2016) 201

 13 Architect for Low-Risk Releases 207

Case Study: Evolutionary Architecture at Amazon (2002) 212

Case Study: Strangler Fig Pattern at Blackboard Learn

(2011) 215

Part III Conclusion 219

Part IV—The Second Way: The Technical Practices of Feedback

Part IV Introduction 223

 14 Create Telemetry to Enable Seeing and Solving Problems 225

Case Study: DevOps Transformation at Etsy (2012) 226

Case Study: Creating Self-Service Metrics at

LinkedIn (2011) 237

 15 Analyze Telemetry to Better Anticipate Problems and

Achieve Goals 245

Case Study: Telemetry at Netflix (2012) 245

Case Study: Auto-Scaling Capacity at Netflix (2012) 251

Case Study: Advanced Anomaly Detection (2014) 255

 16 Enable Feedback So Development and Operations Can

Safely Deploy Code 259

Case Study: Right Media (2006) 259

Case Study: The Launch and HandOff Readiness

Review Google (2010) 269

 17 Integrate Hypothesis-Driven Development and

A/B Testing into Our Daily Work 273

Case Study: Hypothesis-Driven Development

at Intuit, Inc. (2012) 273

Case Study: Doubling Revenue Growth through Fast

Release Cycle Experimentation at Yahoo! Answers

 (2010) 278

 18 Create Review and Coordination Processes to Increase

Quality of Our Current Work 281

Case Study: Peer Review at GitHub (2011) 281

NEW Case Study: From Six-Eye Principle to Release at

Scale at Adidas (2020) 286

Case Study: Code Reviews at Google (2010) 290

viii CONTENTS

Case Study: Pair Programming Replacing Broken Code

Review Processes at Pivotal Labs (2011) 293

Part IV Conclusion 299

Part V—The Third Way: The Technical Practices of Continual Learning

and Experimentation

Part V Introduction 303

 19 Enable and Inject Learning into Daily Work 305

Case Study: AWS US-East and Netflix (2011) 305

NEW Case Study: Turning an Outage into a Powerful

Learning Opportunity at CSG (2020) 318

 20 Convert Local Discoveries into Global Improvements 321

Case Study: Standardizing a New Technology Stack

at Etsy (2010) 332

NEW Case Study: Crowdsourcing Technology Governance

 at Target (2018) 333

 21 Reserve Time to Create Organizational Learning

and Improvement 335

Case Study: Thirty-Day Challenge at Target (2015) 335

Case Study: Internal Technology Conferences at

Nationwide Insurance, Capital One, and Target (2014) 342

Part V Conclusion 347

Part VI—The Technological Practices of Integrating Information

Security, Change Management, and Compliance

Part VI Introduction 351

 22 Information Security Is Everyone’s Job Every Day 353

Case Study: Static Security Testing at Twitter (2009) 360

Case Study: 18F Automating Compliance for the Federal

Government with Compliance Masonry (2016) 369

Case Study: Instrumenting the Environment at

Etsy (2010) 373

NEW Case Study: Shifting Security Left at Fannie

Mae (2020) 376

 23 Protecting the Deployment Pipeline 379

CONTENTS ix

Case Study: Automated Infrastructure Changes as

Standard Changes at Salesforce.com (2012) 383

Case Study: PCI Compliance and a Cautionary Tale of

Separating Duties at Etsy (2014) 385

NEW Case Study: Biz and Tech Partnership toward

Ten "No Fear Releases" Per Day at Capital One (2020) 387

Case Study: Proving Compliance in Regulated

Environments (2015) 389

Case Study: Relying on Production Telemetry for

ATM Systems (2013) 392

Part VI Conclusion 395

A Call to Action: Conclusion to The DevOps Handbook 397

Afterword to the Second Edition 401

Appendices 409

Bibliography 423

Notes 441

Index 461

Acknowledgments 481

About the Authors 484

x

F I G U R E S & TA B L E S

 Table 0.1: The Ever Accelerating Trend toward Faster, Cheaper,

 Lower Risk Delivery of Software xxxi

 Figure 0.1: Deployments per Day vs. Number of Developers xli

 Figure 1.1: Lead Time vs. Process Time of a Deployment Operation 9

 Figure 1.2: A Technology Value Stream with a Deployment Lead Time

of Three Months 10

 Figure 1.3: A Technology Value Stream with a Lead Time of Minutes 11

 Figure 1.4: The Three Ways 13

 Figure 1.5: American Airlines’ DevOps Transformation Journey 17

 Figure 2.1: An Example Kanban Board Spanning Requirements, Dev,

Test, Staging, and In Production 20

 Figure 2.2: Simulation of “Envelope Game” 24

 Figure 3.1: Feedback Cycle Times 37

 Figure 3.2: Cycle Time vs. Andon Pulls at Excella 41

 Table 4.1: The Westrum Organizational Typology Model 48

 Figure 5.1: The Technology Adoption Curve 72

 Figure 5.2: American Airlines’ Delivery Transformation 75

 Table 5.1: American Airlines’ New Vocabulary 77

 Figure 6.1: An Example Value Stream Map 85

 Figure 6.2: Invest 20% of Capacity in those Who Create Positive,

User-Invisible Value 90

 Figure 7.1: Functional vs. Market Orientation 103

 Table 7.1: Specialists vs. Generalists vs. “E-shaped” Staff 106

 Figure 8.1: Functional Teams in Silos vs. Long-Lived, Multi-

Skilled Teams 126

 Figure 10.1: The Deployment Pipeline 152

 Figure 10.2: The Ideal and Non-Ideal Automated Testing Pyramids 157

 Figure 10.3: Running Automated and Manual Tests in Parallel 158

 Figure 12.1: Number of Developers Deploying per Week at Facebook 178

 Figure 12.2: Daily Deployments at CSG International 183

 Figure 12.3: Elite and High Performers Achieve Faster Deployment

Lead Times and MTTR (2019) 186

 Figure 12.4: The Deployinator Console at Etsy 188

FIGURES AND TABLES xi

 Figure 12.5: Blue-Green Deployment Patterns 191

 Figure 12.6: The Canary Release Pattern 194

 Figure 12.7: How Structure Influences Behavior and Quality 202

 Figure 12.8: From Siloed Approach to Cross-Functional Teams 203

 Figure 12.9: Conventional vs. Cross-Functional Structure 204

 Figure 13.1: Google Cloud Datastore 209

 Table 13.1: Architectural Archetypes 211

 Figure 13.2: Blackboard Learn Code Repository: Before Building Blocks 216

 Figure 13.3: Blackboard Learn Code Repository: After Building Blocks 217

 Figure 14.1: Incident Resolution Time for Elite, High, Medium, and

Low Performers (2019) 228

 Figure 14.2: Monitoring Framework 230

 Figure 14.3: One Line of Code to Generate Telemetry using StatsD and

Graphite at Etsy 235

 Figure 14.4: User Excitement of New Features in User Forum Posts after

Deployments 241

 Figure 15.1: Standard Deviations (σ)Mean (µ) with Gaussian

Distribution 247

 Figure 15.2: Downloads per Minute: Over-Alerting when Using

“Three Standard Deviation” Rule 250

 Figure 15.3: Downloads per Minute: Histogram of Data Showing Non-

Gaussian Distribution 251

 Figure 15.4: Netflix Customer Viewing Demand for Five Days 252

 Figure 15.5: Netflix Scryer Forecasting Customer Traffic and the

Resulting AWS Schedule of Computer Resources 252

 Figure 15.6: Autodesk Share Price and Thirty-Day Moving Average

Filter 254

 Figure 15.7: Transaction Volume: Under-Alerting Using “Three

Standard Deviation” Rule 255

 Figure 15.8: Transaction Volume: Using Kolmogorov-Smirnov Test

to Alert on Anomalies 256

 Figure 16.1: Deployment to Etsy.com Causes PHP Run-Time Warnings

and Is Quickly Fixed 262

 Figure 16.2: The “Service Handback” at Google 268

 Figure 16.3: The LRR and HRR at Google 271

 Figure 18.1: Comments and Suggestions on a GitHub Pull Request 282

 Figure 18.2: Size of Change vs. Lead Time for Reviews at Google 291

 Figure 21.1: The ASREDS Learning Loop 341

xii FIGURES AND TABLES

 Figure 22.1: Jenkins Running Automated Security Testing 358

 Figure 22.2: Number of Brakeman Security Vulnerabilities Detected 362

 Figure 22.3: Time to Remediate vs. Time to Update Dependencies

(TTU) 365

 Figure 22.4: Five Behavioral Clusters for Open-Source Projects 366

 Figure 22.5: Developers See SQL Injection Attempts in Graphite at Etsy 374

 Figure AF.1: Average Development Window by Day of Week per User 402

 Figure A.1: The Core, Chronic Conflict Facing Every IT Organization 412

 Table A.1: The Downward Spiral 413

 Figure A.2: Queue Size and Wait Times as Function of Percent

Utilization 415

 Table A.2: Two Stories 416

 Figure A.3: The Toyota Andon Cord 417

xiii

N O T E F R O M T H E P U B L I S H E R O N T H E S E C O N D

E D I T I O N

Impact of the First Edition

Since the original publication of The DevOps Handbook, data from the State of

DevOps Reports and other research continue to show that DevOps improves

time to value for businesses and increases productivity and worker well-being.

It also helps create nimble, agile businesses that can adjust to overwhelming

change, as witnessed in the COVID-19 pandemic of 2020 and beyond.

“I think 2020 has been illuminating in showing what technology can do in

a time of incredible crisis,” Gene Kim said in his “State of DevOps: 2020 and

Beyond” article. “The crisis provided a catalyst for rapid change. And I’m thank-

ful we were able to rise and meet it.”1

One of the underpinnings of DevOps and The DevOps Handbook is that it

shows—and is indeed written for—the horses not the unicorns of the busi-

ness and technology world. DevOps was never, and still is not, only effective at

technology giants—the FAANGs—or startups. This book and the DevOps com-

munity as a whole have shown time and time again that DevOps practices and

processes can take even the most legacy-riddled, old “horse” enterprise organi-

zation and turn it into a nimble technology organization.

In 2021, it is clearer than ever before that every business is a technology

business and every leader is a technology leader. Not only can technology no

longer be ignored or relegated to the basements; it must also be considered a

vital part of the entire strategic endeavor of the business.

Changes to the Second Edition

In this expanded edition of The DevOps Handbook, the authors have updated the

main text where new research, learnings, and experiences have developed and

shaped our understanding of DevOps and how it is used in the industry. Addi-

tionally we are pleased to include renowned researcher Dr. Nicole Forsgren as

xiv NOTE FROM THE PUBLISHER

co-author to help update and expand the text with new research and supporting

metrics.

We’ve added some additional insights and resources we’ve

learned since the first edition came out. These “Continuous

Learning” sections are highlighted throughout the book as

you see here and include new supporting data and additional

resources, tools, and techniques to use on your DevOps journey.

We’ve also expanded the book with additional case studies to illustrate how

far DevOps has spread throughout all industries, especially how it has spread

beyond the IT department and into the C-suite itself. In addition, at the end of

each case study we have added a key takeaway or two that highlight the most

important, though not exclusive, lessons learned. Finally, we’ve updated the

conclusion to each part with new resources to continue your learning journey.

What’s Next for DevOps and the Age of Software

If the past five years have taught us anything, it is how important technology is

and how much we can achieve when IT and the business speak openly and hon-

estly, as DevOps facilitates.

Perhaps nothing illustrates this more than the rapid changes that were nec-

essary due to the COVID-19 pandemic of 2020 and beyond. Through the use

of DevOps, organizations mobilized technology to get services to customers,

internal and external, in a moment of rapid, unprecedented change. These large,

complex organizations, known for their inability to pivot and adapt quickly, sud-

denly had no other choice.

American Airlines also was able to take advantage of their ongoing DevOps

transformation to build big wins quickly, as you can read about in Chapters 1

and 5.

Dr. Chris Strear relates his experiences using the Theory of Constraints to

optimize flow in hospitals, as you can read about in Chapter 2.

In 2020 Nationwide Building Society, the world’s largest mutual financial

institution, was able to respond in weeks to customer needs versus the typical

years, thanks to their ongoing DevOps transformation. You can read more about

their experience in Chapter 8.

NOTE FROM THE PUBLISHER xv

But while technology is a piece of a successful transformation into future

ways of working, business leadership must lead the charge. The bottleneck of

today is no longer just technical practices (though they still exist); the biggest

challenge and necessity is getting business leadership on board. Transformation

must be co-created between the business and technology, and the theories pre-

sented here can lead that change.

The enterprise can no longer sustain a binary thought process: top down

or tech only. We must achieve true collaboration. Ninety percent of that work

involves getting the right people engaged, onboard, and aligned. Start there and

we can maintain the resulting motivation into the future.

—IT Revolution

Portland, OR

 June 2021

xvii

F O R E W O R D T O T H E S E C O N D E D I T I O N

I
t has been five years since the first edition of The DevOps Handbook was

released. While so much has changed, so much has also remained the same.

Some of our tools and technologies are no longer in vogue or might not exist,

but that shouldn’t detract any readers. Although the technology landscape has

shifted, the underlying principles presented in this book remain as relevant as

ever.

In fact, the need for DevOps is even greater today, as organizations need to

deliver value quickly, safely, securely, and reliably to their customers and users.

To do this, they need to transform their internal processes and leverage tech-

nology to deliver value—using DevOps practices. This is true for organizations

around the world and across all industry verticals.

Over the past several years, I’ve led research in the annual State of

DevOps Reports (first with Puppet and later with DORA and Google), with co-

authors Jez Humble and Gene Kim. The research has confirmed that many of

the practices described in this book lead to improved outcomes like speed and

stability of software releases; reductions in deployment pain and burnout of our

engineers; and contributions to organizational performance, including profit-

ability, productivity, customer satisfaction, effectiveness, and efficiency.

For the second edition of The DevOps Handbook, we have refreshed the text

with updated data based on the latest research and best practices, and included

new case studies to share even more stories about what transformations look

like “on the ground.” Thanks for joining us on this journey of continuous

improvement.

—Nicole Forsgren, PhD

Partner at Microsoft Research

 2021

xix

F O R E W O R D T O T H E F I R S T E D I T I O N

I
n the past, many fields of engineering have experienced a sort of nota-

ble evolution, continually “leveling up” its understanding of its own work.

While there are university curriculums and professional support organizations

situated within specific disciplines of engineering (civil, mechanical, electrical,

nuclear, etc.), the fact is, modern society needs all forms of engineering to rec-

ognize the benefits of and work in a multidisciplinary way.

Think about the design of a high-performance vehicle. Where does the

work of a mechanical engineer end and the work of an electrical engineer begin?

Where (and how, and when) should someone with domain knowledge of aero-

dynamics (who certainly would have well-formed opinions on the shape, size,

and placement of windows) collaborate with an expert in passenger ergonomics?

What about the chemical influences of fuel mixture and oil on the materials of

the engine and transmission over the lifetime of the vehicle? There are other

questions we can ask about the design of an automobile, but the end result is

the same: success in modern technical endeavors absolutely requires multiple

perspectives and expertise to collaborate.

In order for a field or discipline to progress and mature, it needs to reach a

point where it can thoughtfully reflect on its origins, seek out a diverse set of

perspectives on those reflections, and place that synthesis into a context that is

useful for how the community pictures the future.

This book represents such a synthesis and should be seen as a seminal col-

lection of perspectives on the (I will argue, still emerging and quickly evolving)

field of software engineering and operations.

No matter what industry you are in, or what product or service your orga-

nization provides, this way of thinking is paramount and necessary for survival

for every business and technology leader.

—John Allspaw, CTO, Etsy

Brooklyn, NY, August 2016

xxi

P R E FA C E

Aha!

T
he journey to complete The DevOps Handbook has been a long one—it

started with weekly working Skype calls between the co-authors in Febru-

ary of 2011, with the vision of creating a prescriptive guide that would serve as

a companion to the as-yet-unfinished book The Phoenix Project: A Novel About IT,

DevOps, and Helping Your Business Win.

More than five years later, with over two thousand hours of work, The

DevOps Handbook is finally here. Completing this book has been an extremely

long process, although one that has been highly rewarding and full of incredi-

ble learning, with a scope that is much broader than we originally envisioned.

Throughout the project, all the co-authors shared a belief that DevOps is gen-

uinely important, formed in a personal “aha” moment much earlier in each of

our professional careers, which I suspect many of our readers will resonate with.

Gene Kim

I’ve had the privilege of studying high-performing technology organizations

since 1999, and one of the earliest findings was that boundary-spanning

between the different functional groups of IT Operations, Information

Security, and Development was critical to success. But I still remember the

first time I saw the magnitude of the downward spiral that would result

when these functions worked toward opposing goals.

It was 2006, and I had the opportunity to spend a week with the group

that managed the outsourced IT Operations of a large airline reservation

service. They described the downstream consequences of their large,

annual software releases: each release would cause immense chaos and

disruption for the outsourcer as well as customers; there would be SLA

(service level agreement) penalties because of the customer-impacting

xxii PREFACE

outages; there would be layoffs of the most talented and experienced staff

because of the resulting profit shortfalls; there would be much unplanned

work and firefighting so that the remaining staff couldn’t work on the

ever-growing service request backlogs coming from customers; the con-

tract would be held together by the heroics of middle management; and

everyone felt that the contract would be doomed to be put out for re-bid

in three years.

The sense of hopelessness and futility that resulted created, for me,

the beginnings of a moral crusade. Development seemed to always be

viewed as strategic, but IT Operations was viewed as tactical, often del-

egated away or outsourced entirely, only to return in five years in worse

shape than it was first handed over.

For many years, many of us knew that there must be a better way.

I remember seeing the talks coming out of the 2009 Velocity Conference,

describing amazing outcomes enabled by architecture, technical prac-

tices, and cultural norms that we now know as DevOps. I was so excited

because it clearly pointed to the better way that we had all been searching

for. And helping spread that word was one of my personal motivations to

co-author The Phoenix Project. You can imagine how incredibly rewarding

it was to see the broader community react to that book, describing how it

helped them achieve their own “aha” moments.

Jez Humble

My DevOps “aha” moment was at a startup in 2000—my first job after

graduating. For some time, I was one of two technical staff. I did every-

thing: networking, programming, support, systems administration.

We deployed software to production by FTP directly from our work-

stations.

Then in 2004 I got a job at ThoughtWorks, a consultancy where my

first gig was working on a project involving about seventy people. I was on

a team of eight engineers whose full-time job was to deploy our software

into a production-like environment. In the beginning, it was really stress-

ful. But over a few months, we went from manual deployments that took

two weeks to an automated deployment that took one hour, where we

could roll forward and back in milliseconds using the blue-green deploy-

ment pattern during normal business hours.

That project inspired a lot of the ideas in both the Continuous Delivery

book and this one. A lot of what drives me and others working in this

PREFACE xxiii

space is the knowledge that, whatever your constraints, we can always do

better, and the desire to help people on their journey.

Patrick Debois

For me, it was a collection of moments. In 2007 I was working on a data

center migration project with some Agile teams. I was jealous that they

had such high productivity—able to get so much done in so little time.

For my next assignment, I started experimenting with Kanban in

Operations and saw how the dynamic of the team changed. Later, at

the Agile Toronto 2008 conference, I presented my IEEE paper on this,

but I felt it didn’t resonate widely in the Agile community. We started

an Agile system administration group, but I overlooked the human side

of things.

After seeing the 2009 Velocity Conference presentation “10 Deploys

per Day” by John Allspaw and Paul Hammond, I was convinced others

were thinking in a similar way. So I decided to organize the first DevOps-

Days, accidentally coining the term DevOps.

The energy at the event was unique and contagious. When people

started to thank me because it changed their life for the better, I under-

stood the impact. I haven’t stopped promoting DevOps since.

John Willis

In 2008, I had just sold a consulting business that focused on large-scale,

legacy IT operations practices around configuration management and

monitoring (Tivoli) when I first met Luke Kanies (the founder of Puppet

Labs). Luke was giving a presentation on Puppet at an O’Reilly open-

source conference on configuration management (CM).

At first I was just hanging out at the back of the room, killing time and

thinking, “What could this twenty-year-old tell me about configuration

management?” After all, I had literally been working my entire life at some

of the largest enterprises in the world, helping them architect CM and

other operations management solutions. However, about five minutes

into his session, I moved up to the first row and realized everything I had

been doing for the last twenty years was wrong. Luke was describing what

I now call second-generation CM.

After his session, I had an opportunity to sit down and have coffee with

him. I was totally sold on what we now call infrastructure as code. How-

ever, while we met for coffee, Luke started going even further, explaining

xxiv PREFACE

his ideas. He started telling me he believed that Operations was going to

have to start behaving like software developers. They were going to have

to keep their configurations in source control and adopt CI/CD delivery

patterns for their workflow. Being the old IT Operations person at the

time, I think I replied to him with something like, “That idea is going to

sink like Led Zeppelin with Ops folk.” (I was clearly wrong.)

Then about a year later, in 2009, at another O’Reilly conference, Veloc-

ity, I saw Andrew Clay Shafer give a presentation on Agile infrastructure.

In his presentation, Andrew showed this iconic picture of a wall between

developers and Operations with a metaphorical depiction of work being

thrown over the wall. He coined this “the wall of confusion.” The ideas he

expressed in that presentation codified what Luke was trying to tell me a

year earlier. That was the light bulb for me. Later that year, I was the only

American invited to the original DevOpsDays in Ghent. By the time that

event was over, this thing we call DevOps was clearly in my blood.

DevOps Myths

Clearly, the co-authors of this book all came to a similar epiphany, even if they

came there from very different directions. But there is now an overwhelming

weight of evidence that the problems described above happen almost every-

where, and that the solutions associated with DevOps are nearly universally

applicable.

The goal of writing this book is to describe how to replicate the DevOps

transformations we’ve been a part of or have observed, as well as dispel many of

the myths of why DevOps won’t work in certain situations. Below are some of the

most common myths we hear about DevOps.

Myth—DevOps Is Only for Startups: While DevOps practices have been pio-

neered by the web-scale, internet “unicorn” companies such as Google, Amazon,

Netflix, and Etsy, each of these organizations has, at some point in their history,

risked going out of business because of the problems associated with more tradi-

tional “horse” organizations: highly dangerous code releases that were prone to

catastrophic failure, inability to release features fast enough to beat the compe-

tition, compliance concerns, an inability to scale, high levels of distrust between

Development and Operations, and so forth.

However, each of these organizations was able to transform their architec-

ture, technical practices, and culture to create the amazing outcomes that we

PREFACE xxv

associate with DevOps. As Dr. Branden Williams, an information security exec-

utive, said, “Let there be no more talk of DevOps unicorns or horses but only

thoroughbreds and horses heading to the glue factory.”1

Myth—DevOps Replaces Agile: DevOps principles and practices are compati-

ble with Agile, with many observing that DevOps is a logical continuation of the

Agile journey that started in 2001. Agile often serves as an effective enabler of

DevOps because of its focus on small teams continually delivering high-quality

code to customers.

Many DevOps practices emerge if we continue to manage our work beyond

the goal of “potentially shippable code” at the end of each iteration, extending

it to having our code always in a deployable state, with developers checking into

trunk daily, and if we demonstrate our features in production-like environments.

Myth—DevOps Is Incompatible with ITIL: Many view DevOps as a backlash to

ITIL or ITSM (IT Service Management), which was originally published in 1989.

ITIL has broadly influenced multiple generations of Ops practitioners, includ-

ing one of the co-authors, and is an ever-evolving library of practices intended

to codify the processes and practices that underpin world-class IT Operations,

spanning service strategy, design, and support.

DevOps practices can be made compatible with ITIL processes. To sup-

port the shorter lead times and higher deployment frequencies associated with

DevOps, many areas of ITIL become fully automated, solving many problems

associated with the configuration and release management processes (e.g., keep-

ing the configuration management database and definitive software libraries up

to date). And because DevOps requires fast detection and recovery when service

incidents occur, the ITIL disciplines of service design, incident, and problem

management remain as relevant as ever.

Myth—DevOps Is Incompatible with Information Security and Compliance:

The absence of traditional controls (e.g., segregation of duty, change approval

processes, manual security reviews at the end of the project) may dismay infor-

mation security and compliance professionals.

However, that doesn’t mean that DevOps organizations don’t have effective

controls. Instead of security and compliance activities only being performed at

the end of the project, controls are integrated into every stage of daily work

in the software development life cycle, resulting in better quality, security, and

compliance outcomes.

xxvi PREFACE

Myth—DevOps Means Eliminating IT Operations, or “NoOps”: Many mis-

interpret DevOps as the complete elimination of the IT Operations function.

However, this is rarely the case. While the nature of IT Operations work may

change, it remains as important as ever. IT Operations collaborates far earlier in

the software life cycle with Development, who continues to work with IT Oper-

ations long after the code has been deployed into production.

Instead of IT Operations doing manual work that comes from work tick-

ets, it enables developer productivity through APIs and self-serviced platforms

that create environments, test and deploy code, monitor and display production

telemetry, and so forth. By doing this, IT Operations becomes more like Devel-

opment (as do QA and Infosec), engaged in product development, where the

product is the platform that developers use to safely, quickly, and securely test,

deploy, and run their IT services in production.

Myth—DevOps Is Just “Infrastructure as Code” or Automation: While many

of the DevOps patterns shown in this book require automation, DevOps also

requires cultural norms and an architecture that allows for the shared goals to be

achieved throughout the IT value stream. This goes far beyond just automation.

As Christopher Little, a technology executive and one of the earliest chroniclers

of DevOps, wrote, “DevOps isn’t about automation, just as astronomy isn’t

about telescopes.”2

Myth—DevOps Is Only for Open-Source Software: Although many DevOps

success stories take place in organizations using software such as the LAMP stack

(Linux, Apache, MySQL, PHP), achieving DevOps outcomes is independent of

the technology being used. Successes have been achieved with applications writ-

ten in Microsoft.NET, COBOL, and mainframe assembly code, as well as with

SAP and even embedded systems (e.g., HP LaserJet firmware).

Spreading the Aha! Moment

Each of the authors has been inspired by the amazing innovations happening

in the DevOps community and the outcomes they are creating, including safe

systems of work and enabling small teams to quickly and independently develop

and validate code that can be safely deployed to customers. Given our belief that

DevOps is a manifestation of creating dynamic, learning organizations that

continually reinforce high trust cultural norms, it is inevitable that these orga-

nizations will continue to innovate and win in the marketplace.

PREFACE xxvii

It is our sincere hope that The DevOps Handbook will serve as a valuable

resource for many people in different ways:

• a guide for planning and executing DevOps transformations

• a set of case studies to research and learn from

• a chronicle of the history of DevOps

• a means to create a coalition that spans Product Owners, Architecture,

Development, QA, IT Operations, and Information Security to achieve

common goals

• a way to get the highest levels of leadership support for DevOps ini-

tiatives, as well as a moral imperative to change the way we manage

technology organizations to enable better effectiveness and efficiency,

as well as enabling a happier and more humane work environment,

helping everyone become lifelong learners—this not only helps every-

one achieve their highest goals as human beings, but also helps their

organizations win

xxix

I N T R O D U C T I O N

Imagine a World Where Dev and Ops Become DevOps

I
magine a world where product owners, Development, QA, IT Operations, and

Infosec work together, not only to help each other, but also to ensure that the

overall organization succeeds. By working toward a common goal, they enable

the fast flow of planned work into production (e.g., performing tens, hundreds,

or even thousands of code deploys per day), while achieving world-class stability,

reliability, availability, and security.

In this world, cross-functional teams rigorously test their hypotheses of

which features will most delight users and advance the organizational goals.

They care not just about implementing user features, but also about actively

ensuring their work flows smoothly and frequently through the entire value

stream without causing chaos and disruption to IT Operations or any other

internal or external customer.

Simultaneously, QA, IT Operations, and Infosec are always working on ways

to reduce friction for the team, creating the work systems that enable developers

to be more productive and get better outcomes. By adding the expertise of QA,

IT Operations, and Infosec into delivery teams and automated self-service tools

and platforms, teams are able to use that expertise in their daily work without

being dependent on other teams.

This enables organizations to create a safe system of work, where small

teams are able to quickly and independently develop, test, and deploy code and

value quickly, safely, securely, and reliably to customers. This allows organiza-

tions to maximize developer productivity, enable organizational learning, create

high employee satisfaction, and win in the marketplace.

These are the outcomes that result from DevOps. For most of us, this is

not the world we live in. More often than not, the system we work in is broken,

resulting in extremely poor outcomes that fall well short of our true potential. In

xxx INTRODUCTION

our world, Development and IT Operations are adversaries; testing and Infosec

activities happen only at the end of a project, too late to correct any problems

found; and almost any critical activity requires too much manual effort and

too many handoffs, leaving us always waiting. Not only does this contribute to

extremely long lead times to get anything done, but the quality of our work,

especially production deployments, is also problematic and chaotic, resulting in

negative impacts to our customers and our business.

As a result, we fall far short of our goals, and the whole organization is

dissatisfied with the performance of IT, resulting in budget reductions and frus-

trated, unhappy employees who feel powerless to change the process and its

outcomes.* The solution? We need to change how we work; DevOps shows us

the best way forward.

To better understand the potential of the DevOps revolution, let us look

at the manufacturing revolution of the 1980s. By adopting Lean principles and

practices, manufacturing organizations dramatically improved plant productiv-

ity, customer lead times, product quality, and customer satisfaction, enabling

them to win in the marketplace.

Before the revolution, average manufacturing plant order lead times were

six weeks, with fewer than 70% of orders shipped on time. By 2005, with the

widespread implementation of Lean practices, average product lead times had

dropped to less than three weeks, and more than 95% of orders were shipped on

time.1 Organizations that did not implement Lean practices lost market share,

and many went out of business entirely.

Similarly, the bar has been raised for delivering technology products and

services—what was good enough in previous decades is not good enough now.

For each of the last four decades, the cost and time required to develop and

deploy strategic business capabilities and features have dropped by orders of

magnitude. During the 1970s and 1980s, most new features required one to five

years to develop and deploy, often costing tens of millions of dollars.

By the 2000s, because of advances in technology and the adoption of Agile

principles and practices, the time required to develop new functionality had

dropped to weeks or months but deploying into production still required weeks

or months, often with catastrophic outcomes.

And by 2010, with the introduction of DevOps and the never-ending

commoditization of hardware, software, and now the cloud, features (even

entire startup companies) could be created in weeks, quickly being deployed

* This is just a small sample of the problems found in typical IT organizations.

INTRODUCTION xxxi

into production in just hours or minutes—for these organizations, deploy-

ment finally became routine and low risk. These organizations are able to

perform experiments to test business ideas, discovering which ideas create

the most value for customers and the organization as a whole, and which are

then further developed into features that can be rapidly and safely deployed

into production.

Table 0.1: The Ever-Accelerating Trend toward Faster,

Cheaper, Lower Risk Delivery of Software

1970s–1980s 1990s 2000s–Present

Era Mainframes Client/Server
Commoditization

and Cloud

Representative
technology

of era

COBOL, DB2 on

MVS, etc.

C++, Oracle,

Solaris, etc.

Java, MySQL, Red

Hat, Ruby on Rails,

PHP, etc.

Cycle time 1–5 years 3–12 months 2–12 weeks

Cost $1M–$100M $100k–$10M $10k–$1M

At risk The whole company
A product line or

division
A product feature

Cost of failure
Bankruptcy, sell

the company,

massive layoffs

Revenue miss,

CIO’s job
Negligible

Source: Adrian Cockcroft, “Velocity and Volume (or Speed Wins),” presentation at

FlowCon, San Francisco, CA, November 2013.

Today, organizations adopting DevOps principles and practices often deploy

changes hundreds or even thousands of times per day. In an age where com-

petitive advantage requires fast time to market and relentless experimentation,

organizations that are unable to replicate these outcomes are destined to lose

in the marketplace to more nimble competitors and could potentially go out of

business entirely, much like the manufacturing organizations that did not adopt

Lean principles.

These days, regardless of what industry we are competing in, the way we

acquire customers and deliver value to them is dependent on the technology

value stream. Put even more succinctly, as Jeffrey Immelt, CEO of General

xxxii INTRODUCTION

 Electric, stated, “Every industry and company that is not bringing software to

the core of their business will be disrupted.”2 Or as Jeffrey Snover, Technical

Fellow at Microsoft, said, “In previous economic eras, businesses created value

by moving atoms. Now they create value by moving bits.”3

It’s difficult to overstate the enormity of this problem—it affects every

organization, independent of the industry we operate in, the size of our organi-

zation, whether we are profit or nonprofit. Now more than ever, how technology

work is managed and performed predicts whether our organizations will win in

the marketplace or even survive. In many cases, we will need to adopt principles

and practices that look very different from those that have successfully guided

us over the past decades. (See Appendix 1.)

Now that we have established the urgency of the problem that DevOps

solves, let us take some time to explore in more detail the symptomatology of

the problem, why it occurs, and why, without dramatic intervention, the prob-

lem worsens over time.

The Problem: Something in Your Organization Must Need Improvement

(Or You Wouldn’t Be Reading This Book)

Most organizations are not able to deploy production changes in minutes or

hours, instead requiring weeks or months. Nor are they able to deploy hun-

dreds or thousands of changes into production per day; instead, they struggle

to deploy monthly or even quarterly. Nor are production deployments routine,

instead involving outages and chronic firefighting and heroics.

In an age where competitive advantage requires fast time to market, high

service levels, and relentless experimentation, these organizations are at a sig-

nificant competitive disadvantage. This is in large part due to their inability to

resolve a core, chronic conflict within their technology organization.

The Core, Chronic Conflict

In almost every IT organization, there is an inherent conflict between Develop-

ment and IT Operations that creates a downward spiral, resulting in ever-slower

time to market for new products and features, reduced quality, increased out-

ages, and, worst of all, an ever-increasing amount of technical debt.

The term “technical debt” was first coined by Ward Cunningham. Analogous

to financial debt, technical debt describes how decisions we make lead to prob-

lems that get increasingly more difficult to fix over time, continually reducing

INTRODUCTION xxxiii

our available options in the future—even when taken on judiciously, we still

incur interest.

One factor that contributes to this is the often competing goals of

Development and IT Operations. IT organizations are responsible for many

things. Among them are the two following goals, which must be pursued

simultaneously:

• Respond to the rapidly changing competitive landscape.

• Provide stable, reliable, and secure service to the customer.

Frequently, Development will take responsibility for responding to changes

in the market and for deploying features and changes into production as quickly

as possible. IT Operations will take responsibility for providing customers

with IT service that is stable, reliable, and secure, making it difficult or even

impossible for anyone to introduce production changes that could jeopardize

production. Configured this way, Development and IT Operations have diamet-

rically opposed goals and incentives.

Dr. Eliyahu M. Goldratt, one of the founders of the manufacturing man-

agement movement, called these types of configuration “the core, chronic

conflict”—when organizational measurements and incentives across different

silos prevent the achievement of global, organizational goals.4*

This conflict creates a downward spiral so powerful it prevents the achieve-

ment of desired business outcomes, both inside and outside the IT organization.

These chronic conflicts often put technology workers into situations that lead to

poor software and service quality and bad customer outcomes, as well as a daily

need for workarounds, firefighting, and heroics, whether in Product Management,

Development, QA, IT Operations, or Information Security. (See Appendix 2.)

Downward Spiral in Three Acts

The downward spiral in IT has three acts that are likely familiar to most IT

practitioners. The first act begins in IT Operations, where our goal is to keep

applications and infrastructure running so that our organization can deliver

value to customers. In our daily work, many of our problems are due to applica-

tions and infrastructure that are complex, poorly documented, and incredibly

* In the manufacturing realm, a similar core, chronic conflict existed: the need to simultaneously
ensure on-time shipments to customers and to control costs. How this core, chronic conflict was
broken is described in Appendix 2.

xxxiv INTRODUCTION

fragile. This is the technical debt and daily workarounds that we live with con-

stantly, always promising that we’ll fix the mess when we have a little more time.

But that time never comes.

Alarmingly, our most fragile artifacts support either our most important

revenue-generating systems or our most critical projects. In other words, the

systems most prone to failure are also our most important and are at the epi-

center of our most urgent changes. When these changes fail, they jeopardize our

most important organizational promises, such as availability to customers, rev-

enue goals, security of customer data, accurate financial reporting, and so forth.

The second act begins when somebody has to compensate for the latest

broken promise—it could be a product manager promising a bigger, bolder fea-

ture to dazzle customers with or a business executive setting an even larger

revenue target. Then, oblivious to what technology can or can’t do, or what

factors led to missing our earlier commitment, they commit the technology

organization to deliver upon this new promise.

As a result, Development is tasked with another urgent project that inevi-

tably requires solving new technical challenges and cutting corners to meet the

promised release date, further adding to our technical debt—made, of course,

with the promise that we’ll fix any resulting problems when we have a little more

time.

This sets the stage for the third and final act, where everything becomes just

a little more difficult, bit by bit—everybody gets a little busier, work takes a little

more time, communications become a little slower, and work queues get a lit-

tle longer. Our work becomes more tightly coupled, smaller actions cause bigger

failures, and we become more fearful and less tolerant of making changes. Work

requires more communication, coordination, and approvals; teams must wait just

a little longer for their dependent work to get done; and our quality keeps getting

worse. The wheels begin grinding slower and require more effort to keep turning.

(See Appendix 3.)

Although it’s difficult to see in the moment, the downward spiral is obvi-

ous when one takes a step back. We notice that production code deployments

are taking ever-longer to complete, moving from minutes to hours to days to

weeks. And worse, the deployment outcomes have become even more problem-

atic, resulting in an ever-increasing number of customer-impacting outages that

require more heroics and firefighting in Operations, further depriving them of

their ability to pay down technical debt.

As a result, our product delivery cycles continue to move slower and slower,

fewer projects are undertaken, and those that are, are less ambitious. Further-

INTRODUCTION xxxv

more, the feedback on everyone’s work becomes slower and weaker, especially

the feedback signals from our customers. And, regardless of what we try, things

seem to get worse—we are no longer able to respond quickly to our changing

competitive landscape, nor are we able to provide stable, reliable service to our

customers. As a result, we ultimately lose in the marketplace.

Time and time again, we learn that when IT fails, the entire organization

fails. As Steven J. Spear noted in his book The High-Velocity Edge, whether

the damages “unfold slowly like a wasting disease” or rapidly “like a fiery

crash . . . the destruction can be just as complete.”5

Why Does This Downward Spiral Happen Everywhere?

For over a decade, the authors of this book have observed this destructive spiral

occur in countless organizations of all types and sizes. We understand better

than ever why this downward spiral occurs and why it requires DevOps prin-

ciples to mitigate. First, as described earlier, every IT organization has two

opposing goals, and second, every company is a technology company, whether

they know it or not.

As Christopher Little, a software executive and one of the earliest chroni-

clers of DevOps, said, “Every company is a technology company, regardless of

what business they think they’re in. A bank is just an IT company with a bank-

ing license.”6* To convince ourselves that this is the case, consider that the vast

majority of capital projects have some reliance on IT. As the saying goes, “It is

virtually impossible to make any business decision that doesn’t result in at least

one IT change.”

In the business and finance context, projects are critical because they serve

as the primary mechanism for change inside organizations. Projects are typically

what management needs to approve, budget for, and be held accountable for;

therefore, they are the mechanism that achieves the goals and aspirations of the

organization, whether it is to grow or even shrink.†

Projects are typically funded through capital spending (e.g., factories, equip-

ment, and major projects, and expenditures are capitalized when payback is

expected to take years), of which 50% is now technology related. This is even true

in “low tech” industry verticals with the lowest historical spending on technol-

ogy, such as energy, metal, resource extraction, automotive, and construction.8

* In 2013, the European bank HSBC employed more software developers than Google.7

† For now, let us suspend the discussion of whether software should be funded as a “project” or a
“product.” This is discussed later in the book.

xxxvi INTRODUCTION

In other words, business leaders are far more reliant upon the effective manage-

ment of IT in order to achieve their goals than they think.*

The Costs: Human and Economic

When people are trapped in this downward spiral for years, especially those

who are downstream of Development, they often feel stuck in a system that

preordains failure and leaves them powerless to change the outcomes. This pow-

erlessness is often followed by burnout, with the associated feelings of fatigue,

cynicism, and even hopelessness and despair.

Many psychologists assert that creating systems that cause feelings of

powerlessness is one of the most damaging things we can do to fellow human

beings—we deprive other people of their ability to control their own outcomes

and even create a culture where people are afraid to do the right thing because of

fear of punishment, failure, or jeopardizing their livelihood. This type of culture

can create the conditions for learned helplessness, where people become unwill-

ing or unable to act in a way that avoids the same problem in the future.

For our employees, it means long hours, working on weekends, and a

decreased quality of life, not just for the employee, but for everyone who

depends on them, including family and friends. It is not surprising that when

this occurs, we lose our best people (except for those who feel like they can’t

leave because of a sense of duty or obligation).

In addition to the human suffering that comes with the current way of

working, the opportunity cost of the value that we could be creating is stagger-

ing—the authors believe that we are missing out on approximately $2.6 trillion

of value creation per year, which is, at the time of this writing, equivalent to the

annual economic output of France, the sixth-largest economy in the world.

Consider the following calculation—both IDC and Gartner estimated that

in 2011 approximately 5% of the worldwide gross domestic product ($3.1 tril-

lion) was spent on IT (hardware, services, and telecom).10 If we estimate that

50% of that $3.1 trillion was spent on operating costs and maintaining existing

systems, and that one-third of that 50% was spent on urgent and unplanned

work or rework, approximately $520 billion was wasted.

* For instance, Dr. Vernon Richardson and his colleagues published this astonishing finding. They
studied the 10-K SEC filings of 184 public corporations and divided them into three groups: A)
firms with material weaknesses with IT-related deficiencies, B) firms with material weaknesses with
no IT-related deficiencies, and C) “clean firms” with no material weaknesses. Firms in Group A saw
eight times higher CEO turnover than Group C, and there was four times higher CFO turnover in
Group A than in Group C. Clearly, IT may matter far more than we typically think.⁹

INTRODUCTION xxxvii

If adopting DevOps could enable us—through better management and

increased operational excellence—to halve that waste and redeploy that human

potential into something that’s five times the value (a modest proposal), we

could create $2.6 trillion of value per year.

The Ethics of DevOps: There Is a Better Way

In the previous sections, we described the problems and the negative conse-

quences of the status quo due to the core, chronic conflict, from the inability to

achieve organizational goals to the damage we inflict on fellow human beings.

By solving these problems, DevOps astonishingly enables us to simultaneously

improve organizational performance, achieve the goals of all the various func-

tional technology roles (e.g., Development, QA, IT Operations, Infosec), and

improve the human condition.

This exciting and rare combination may explain why DevOps has generated

so much excitement and enthusiasm with so many and in such a short time,

including technology leaders, engineers, and much of the software ecosystem

we reside in.

Breaking the Downward Spiral with DevOps

Ideally, small teams of developers independently implement their features, val-

idate their correctness in production-like environments, and have their code

deployed into production quickly, safely, and securely. Code deployments are

routine and predictable. Instead of starting deployments at midnight on Fri-

day and spending all weekend working to complete them, deployments occur

throughout the business day when everyone is already in the office and without

our customers even noticing—except when they see new features and bug fixes

that delight them. And, by deploying code in the middle of the workday, IT Oper-

ations is working during normal business hours like everyone else for the first

time in decades.

By creating fast feedback loops at every step of the process, everyone can

immediately see the effects of their actions. Whenever changes are committed

into version control, fast automated tests are run in production-like environ-

ments, giving continual assurance that the code and environments operate as

designed and are always in a secure and deployable state.

Automated testing helps developers discover their mistakes quickly

(usually within minutes), which enables faster fixes as well as genuine learning—

xxxviii INTRODUCTION

learning that is impossible when mistakes are discovered six months later during

integration testing, when memories and the link between cause and effect have

long faded. Instead of accruing technical debt, problems are fixed as they are

found, mobilizing the entire organization if needed because global goals out-

weigh local goals.

Pervasive production telemetry in our code and production environments

ensures that problems are detected and corrected quickly, confirming that

everything is working as intended and that customers are getting value from the

software we create.

In this scenario, everyone feels productive—the architecture allows small

teams to work safely and architecturally decoupled from the work of other

teams who use self-service platforms that leverage the collective experience

of Operations and Information Security. Instead of everyone waiting all the

time, with large amounts of late, urgent rework, teams work independently

and productively in small batches, quickly and frequently delivering new value

to customers.

Even high-profile product and feature releases become routine by using dark

launch techniques. Long before the launch date, we put all the required code for

the feature into production, invisible to everyone except internal employees and

small cohorts of real users, allowing us to test and evolve the feature until it

achieves the desired business goal.

And, instead of firefighting for days or weeks to make the new functional-

ity work, we merely change a feature toggle or configuration setting. This small

change makes the new feature visible to ever-larger segments of customers,

automatically rolling back if something goes wrong. As a result, our releases are

controlled, predictable, reversible, and low stress.

It’s not just feature releases that are calmer—all sorts of problems are being

found and fixed early, when they are smaller and when they are cheaper and eas-

ier to correct. With every fix, we also generate organizational learnings, enabling

us to prevent the problem from recurring and enabling us to detect and correct

similar problems faster in the future.

Furthermore, everyone is constantly learning, fostering a hypothesis-

driven culture where the scientific method is used to ensure nothing is taken for

granted—we do nothing without measuring and treating product development

and process improvement as experiments.

Because we value everyone’s time, we don’t spend years building features

that our customers don’t want, deploying code that doesn’t work, or fixing

something that isn’t actually the cause of our problem.

INTRODUCTION xxxix

Because we care about achieving goals, we create long-term teams that are

responsible for meeting them. Instead of project teams where developers are reas-

signed and shuffled around after each release, never receiving feedback on their

work, we keep teams intact so they can keep iterating and improving, using those

learnings to better achieve their goals. This is equally true for the product teams

who are solving problems for our external customers, as well as our internal plat-

form teams who are helping other teams be more productive, safe, and secure.

Instead of a culture of fear, we have a high-trust, collaborative culture,

where people are rewarded for taking risks. They are able to fearlessly talk about

problems as opposed to hiding them or putting them on the back burner—after

all, we must see problems in order to solve them.

And, because everyone fully owns the quality of their work, everyone builds

automated testing into their daily work and uses peer reviews to gain confidence

that problems are addressed long before they can impact a customer. These pro-

cesses mitigate risk, as opposed to approvals from distant authorities, allowing

us to deliver value quickly, reliably, and securely—even proving to skeptical

auditors that we have an effective system of internal controls.

When something does go wrong, we conduct blameless post-mortems, not

to punish anyone but to better understand what caused the accident and how to

prevent it. This ritual reinforces our culture of learning. We also hold internal

technology conferences to elevate our skills and ensure that everyone is always

teaching and learning.

Because we care about quality, we even inject faults into our production

environment so we can learn how our system fails in a planned manner. We con-

duct planned exercises to practice large-scale failures, randomly kill processes

and compute servers in production, and inject network latencies and other

nefarious acts to ensure we grow ever more resilient. By doing this, we enable

better resilience, as well as organizational learning and improvement.

In this world, everyone has ownership in their work, regardless of their role

in the technology organization. They have confidence that their work matters

and is meaningfully contributing to organizational goals, proven by their low-

stress work environment and their organization’s success in the marketplace.

Their proof is that the organization is indeed winning in the marketplace.

The Business Value of DevOps

We have decisive evidence of the business value of DevOps. From 2013 through

2016, as part of Puppet Labs’ State Of DevOps Report, to which authors Nicole

xl INTRODUCTION

Forsgren, Jez Humble, and Gene Kim contributed, we collected data from over

twenty-five thousand technology professionals with the goal of better under-

standing the health and habits of organizations at all stages of DevOps adoption.*

The first surprise this data revealed was how much high-performing organi-

zations using DevOps practices were outperforming their non–high-performing

peers in the following areas:11

• Throughput metrics

 ű code and change deployments (thirty times more frequent)

 ű code and change deployment lead time (two hundred times faster)

• Reliability metrics

 ű production deployments (sixty times higher change success rate)

 ű mean time to restore service (168 times faster)

• Organizational performance metrics

 ű productivity, market share, and profitability goals (two times more

likely to exceed)

 ű market capitalization growth (50% higher over three years)

In other words, high performers were both more agile and more reliable,

providing empirical evidence that DevOps enables us to break the core, chronic

conflict. High performers deployed code thirty times more frequently, and the

time required to go from “code committed” to “successfully running in produc-

tion” was two hundred times faster—high performers had lead times measured

in minutes or hours, while low performers had lead times measured in weeks,

months, or even quarters.

Furthermore, high performers were twice as likely to exceed profitability,

market share, and productivity goals. And, for those organizations that provided

a stock ticker symbol, we found that high performers had 50% higher market

capitalization growth over three years. They also had higher employee job sat-

isfaction, lower rates of employee burnout, and their employees were 2.2 times

more likely to recommend their organization to friends as a great place to work.†

High performers also had better information security outcomes. By integrating

* The State of DevOps Report has since been repeated every year. Additionally, the key findings from
the 2013–2018 reports were collected into the book Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High Performing Technology Organizations.

† As measured by employee Net Promoter Score (eNPS). This is a significant finding, as research has
shown that “companies with highly engaged workers grew revenues two and a half times as much
as those with low engagement levels. And [publicly traded] stocks of companies with a high-trust
work environment outperformed market indexes by a factor of three from 1997 through 2011.”12

INTRODUCTION xli

security objectives into all stages of the development and operations processes,

they spent 50% less time remediating security issues.

DevOps Helps Scale Developer Productivity

When we increase the number of developers, individual developer productiv-

ity often significantly decreases due to communication, integration, and testing

overhead.

This is highlighted in the famous book by Frederick Brook, The Mythical

Man-Month, where he explains that when projects are late, adding more devel-

opers not only decreases individual developer productivity but also decreases

overall productivity.13

On the other hand, DevOps shows us that when we have the right architec-

ture, the right technical practices, and the right cultural norms, small teams of

developers are able to quickly, safely, and independently develop, integrate, test,

and deploy changes into production.

As Randy Shoup, formerly a director of engineering at Google and now VP

Engineering at eBay, observed, large organizations using DevOps “have thou-

sands of developers, but their architecture and practices enable small teams to

still be incredibly productive, as if they were a startup.”14

Figure 0.1: Deployments per Day vs. Number of Developers

Only organizations that are deploying at least once per day are shown.

Source: Puppet Labs, 2015 State Of DevOps Report.

de
pl

oy
s

/
da

y

of developers

3

2.5

2

1.5

1

.5

0
10 100 1000

High (linear)

Medium

Low

xlii INTRODUCTION

The 2015 State of DevOps Report examined not only “deploys per day” but

also “deploys per day per developer.” They hypothesized that high performers

would be able to scale their number of deployments as team sizes grew.15

Indeed, this is what they found. Figure 0.1 shows that in low performers,

deploys per day per developer go down as team size increases, stays constant

for medium performers, and increases linearly for high performers. In other

words, organizations adopting DevOps are able to linearly increase the number

of deploys per day as they increase their number of developers, just as Google,

Amazon, and Netflix have done.*

The Universality of the Solution

One of the most influential books in the Lean manufacturing movement is

The Goal: A Process of Ongoing Improvement, written by Dr. Eliyahu M. Goldratt

in 1984. It influenced an entire generation of professional plant managers

around the world. It was a novel about a plant manager who had to fix his cost

and product due date issues in ninety days, otherwise his plant would be shut

down.

Later in his career, Dr. Goldratt described the letters he received in response

to The Goal. These letters would typically read, “You have obviously been hiding

in our factory, because you’ve described my life [as a plant manager] exactly . . .”17

Most importantly, these letters showed that people were able to replicate the

breakthroughs in performance that were described in the book in their own

work environments.

The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win,

written by Gene Kim, Kevin Behr, and George Spafford in 2013, was closely

modeled after The Goal. It is a novel that follows an IT leader who faces all the

typical problems that are endemic in IT organizations: an over-budget, behind-

schedule project that must get to market in order for the company to survive. He

experiences catastrophic deployments; problems with availability, security, and

compliance; and so forth.

Ultimately, he and his team use DevOps principles and practices to overcome

those challenges, helping their organization win in the marketplace. In addition,

the novel shows how DevOps practices improved the workplace environment for

the team, creating lower stress and higher satisfaction because of greater practi-

tioner involvement throughout the process.

* Another more extreme example is Amazon. In 2011, Amazon was performing approximately seven
thousand deploys per day. By 2015, they were performing 130,000 deploys per day.16

INTRODUCTION xliii

As with The Goal, there is tremendous evidence of the universality of the

problems and solutions described in The Phoenix Project. Consider some of

the statements found in the Amazon reviews: “I find myself relating to the

characters in The Phoenix Project . . . I’ve probably met most of them over

the course of my career,” “If you have ever worked in any aspect of IT, DevOps,

or Infosec you will definitely be able to relate to this book,” or “There’s not a

character in The Phoenix Project that I don’t identify with myself or someone I

know in real life . . . not to mention the problems faced and overcome by those

characters.”18

The DevOps Handbook: An Essential Guide

In the remainder of this book, we will describe how to replicate the transfor-

mation described in The Phoenix Project, as well as provide many case studies of

how other organizations have used DevOps principles and practices to replicate

those outcomes.

The purpose of The DevOps Handbook is to give you the theory, principles,

and practices you need to successfully start your DevOps initiative and achieve

your desired outcomes. This guidance is based on decades of sound manage-

ment theory, the study of high-performing technology organizations, work we

have done helping organizations transform, and research that validates the

effectiveness of the prescribed DevOps practices, as well as interviews with rel-

evant subject matter experts and analyses of nearly one hundred case studies

presented at the DevOps Enterprise Summit.

Broken into six parts, this book covers DevOps theories and principles using

the Three Ways, a specific view of the underpinning theory originally introduced

in The Phoenix Project. The DevOps Handbook is for everyone who performs or

influences work in the technology value stream (which typically includes Prod-

uct Management, Development, QA, IT Operations, and Information Security),

as well as for business and marketing leadership, where most technology initia-

tives originate.

The reader is not expected to have extensive knowledge of any of these

domains, or of DevOps, Agile, ITIL, Lean, or process improvement. Each of

these topics is introduced and explained in the book as it becomes necessary.

Our intent is to create a working knowledge of the critical concepts in each

of these domains, to serve as a primer and to introduce the language necessary

to help practitioners work with all their peers across the entire IT value stream,

and to frame shared goals.

xliv INTRODUCTION

This book will be of value to business leaders and stakeholders who are

increasingly reliant upon the technology organization to achieve their goals.

Furthermore, this book is intended for readers whose organizations might

not be experiencing all the problems described in the book (e.g., long deploy-

ment lead times or painful deployments). Even readers in this fortunate position

will benefit from understanding DevOps principles, especially those relating to

shared goals, feedback, and continual learning.

In Part I, we present a brief history of DevOps and introduce the under-

pinning theory and key themes from relevant bodies of knowledge that span

decades. We then present the high-level principles of the Three Ways: Flow,

Feedback, and Continual Learning and Experimentation.

Part II describes how and where to start and presents concepts such as value

streams, organizational design principles and patterns, organizational adoption

patterns, and case studies.

Part III describes how to accelerate flow by building the foundations of our

deployment pipeline: enabling fast and effective automated testing, continuous

integration, continuous delivery, and architecting for low-risk releases.

Part IV discusses how to accelerate and amplify feedback by creating effec-

tive production telemetry to see and solve problems, better anticipate problems

and achieve goals, enable feedback so that Development and Operations can

safely deploy changes, integrate A/B testing into our daily work, and create

review and coordination processes to increase the quality of our work.

Part V describes how we accelerate continual learning and experimen-

tation by establishing a just culture, converting local discoveries into global

improvements, and properly reserving time to create organizational learning

and improvements.

Finally, in Part VI we describe how to properly integrate security and com-

pliance into our daily work by integrating preventative security controls into

shared source code repositories and services, integrating security into our

deployment pipeline, enhancing telemetry to better enable detection and recov-

ery, protecting the deployment pipeline, and achieving change management

objectives.

By codifying these practices, we hope to accelerate the adoption of DevOps

practices, increase the success of DevOps initiatives, and lower the activation

energy required for DevOps transformations.

Part I
 THE THREE WAYS

3

PA R T I : I N T R O D U C T I O N

I
n Part I of The DevOps Handbook, we will explore how the convergence of sev-

eral important movements in management and technology set the stage for

the DevOps movement. We describe value streams, how DevOps is the result of

applying Lean principles to the technology value stream, and the Three Ways:

Flow, Feedback, and Continual Learning and Experimentation.

Primary focuses within these chapters include:

• The principles of Flow, which accelerate the delivery of work from

Development to Operations to our customers.

• The principles of Feedback, which enable us to create ever-safer sys-

tems of work.

• The principles of Continual Learning and Experimentation, which

foster a high-trust culture and a scientific approach to organizational

improvement and risk-taking as part of our daily work.

A Brief History

DevOps and its resulting technical, architectural, and cultural practices rep-

resent a convergence of many philosophical and management movements.

While many organizations have developed these principles independently,

understanding that DevOps resulted from a broad stroke of movements, a phe-

nomenon described by John Willis (one of the co-authors of this book) as the

“convergence of Dev and Ops,” shows an amazing progression of thinking and

improbable connections. There are decades of lessons learned from manufactur-

ing, high-reliability organizations, high-trust management models, and others

that have brought us to the DevOps practices we know today.

DevOps is the outcome of applying the most trusted principles from the

domain of physical manufacturing and leadership to the IT value stream. DevOps

4 PART I: INTRODUCTION

relies on bodies of knowledge from Lean, Theory of Constraints, the Toyota Pro-

duction System, resilience engineering, learning organizations, safety culture,

human factors, and many others. Other valuable contexts that DevOps draws

from include high-trust management cultures, servant leadership, and organiza-

tional change management.

The result is world-class quality, reliability, stability, and security at ever-lower

cost and effort and accelerated flow and reliability throughout the technology

value stream, including Product Management, Development, QA, IT Operations,

and Infosec.

While the foundation of DevOps can be seen as being derived from Lean, the

Theory of Constraints, and the Toyota Kata movement, many also view DevOps

as the logical continuation of the Agile software journey that began in 2001.

The Lean Movement

Techniques such as value stream mapping, kanban boards, and total productive

maintenance were codified for the Toyota Production System in the 1980s. In

1997, the Lean Enterprise Institute started researching applications of Lean to

other value streams, such as the service industry and healthcare.

Two of Lean’s central tenets include the deeply held belief that the manu-

facturing lead time required to convert raw materials into finished goods is the

best predictor of quality, customer satisfaction, and employee happiness, and

that one of the best predictors of short lead times is small batch sizes of work.

Lean principles focus on how to create value for the customer through sys-

tems thinking by creating constancy of purpose, embracing scientific thinking,

creating flow and pull (versus push), assuring quality at the source, leading with

humility, and respecting every individual.

The Agile Manifesto

The Agile Manifesto was created in 2001 at an invite-only event by seventeen

experts in what was then known as “lightweight methods” in software devel-

opment. They wanted to create a set of values and principles that captured the

advantage of these more adaptive methods, compared to the prevailing software

development processes such as waterfall development and methodologies such

as the Rational Unified Process.

One key principle was to “deliver working software frequently, from a cou-

ple of weeks to a couple of months, with a preference to the shorter timescale,”1

PART I: INTRODUCTION 5

emphasizing the desire for small batch sizes—incremental releases instead

of large, big-bang releases. Other principles emphasized the need for small,

self-motivated teams working in a high-trust management model.

Agile is credited for dramatically increasing the productivity and respon-

siveness of many development organizations. And interestingly, many of the

key moments in DevOps history also occurred within the Agile community or at

Agile conferences, as described below.

Agile Infrastructure and Velocity Movement

At the 2008 Agile conference in Toronto, Canada, Patrick Debois and Andrew

Shafer held a “birds of a feather” session on applying Agile principles to infra-

structure as opposed to application code. (In its early days, this was referred

to as “Agile system administration.”) Although they were the only people who

showed up, they rapidly gained a following of like-minded thinkers, including

co-author John Willis.

Around the same time, a few academics started studying sys-

tem administrators, how they applied engineering principles

to their work, and how it impacted performance. The leading

experts included a group from IBM Research, with ethnogra-

phies led by Dr. Eben Haber, Dr. Eser Kandogan, and Dr. Paul

Maglio. This was extended to include behavioral quantitative

studies led by co-author Dr. Nicole Forsgren in 2007–2009.

Nicole went on to lead the research in the 2014–2019 State of

DevOps Reports, the industry-standard research into practices

and capabilities that drive software delivery and performance;

these were published by Puppet and DORA.

Later, at the 2009 Velocity conference, John Allspaw and Paul Hammond

gave the seminal “10 Deploys per Day: Dev and Ops Cooperation at Flickr” pre-

sentation, where they described how they created shared goals between Dev

and Ops and used continuous integration practices to make deployment part

of everyone’s daily work. According to firsthand accounts, everyone attending

the presentation immediately knew they were in the presence of something pro-

found and of historic significance.

6 PART I: INTRODUCTION

Patrick Debois was so excited by Allspaw and Hammond’s idea that he cre-

ated the first DevOpsDays in Ghent, Belgium, in 2009, where the term “DevOps”

was coined.

The Continuous Delivery Movement

Building upon the development discipline of continuous build, test, and integra-

tion, Jez Humble and David Farley extended the concept to continuous delivery,

which defined the role of a “deployment pipeline” to ensure that code and infra-

structure are always in a deployable state and that all code checked into trunk

can be safely deployed into production. This idea was first presented at the 2006

Agile conference and was also independently developed in 2009 by Tim Fitz in a

blog post on his website titled “Continuous Deployment.”*

Toyota Kata

In 2009, Mike Rother wrote Toyota Kata: Managing People for Improvement, Adap-

tiveness, and Superior Results, which framed his twenty-year journey to understand

and codify the Toyota Production System. He had been one of the graduate stu-

dents who flew with GM executives to visit Toyota plants and helped develop the

Lean toolkit, but he was puzzled when none of the companies adopting these

practices replicated the level of performance observed at the Toyota plants.

He concluded that the Lean community missed the most important practice

of all, which he called the improvement kata.2 He explains that every organization

has work routines, and the improvement kata requires creating structure for

the daily, habitual practice of improvement work because daily practice is what

improves outcomes. The constant cycle of establishing desired future states, set-

ting target outcomes on a cadence, and the continual improvement of daily work

is what guided improvement at Toyota.

Throughout the rest of Part I, we will look at value streams, how Lean princi-

ples can be applied to the technology value stream, and the Three Ways of Flow,

Feedback, and Continual Learning and Experimentation.

* DevOps also extends and builds upon the practices of infrastructure as code, which was pioneered
by Dr. Mark Burgess, Luke Kanies, and Adam Jacob. In infrastructure as code, the work of Oper-
ations is automated and treated like application code, so that modern development practices can
be applied to the entire development stream. This further enabled fast deployment flow, including
continuous integration (pioneered by Grady Booch and integrated as one of the key 12 practices
of Extreme Programming), continuous delivery (pioneered by Jez Humble and David Farley), and
continuous deployment (pioneered by Etsy, Wealthfront, and Eric Ries’s work at IMVU).

7

1

AGILE, CONTINUOUS DELIVERY, AND THE THREE WAYS

I
n this chapter, we present an introduction to the underpinning theory of Lean

Manufacturing, as well as the Three Ways—the principles from which the

observed DevOps behaviors can be derived.

Our focus here is primarily on theory and principles, describing many

decades of lessons learned from manufacturing, high-reliability organizations,

high-trust management models, and others, from which DevOps practices have

been derived. The resulting concrete principles and patterns, and their practi-

cal application to the technology value stream, are presented in the remaining

chapters of the book.

The Manufacturing Value Stream

One of the fundamental concepts in Lean is the value stream. We will define

it first in the context of manufacturing and then extrapolate how it applies to

DevOps and the technology value stream.

Karen Martin and Mike Osterling define a value stream in their book Value

Stream Mapping: How to Visualize Work and Align Leadership for Organizational

Transformation as “the sequence of activities an organization undertakes to

deliver upon a customer request,” or “the sequence of activities required to design,

produce, and deliver a good or service to a customer, including the dual flows of

information and material.”1

In manufacturing operations, the value stream is often easy to see and

observe: it starts when a customer order is received and the raw materials are

released onto the plant floor. To enable fast and predictable lead times in any

value stream, there is usually a relentless focus on creating a smooth and even

flow of work, using techniques such as small batch sizes, reducing work in pro-

cess (WIP), preventing rework to ensure defects are not passed to downstream

work centers, and constantly optimizing systems toward global goals.

8 PART I

The Technology Value Stream

Many principles and patterns that enable the fast flow of work in physical pro-

cesses are equally applicable to technology work (and, for that matter, for all

knowledge work). In DevOps, we typically define our technology value stream as

the process required to convert a business hypothesis into a technology-enabled

service or feature that delivers value to the customer.

The input to our process is the formulation of a business objective, concept,

idea, or hypothesis, and it starts when we accept the work in Development, add-

ing it to our committed backlog of work.

From there, Development teams that follow a typical Agile or iterative pro-

cess will likely transform that idea into user stories and some sort of feature

specification, which is then implemented in code into the application or service

being built. The code is then checked into the version control repository, where

each change is integrated and tested with the rest of the software system.

Because value is created only when our services are running in production,

we must ensure that we are not only delivering fast flow, but that our deploy-

ments can also be performed without causing chaos and disruptions, such as

service outages, service impairments, or security or compliance failures.

Focus on Deployment Lead Time

For the remainder of this book, our attention will be on deployment lead time, a

subset of the value stream described above. This value stream begins when any

engineer* in our value stream (which includes Development, QA, IT Operations,

and Infosec) checks a change into version control and ends when that change is

successfully running in production, providing value to the customer and gener-

ating useful feedback and telemetry.

The first phase of work that includes design and development is akin to

Lean Product Development and is highly variable and highly uncertain, often

requiring high degrees of creativity and work that may never be performed

again. Because of this, we expect high variability of process times. In contrast,

the second phase of work, which includes testing, deployment, and operations,

is akin to Lean Manufacturing. It strives to be predictable and mechanistic, with

the goal of achieving work outputs with minimized variability (e.g., short and

predictable lead times, near zero defects).

* Going forward, engineer refers to anyone working in our value stream, not just developers.

CHAPTER 1 9

Instead of large batches of work being processed sequentially through the

design/development value stream and then through the test/operations value

stream (such as when we have a large-batch waterfall process or long-lived

feature branches), our goal is to have testing, deployment, and operations hap-

pening simultaneously with design/development, enabling fast flow and high

quality. This method succeeds when we work in small batches and build quality

into every part of our value stream.*

Defining Lead Time vs. Processing Time

In the Lean community, lead time is one of two measures commonly used to

measure performance in value streams, with the other being processing time

(sometimes known as touch time or task time).†

Figure 1.1: Lead Time vs. Process Time of a Deployment
Operation

Whereas the lead time clock starts when the request is made and ends when

it is fulfilled, the process time clock only starts when we begin work on the cus-

tomer request—specifically, it omits the time that the work is in queue, waiting

to be processed (Figure 1.1).

Because lead time is what the customer experiences, we typically focus our

process improvement attention there instead of on process time. However,

the proportion of process time to lead time serves as an important measure

* In fact, with techniques such as test-driven development, testing occurs even before the first line of
code is written.

† In this book, the term process time will be favored for the same reason Karen Martin and Mike
Osterling cite: “To minimize confusion, we avoid using the term cycle time as it has several defini-
tions synonymous with processing time and pace or frequency of output, to name a few.”2

Ticket
Created

Work
Started

Work
Completed

Process Time

Lead Time

10 PART I

of efficiency—achieving fast flow and short lead times almost always requires

reducing the time our work is waiting in queues.

The Common Scenario: Deployment Lead Times Requiring Months

Many teams and organizations find themselves in situations where deployment

lead times require months. This is especially common in large, complex organi-

zations that are working with tightly coupled, monolithic systems, often with

scarce integration test environments, long test and production environment

lead times, high reliance on manual testing, and multiple required approval pro-

cesses. When this occurs, our value stream may look like Figure 1.2:

Figure 1.2: A Technology Value Stream with a Deployment
Lead Time of Three Months

Source: Damon Edwards, “DevOps Kaizen,” 2015.

When we have long deployment lead times, heroics are required at almost

every stage of the value stream. We may discover that nothing works at the end

of the project when we merge all the Development team’s changes together,

resulting in code that no longer builds correctly or passes any of our tests. Fixing

each problem requires days or weeks of investigation to determine who broke

the code and how it can be fixed, and still results in poor customer outcomes.

Our DevOps Ideal: Deployment Lead Times of Minutes

In the DevOps ideal, developers receive fast, constant feedback on their work,

enabling them to quickly and independently implement, integrate, and validate

their code and have the code deployed into the production environment (either

by deploying the code themselves or by others).

We achieve this by continually checking small code changes into our version

control repository, performing automated and exploratory testing against it and

deploying it into production. This enables us to have a high degree of confidence

that our changes will operate as designed in production and that any problems

can be quickly detected and corrected.

CHAPTER 1 11

This is most easily achieved when we have architecture that is modular, well

encapsulated, and loosely coupled so that small teams are able to work with high

degrees of autonomy, with failures being small and contained, and without caus-

ing global disruptions.

Figure 1.3: A Technology Value Stream with a
Lead Time of Minutes

In this scenario, our deployment lead time is measured in minutes, or, in

the worst case, hours. Our resulting value stream map should look something

like Figure 1.3.

Observing “%C/A” as a Measure of Rework

In addition to lead times and process times, the third key metric in the technol-

ogy value stream is percent complete and accurate (%C/A). This metric reflects

the quality of the output of each step in our value stream.

Karen Martin and Mike Osterling state that “the %C/A can be obtained by

asking downstream customers what percentage of the time they receive work that

is ‘usable as is,’ meaning that they can do their work without having to correct the

information that was provided, add missing information that should have been

supplied, or clarify information that should have and could have been clearer.”3

Flow Metrics to Measure Delivery of Business Value

When measuring the end-to-end value of any value stream it

is important to stay away from proxy metrics (counting the

number of lines of code committed or solely the frequency of

deployments). While these metrics can reveal local optimiza-

Total Cycle Time: 25m
Automatic Approval

Manual Approval

5m

Production
Deploy

10m

Exploratory
Test

10m

Automated
Test

Commit Stage
(automated)

12 PART I

tions, they don't directly link to business outcomes such as

revenue.

Using flow metrics provides a look into the end-to-end

value of your software delivery, making software products and

value streams as visible as widgets on a production line. In his

book Project to Product: How to Survive and Thrive in the Age

of Digital Disruption with the Flow Framework, Dr. Mik Kersten

describes flow metrics as: flow velocity, flow efficiency, flow

time, flow load, and flow distribution:4

• Flow velocity: number of flow items (e.g., work items)

that are completed in a set time period. Helps to answer

whether value delivery is accelerating.

• Flow efficiency: the proportion of flow items actively

worked on to the total time that has elapsed. Identifies

inefficiencies like long wait times and helps teams see if

work upstream is in a wait state or not.

• Flow time: a unit of business value pulled by a stake-

holder through a product’s value stream (i.e., features,

defects, risks, and debts).Helps teams see if time to

value is getting shorter.

• Flow load: number of active or waiting flow items in

a value stream. This is similar to a measure of work in

progress (WIP) based on flow items. High flow load

leads to inefficiencies and to reduced flow velocity or

increased flow time. Helps teams see if demand is out-

weighing capacity.

• Flow distribution: the proportion of each flow item

type in a value stream. Each value stream can track and

adjust these depending on their needs in order to maxi-

mize the business value being delivered.

The Three Ways: The Principles Underpinning DevOps

The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business Win pres-

ents the Three Ways as the set of underpinning principles from which all the

observed DevOps behaviors and patterns are derived (Figure 1.4).

CHAPTER 1 13

The First Way enables fast left-to-right flow of work from Development to

Operations to the customer. In order to maximize flow, we need to make work

visible, reduce our batch sizes and intervals of work, build in quality by preventing

defects from being passed to downstream work centers, and constantly optimize

for global goals.

Figure 1.4: The Three Ways
Source: Gene Kim, “The Three Ways: The Principles Underpinning DevOps,” ITRevolu-

tion.com (blog), August 22, 2012, http://itrevolution.com

/the-three-ways-principles-underpinning-devops/.

By speeding up flow through the technology value stream, we reduce the

lead time required to fulfill internal or customer requests, especially the time

required to deploy code into the production environment. By doing this, we

increase the quality of work as well as our throughput and boost our ability to

innovate and out-experiment the competition.

The resulting practices include continuous build, integration, test, and

deployment processes, creating environments on demand, limiting work

in process (WIP), and building systems and organizations that are safe to

change.

The Second Way enables the fast and constant flow of feedback from right

to left at all stages of our value stream. It requires that we amplify feedback to

prevent problems from happening again, or that we enable faster detection and

recovery. By doing this, we create quality at the source and generate or embed

Dev Ops

Dev Ops

Dev Ops

(Business) (Customer)

14 PART I

knowledge where it is needed—this allows us to create ever-safer systems of work

where problems are found and fixed long before a catastrophic failure occurs.

By seeing problems as they occur and swarming them until effective

countermeasures are in place, we continually shorten and amplify our feedback

loops, a core tenet of virtually all modern process improvement methodologies.

This maximizes the opportunities for our organization to learn and improve.

The Third Way enables the creation of a generative, high-trust culture that

supports a dynamic, disciplined, and scientific approach to experimentation and

risk-taking, facilitating the creation of organizational learning, both from our

successes and failures. Furthermore, by continually shortening and amplifying

our feedback loops, we create ever-safer systems of work and are better able to

take risks and perform experiments that help us learn faster than our competi-

tion and win in the marketplace.

As part of the Third Way, we also design our system of work so that we

can multiply the effects of new knowledge, transforming local discoveries into

global improvements. Regardless of where someone performs work, they do so

with the cumulative and collective experience of everyone in the organization

and throughout the organization’s history.

Research Supported: The Three Ways

The Three Ways aren’t just a good idea: research has shown

that adopting these strategies leads to superior outcomes for

both organizations and people.

In a six-year study led by co-author Dr. Nicole Forsgren in

the 2014–2019 State of DevOps Reports, with Puppet and then

DORA and published in the book Accelerate: The Science of Lean

and DevOps, data shows there are better outcomes by combin-

ing capabilities and practices like continuous integration, test,

deployment, and working in small batches (the First Way), fast

feedback and monitoring (the Second Way), and a generative

culture (the Third Way).5

The Three Ways help teams become elite performers by

shipping software faster and more reliably, helping contribute

to their organization’s revenue, market share, and customer

satisfaction. Elite performers are twice as likely to meet or

exceed their organizational performance goals. The Three

Ways also improve the well-being of those doing the work. By

CHAPTER 1 15

adopting these practices, the research from the State of DevOps

Reports shows decreased burnout and deployment pain.6

 CASE STUDY: NEW TO SECOND EDITION

Approaching Cruising Altitude: American Airlines’ DevOps Journey

(Part 1) (2020)

American Airlines’ DevOps journey grew out of a series of questions, the first

being simply “What is DevOps?”

“We were really starting at the very bottom, at the very beginning,” Maya

Leibman, Executive Vice President and Chief Information Officer of American

Airlines related at the DevOps Enterprise Summit-London 2020.7

To get started, the team did their research but, most importantly, they

stopped making excuses. In the beginning of DevOps, most examples were

coming from digital-native companies like Netflix and Spotify. It was easy for

the team to discount their accomplishments—after all, they were born in the

cloud. But as more traditional enterprises, companies like Target, Nordstrom,

and Starbucks, got on board, American Airlines knew they didn’t have any

excuses left.

The team started by,

1. setting concrete goals

2. formalizing their toolchain

3. bringin in coaches and mentors from outside the company

4. experimenting and automating

5. conducting immersive practical training (to learn while they were

doing)

All of this was tied to their ultimate goal, which was to deliver value faster.

As Leibman said:

There were so many times when a business counterpart would bring

something to the table, a new idea, and they’d say, “Oh this is what

we want to do but it’s going to take IT six months or a year to get it

done.” And those experiences just killed me. So the impetus behind

this was really “how do we not be the long tent pole.” We knew

there was a better way of working that would help us achieve that.8

16 PART I

Next, they decided what outputs they were going to measure:9

• deployment frequency

• deployment cycle time

• change failure rate

• development cycle time

• number of incidents

• mean time to recover (MTTR)

Early successes in value stream mapping helped team members better

understand the end-to-end processes of the system and inspired motivation.

From these successes, they built energy around how to attack issues and

improve them. They also conducted immersive learning opportunities across IT.

These initial successes, learning about DevOps and starting to actually

practice some elements of it, led them to the second big question on their

DevOps journey: Finance, friend or foe?

The current finance approval process was cumbersome and lengthy, with

months of approval cycles. “I used to describe it as a process that’s designed

to make you give up,” said Leibman.10

The process looked like this:11

• No projects approved without Finance’s involvement.

• Projects were approved but no headcount added to do them (and no

other priorities were stopped).

• Requests were given equal scrutiny regardless of size or risk.

• Requests were given equal scrutiny, even if the request was a top cor-

porate priority and there was no question that it was going to be done.

• Projects were often completed before they were approved.

Even Finance knew that the process needed to change, but a lack of trust

between Finance and IT caused a block. To help shed light on where the

money was being spent and to build trust with Finance, the team undertook a

cost mapping exercise and assigned all the costs to their products, including

the costs to run them.

After this exercise, the IT team was able to better see where money was

actually being invested and question whether that was the best use of it. And

Finance was able to gain the visibility they needed to trust there weren’t large

amounts of waste.

CHAPTER 1 17

This visibility built the trust needed for experimentation. Finance took four

product teams and gave them a set budget for the year. The teams defined the

OKRs and used the budget for the top priorities they felt met those OKRs. This

allowed the team to test before rollout and focus on accountability and out-

comes, and Finance was able to gain even more visibility.

Figure 1.5: American Airlines’ DevOps Transformation Journey

Source: With permission of Ross Clanton

This success allowed them to scale the new model against all of their prod-

ucts and define a new funding process. “This was a huge accelerator in our

journey,” said Leibman.12

With Finance on board and new processes in place, American Airlines dis-

covered the third question in their DevOps journey: How do we know what

the score is? With each small success, the team wanted to better understand

how they were doing overall. In other words, they wanted to know what the

score was.

For the American Airlines team, year one of their DevOps journey was really

focused on inputs: learning about Agile/DevOps, focusing on products, cloud,

and security, etc. Year two of their journey focused more on outputs, including

the metrics they began measuring, like deployment frequency and mean time

to recover. Finally in year three they started to focus not just on inputs and

outputs but on outcomes. “At the end of the day, what do we really want to

do?” said Leibman.

They came up with the following outcomes: make money, improve Ops,

increase LTR, and reduce cost.13

Inputs

Year 1 Outcomes

Year 3

Outputs

Year 2

Agile, Product, Cloud,
Security, Culture, etc.

Make Money

Improve Ops

Increase LTR

Reduce Cost

Deployment frequency

Development cycle time

Deployment cycle time

Change failure rate

Mean time to recover

Number of incidents

18 PART I

In year one, one of our objectives was X% of people are going to go

to Agile training. That really represents an input. In year two, as we

started focusing more on outputs, the objectives sort of changed

to X% of teams are going to up their agile maturity from this level

to this level. And by the time we got to year three, agile wasn’t even

an objective anymore. We realized the inputs and outputs are great,

we have to measure them, but ultimately we have to be focused on

the outcome.14

This finally led to the fourth question in their DevOps journey: What’s a

product? It was clear that it was time to flesh out their taxonomy. This proved

to be one of the most challenging moments of their journey. There were lots

of opinions and no single right answer. In the end, they decided to just get

started, put something on paper, organize around it, and fix it as they learned.

And ultimately, this all led to their fifth question: Does this feel way bigger than

DevOps? To answer that and to show some specific product success examples,

we’ll continue the American Airlines journey later in the book.

This study illustrates applying the Three Ways by using value

stream mapping to help optimize flow, selecting outcomes to mea-

sure in order to establish fast feedback, and creating immersive

learning experiences to build a culture of continual learning and

experimentation.

Conclusion

In this chapter, we described the concepts of value streams, lead time as one of

the key measures of effectiveness for both manufacturing and technology value

streams, and the high-level concepts behind each of the Three Ways, the princi-

ples that underpin DevOps.

In the following chapters, the principles for each of the Three Ways are

described in greater detail. The first of these principles is Flow, which focuses

on how we create the fast flow of work in any value stream, whether it’s in man-

ufacturing or technology work. The practices that enable fast flow are described

in Part III.

19

2

T H E F I R S T WA Y : T H E P R I N C I P L E S O F F L O W

I
n the technology value stream, work typically flows from Development to

Operations, the functional areas between our business and our customers.

The First Way requires the fast and smooth flow of work from Development to

Operations in order to deliver value to customers quickly. We optimize for this

global goal instead of local goals, such as Development feature completion rates,

test find/fix ratios, or Operations availability measures.

We increase flow by making work visible, by reducing batch sizes, and by

building quality in, preventing defects from being passed to downstream work

centers. By speeding up the flow through the technology value stream, we reduce

the lead time required to fulfill internal and external customer requests, further

increasing the quality of our work while making us more responsive to customer

and market needs and able to out-experiment the competition.

Our goal is to decrease the amount of time required for changes to be

deployed into production and to increase the reliability and quality of those ser-

vices. Clues on how we do this in the technology value stream can be gleaned

from how Lean principles were applied to the manufacturing value stream.

Make Our Work Visible

A significant difference between technology and manufacturing value streams

is that our work is invisible. Unlike physical processes, in the technology value

stream we cannot easily see where flow is being impeded or when work is piling

up in front of constrained work centers. Transferring work between work cen-

ters in manufacturing is usually highly visible and slow because inventory must

be physically moved.

However, in technology work the move can be done with a click of a button,

such as by reassigning a work ticket to another team. Because it is so easy to

move, work can bounce between teams endlessly due to incomplete informa-

20 PART I

tion, or work can be passed onto downstream work centers with problems that

remain completely invisible until we are late delivering what we promised to

the customer or our application fails in the production environment.

To help us see where work is flowing well and where work is queued or

stalled, we need to make our work as visible as possible. One of the best meth-

ods of doing this is using visual work boards, such as kanban boards or sprint

planning boards, where work can be represented on physical or electronic cards.

Work originates on the left (often being pulled from a backlog), is pulled from

work center to work center (represented in columns), and finishes when it

reaches the right side of the board, usually in a column labeled “done” or “in

production.”

Figure 2.1: An Example Kanban Board Spanning
Requirements, Dev, Test, Staging, and In Production

Source: David J. Andersen and Dominica DeGrandis, Kanban for IT Ops,

training materials for workshop, 2012.

Not only does our work become visible, but we can also manage our work

so that it flows from left to right as quickly as possible. This also helps surface

unnecessary handoffs in our work, which can introduce errors and additional

delays. Furthermore, we can measure lead time from when a card is placed on

the board to when it is moved into the “done” column.

Ready

Expedite

Investigate

Development Ops

Doing Done Doing Done UAT Delivered

CHAPTER 2 21

Ideally, our kanban board will span the entire value stream, defining work

as completed only when it reaches the right side of the board (Figure 2.1).

Work is not done when Development completes the implementation of a fea-

ture. Rather, it is only done when our application is running successfully in

production, delivering value to the customer.

By putting all work for each work center in queues and making it visible,

all stakeholders can more easily prioritize work in the context of global goals.

Doing this enables each work center to single-task on the highest priority work

until it is completed, increasing throughput.

Limit Work in Process (WIP)

In manufacturing, daily work is typically dictated by a production schedule that

is generated regularly (e.g., daily, weekly), establishing which jobs must be run

based on customer orders, order due dates, parts available, and so forth.

In technology, our work is usually far more dynamic—this is especially the

case in shared services, where teams must satisfy the demands of many different

stakeholders. As a result, daily work becomes dominated by the priority du jour,

often with requests for urgent work coming in through every communication

mechanism possible, including ticketing systems, outage calls, emails, phone

calls, chat rooms, and management escalations.

Disruptions in manufacturing are also highly visible and costly. They often

require breaking the current job and scrapping any incomplete work in pro-

cess in order to start the new job. This high level of effort discourages frequent

disruptions.

However, interrupting technology workers is easy because the consequences

are invisible to almost everyone, even though the negative impact to productiv-

ity may be far greater than in manufacturing. For instance, an engineer assigned

to multiple projects must switch between tasks, incurring all the costs of having

to reestablish context, as well as cognitive rules and goals.

Studies have shown that the time to complete even simple tasks, such as

sorting geometric shapes, significantly degrades when multitasking. Of course,

because our work in the technology value stream is far more cognitively complex

than sorting geometric shapes, the effects of multitasking on process time is

much worse.1

We can limit multitasking when we use a kanban board to manage our work,

such as by codifying and enforcing WIP (work in process) limits for each column

22 PART I

or work center, that puts an upper limit on the number of cards that can be in

a column.

For example, we may set a WIP limit of three cards for testing. When there

are already three cards in the test lane, no new cards can be added to the lane

unless a card is completed or removed from the “in work” column and put back

into queue (i.e., putting the card back to the column to the left). Nothing can be

worked on until it is first represented in a work card, reinforcing that all work

must be made visible.

Dominica DeGrandis, one of the leading experts on using kanban in DevOps

value streams and author of Making Work Visible, notes that “controlling queue

size [WIP] is an extremely powerful management tool, as it is one of the few

leading indicators of lead time—with most work items, we don’t know how long

it will take until it’s actually completed.”2

Limiting WIP also makes it easier to see problems that prevent the com-

pletion of work.* For instance, when we limit WIP, we find that we may have

nothing to do because we are waiting on someone else. Although it may be

tempting to start new work (i.e., “It’s better to be doing something than noth-

ing”), a far better action would be to find out what is causing the delay and help

fix that problem. Bad multitasking often occurs when people are assigned to

multiple projects, resulting in prioritization problems. In other words, as David

J. Anderson, author of Kanban: Successful Evolutionary Change for Your Technology

Business, said, “Stop starting. Start finishing.”4

Reduce Batch Sizes

Another key component to creating smooth and fast flow is performing work in

small batch sizes. Prior to the Lean manufacturing revolution, it was common

practice to manufacture in large batch sizes (or lot sizes), especially for opera-

tions where job setup or switching between jobs was time-consuming or costly.

For example, producing large car body panels requires setting large and heavy

dies onto metal stamping machines, a process that can take days. When change-

over cost is so expensive, we often stamp as many panels at a time as possible,

creating large batches in order to reduce the number of changeovers.

However, large batch sizes result in skyrocketing levels of WIP and high lev-

els of variability in flow that cascade through the entire manufacturing plant.

The results are long lead times and poor quality—if a problem is found in one

body panel, the entire batch has to be scrapped.

* Taiichi Ohno compared enforcing WIP limits to draining water from the river of inventory in order
to reveal all the problems that obstruct fast flow.3

CHAPTER 2 23

One of the key lessons in Lean is that in order to shrink lead times and

increase quality, we must strive to continually shrink batch sizes. The theoretical

lower limit for batch size is single-piece flow, where each operation is performed

one unit at a time.*

The dramatic differences between large and small batch sizes can be

seen in the simple newsletter mailing simulation described in Lean Thinking:

Banish Waste and Create Wealth in Your Corporation by James P. Womack and

Daniel T. Jones.5

Suppose in our own example we have ten brochures to send, and mailing

each brochure requires four steps: (1) fold the paper, (2) insert the paper into the

envelope, (3) seal the envelope, and (4) stamp the envelope.

The large batch strategy (i.e., “mass production”) would be to sequentially

perform one operation on each of the ten brochures. In other words, we would

first fold all ten sheets of paper, then insert each of them into envelopes, then

seal all ten envelopes, and then stamp them.

On the other hand, in the small batch strategy (i.e., “single-piece flow”), all

the steps required to complete each brochure are performed sequentially before

starting on the next brochure. In other words, we fold one sheet of paper, insert

it into the envelope, seal it, and stamp it—only then do we start the process over

with the next sheet of paper.

The difference between using large and small batch sizes is dramatic (see

Figure 2.2 on page 24). Suppose each of the four operations takes ten seconds

for each of the ten envelopes. With the large batch size strategy, the first com-

pleted and stamped envelope is produced only after 310 seconds.

Worse, suppose we discover during the envelope sealing operation that we

made an error in the first step of folding—in this case, the earliest we would

discover the error is at two hundred seconds, and we have to refold and reinsert

all ten brochures in our batch again.

In contrast, in the small batch strategy the first completed stamped enve-

lope is produced in only forty seconds, eight times faster than the large batch

strategy. And, if we made an error in the first step, we only have to redo the one

brochure in our batch. Small batch sizes result in less WIP, faster lead times,

faster detection of errors, and less rework.

The negative outcomes associated with large batch sizes are just as relevant

to the technology value stream as in manufacturing. Consider when we have an

annual schedule for software releases, where an entire year’s worth of code that

Development has worked on is released to production deployment.

* Also known as “batch size of one” or “1x1 flow,” terms that refer to batch size and a WIP limit of
one.

24 PART I

Figure 2.2: Simulation of “Envelope Game”

(Fold, insert, seal, and stamp the envelope.)

Source: Stefan Luyten, “Single Piece Flow,” Medium.com, August 8, 2014, https://

medium.com/@stefanluyten/single-piece-flow-5d2c2bec845b.

Like in manufacturing, this large batch release creates sudden, high levels of

WIP and massive disruptions to all downstream work centers, resulting in poor

flow and poor quality outcomes. This validates our common experience that the

larger the change going into production, the more difficult the production errors

are to diagnose and fix, and the longer they take to remediate.

In a post on Startup Lessons Learned, Eric Ries states,

The batch size is the unit at which work-products move between stages

in a development [or DevOps] process. For software, the easiest batch to

see is code. Every time an engineer checks in code, they are batching up a

certain amount of work. There are many techniques for controlling these

batches, ranging from the tiny batches needed for continuous deploy-

ment to more traditional branch-based development, where all of the

code from multiple developers working for weeks or months is batched

up and integrated together.6

The equivalent to single piece flow in the technology value stream is real-

ized with continuous deployment, where each change committed to version

control is integrated, tested, and deployed into production. The practices that

enable this are described in Part IV of this book.

Reduce the Number of Handoffs

In the technology value stream, whenever we have long deployment lead times

measured in months, it is often because there are hundreds (or even thou-

Large Batches

WAITING First product ready

Single-Piece Flow

WAITING First product ready

CHAPTER 2 25

sands) of operations required to move our code from version control into the

production environment. To transmit code through the value stream requires

multiple departments to work on a variety of tasks, including functional test-

ing, integration testing, environment creation, server administration, storage

administration, networking, load balancing, and information security.

Each time the work passes from team to team, we require all sorts of commu-

nication: requesting, specifying, signaling, coordinating, and often prioritizing,

scheduling, deconflicting, testing, and verifying. This may require using differ-

ent ticketing or project management systems; writing technical specification

documents; communicating via meetings, emails, or phone calls; and using file

system shares, FTP servers, and Wiki pages.

Each of these steps is a potential queue where work will wait when we rely

on resources that are shared between different value streams (e.g., centralized

operations). The lead times for these requests are often so long that there is con-

stant escalation to have work performed within the needed timelines.

Even under the best circumstances, some knowledge is inevitably lost with

each handoff. With enough handoffs, the work can completely lose the con-

text of the problem being solved or the organizational goal being supported.

For instance, a server administrator may see a newly created ticket requesting

that user accounts be created, without knowing what application or service the

accounts are for, why they need to be created, what all the dependencies are, or

whether the user account creations are actually recurring work.

To mitigate these types of problems, we strive to reduce the number of

handoffs, either by automating significant portions of the work, or by building

platforms and reorganizing teams so they can self-service builds, testing, and

deployments to deliver value to the customer themselves instead of having to

be constantly dependent on others. As a result, we increase flow by reducing the

amount of time that our work spends waiting in queue, as well as the amount of

non–value-added time. (See Appendix 4.)

Continually Identify and Elevate Our Constraints

To reduce lead times and increase throughput, we need to continually identify

our system’s constraints and improve its work capacity. In Beyond the Goal,

Dr. Goldratt states, “In any value stream, there is always a direction of flow,

and there is always one and only constraint; any improvement not made at that

constraint is an illusion.”7 If we improve a work center that is positioned before

the constraint, work will merely pile up at the bottleneck even faster, waiting for

work to be performed by the bottlenecked work center.

26 PART I

On the other hand, if we improve a work center positioned after the bottle-

neck, it remains starved, waiting for work to clear the bottleneck. As a solution,

Dr. Goldratt defined the “five focusing steps”:8

• Identify the system’s constraint.

• Decide how to exploit the system’s constraint.

• Subordinate everything else to the above decisions.

• Elevate the system’s constraint.

• If a constraint has been broken in the previous steps, go back to step

one but do not allow inertia to cause a system constraint.

In typical DevOps transformations, as we progress from deployment lead

times measured in months or quarters to lead times measured in minutes, the

constraint usually follows this progression:

• Environment creation: We cannot achieve deployments on demand if

we always have to wait weeks or months for production or test envi-

ronments. The countermeasure is to create environments that are

on-demand and completely self-serviced, so that they are always avail-

able when we need them.

• Code deployment: We cannot achieve deployments on demand if

each of our production code deployments takes weeks or months to

perform (e.g., each deployment requires 1,300 manual, error-prone

steps, involving up to three hundred engineers). The countermeasure

is to automate our deployments as much as possible, with the goal of

being completely automated so deployments can be done self-service

by any developer.

• Test setup and run: We cannot achieve deployments on demand if

every code deployment requires two weeks to set up our test environ-

ments and data sets and another four weeks to manually execute all

our regression tests. The countermeasure is to automate our tests so

we can execute deployments safely and to parallelize them so the test

rate can keep up with our code development rate.

• Overly tight architecture: We cannot achieve deployments on demand

if overly tight architecture means that every time we want to make

a code change we have to send our engineers to scores of committee

meetings in order to get permission to make our changes. Our counter-

CHAPTER 2 27

measure is to create more loosely coupled architecture so that changes

can be made safely and with more autonomy, increasing developer

productivity.

After all these constraints have been broken, our constraint will likely be

Development or the product owners. Because our goal is to enable small teams

of developers to independently develop, test, and deploy value to customers

quickly and reliably, this is where we want our constraint to be. High perform-

ers, regardless of whether an engineer is in Development, QA, Operations, or

Infosec, state that their goal is to help maximize developer productivity.

When the constraint is here, we are limited only by the number of good

business hypotheses we create and our ability to develop the code necessary to

test these hypotheses with real customers.

The progression of constraints listed above are generalizations of typical

transformations—techniques to identify the constraint in actual value streams,

such as through value stream mapping and measurements, are described later

in this book.

Eliminate Hardships and Waste in the Value Stream

Shigeo Shingo, one of the pioneers of the Toyota Production System, believed

that waste constituted the largest threat to business viability—the commonly

used definition in Lean is “the use of any material or resource beyond what the

customer requires and is willing to pay for.”9 He defined seven major types of

manufacturing waste: inventory, overproduction, extra processing, transporta-

tion, waiting, motion, and defects.

More modern interpretations of Lean have noted that “eliminating waste”

can have a demeaning and dehumanizing context; instead, the goal is reframed

to reduce hardship and drudgery in our daily work through continual learning

in order to achieve the organization’s goals. For the remainder of this book, the

term waste will imply this more modern definition, as it more closely matches

the DevOps ideals and desired outcomes.

In the book Implementing Lean Software Development: From Concept to

Cash, Mary and Tom Poppendieck describe waste and hardship in the software

development stream as anything that causes delay for the customer, such as

activities that can be bypassed without affecting the result.10 Mary and Tom

Poppendieck listed the following seven categories of waste and hardship:11

28 PART I

• Partially done work: This includes any work in the value stream that

has not been completed (e.g., requirement documents or change orders

not yet reviewed) and work that is sitting in queue (e.g., waiting for QA

review or server admin ticket). Partially done work becomes obsolete

and loses value as time progresses.

• Extra processes: Any additional work being performed in a process

that does not add value to the customer. This may include documen-

tation not used in a downstream work center, or reviews or approvals

that do not add value to the output. Extra processes add effort and

increase lead times.

• Extra features: Features built into the service that are not needed by

the organization or the customer (e.g., “gold plating”). Extra features

add complexity and effort to testing and managing functionality.

• Task switching: When people are assigned to multiple projects and

value streams, requiring them to context switch and manage depen-

dencies between work, adding additional effort and time into the value

stream.

• Waiting: Any delays between work requiring resources to wait until

they can complete the current work. Delays increase cycle time and

prevent the customer from getting value.

• Motion: The amount of effort to move information or materials from

one work center to another. Motion waste can be created when people

who need to communicate frequently are not colocated. Handoffs also

create motion waste and often require additional communication to

resolve ambiguities.

• Defects: Incorrect, missing, or unclear information, materials, or prod-

ucts create waste, as effort is needed to resolve these issues. The longer

the time between defect creation and defect detection, the more diffi-

cult it is to resolve the defect.

We also add the following two categories of waste from Damon Edwards:12

• Nonstandard or manual work: Reliance on nonstandard or manual work

from others, such as using non-rebuilding servers, test environments,

and configurations. Ideally, any manual work that can be automated

should be automated, self-serviced, and available on demand. However,

some types of manual work will likely always be essential.

CHAPTER 2 29

• Heroics: In order for an organization to achieve goals, individuals and

teams are put in a position where they must perform unreasonable

acts, which may even become a part of their daily work (e.g., nightly

2:00 AM problems in production, creating hundreds of work tickets as

part of every software release).

Our goal is to make these wastes and hardships—anywhere heroics become

necessary—visible, and to systematically do what is needed to alleviate or elimi-

nate these burdens and hardships to achieve our goal of fast flow.

CASE STUDY: NEW TO SECOND EDITION

Flow and Constraint Management in Healthcare (2021)

DevOps and constraint management theroies aren’t just for software develop-

ment or physical manufacturing. They can be applied to nearly any situation.

Just look at this case study from the healthcare industry. At the DevOps Enter-

prise Summit 2021, Dr. Chris Strear, an emergency physician for more than

nineteen years, related his experience improving patient outcomes by working

with flow.13

Around 2007, our hospital was struggling. We had unbelievable

problems with flow. We were boarding patients in the emergency

department for hours and hours, and sometimes days, while they

waited for an inpatient bed to become available.

Our hospital was so crowded and flow was so backed up that our

emergency department was on ambulance diversion for sixty hours

a month on average. Now that means that for sixty hours a month,

our emergency department was closed to the sickest patients in our

community. One month we hit over two hundred hours of diversion.

It was horrible. We couldn’t keep nurses. It was such a hard place

to work that nurses would quit. And we relied on temporary nurses,

on agencies for placing nurses, or traveler nurses to fill in the gaps

in staffing. For the most part, these nurses weren’t experienced

enough to work in the kind of emergency setting where we prac-

ticed. It felt dangerous to come to work every day. It felt dangerous

to take care of patients. We were just waiting around for something

bad to happen.

30 PART I

The president of our hospital recognized how bad things were,

and she put together a committee for flow, and I was lucky enough

to be on that committee. . . .

[The change] was transformative. Within a year, we had basi-

cally eliminated ambulance diversion. We went from sixty hours a

month [of ambulance diversion] to forty-five minutes a month. We

improved the length of stay of all of our admitted patients in the

hospital. We shortened the time patients spent in the emergency

department. We virtually eliminated the patients who left the

department without being seen because the waits were too long.

And we did all of this in a time when we had record volumes, record

ambulance traffic, and record admissions.

[The transformation] was amazing. We took better care of

patients. It was safer. And it felt so much easier to take care of

patients. It was such an amazing turnaround, in fact, that we were

able to stop hiring temporary nurses. We were able to fill our staff

completely with dedicated emergency nurses who were qualified to

work there. In fact, our department became the number one place

for emergency nurses to want to work in the Portland/Vancouver

area.

Honestly, I’d never been a part of anything that amazing before,

and I haven’t been since. We made patient care better for tens of

thousands of patients, and we made life better for hundreds of

healthcare workers in our hospital.14

So how did they manage this turnaround? Sometime before, Chris had

been introduced to the book The Goal. Constraint management had a pro-

found influence on him and the way he tackled the problem of flow at his

hospital.

So I get asked a bunch of times, what’s the difference? I don’t have

all the answers, but I’ve seen some trends. I’ve seen some recurrent

themes. Flow needs to be important to leaders, not just in words,

but in deeds. They need to walk the walk and not just talk the talk.

And a lot of them don’t do that.

Part of that is they need to create the bandwidth. The hospital

leaders aren’t going to be the ones who are actually going to be

making the changes day to day. What they have to do is, they have to

allow the people who are going to be making those changes to have

CHAPTER 2 31

enough room on their plate to put in the work. If a nurse manager,

for instance, has fifteen projects, fifteen committee meetings that

they have to go to day in and day out, and the leader comes along

and says, “Flow’s important,” but now flow is their sixteenth task

and the sixteenth meeting that they have to go to, really, it doesn’t

say that it’s important. All it says is it’s sixteenth most important.

And then there’s managers that aren’t going to have time to put

in for the sixteenth project. Leaders need to figure out what really

is important and what can wait, what can take a back burner, and

then take an active role in clearing some of that work off of people’s

plates so that they can do a job. It doesn’t just make those people

who have to do the work more effective; it conveys to them in a very

real, tangible, palpable sense that this new project, flow, is the most

important task.

You have to break down silos. You’re looking at flow through a

system. You’re not looking at flow on an inpatient unit or flow just

in the emergency department, because each of these departments,

when taken individually, has competing interests. When you move

a patient out of the emergency department and onto an inpatient

unit, you’re creating work for the inpatient unit. You incentivize

people differently throughout the hospital.

When you’re discussing how to make flow better, and somebody

says no, it can’t just stop at that. No can’t be the final word. I heard

time and time again, “We can’t do that because that’s not how we’ve

done things.” And that’s ridiculous. No is okay, as long as it’s fol-

lowed up with another idea to try. Because if I have a lousy idea, but

it’s the only idea out there, then you know what? My lousy idea is

the best idea we got going, and so that’s the one we try.

Leaders need to make sure that they’re measuring things cor-

rectly and that they’re rewarding things thoughtfully. And what do I

mean by that? Well, part of silos in a hospital setting is that a man-

ager for a particular department is often measured on how things go

just in that department. And they’re rewarded accordingly. People

behave based on how they’re measured and how they’re rewarded.

So if improving flow in the emergency department is what’s right

for patients and what’s right for the hospital system, but it may shift

burden onto another unit, and that other unit then falls off in their

metrics, that should be okay because flow through the hospital is

improved. Who cares about flow through an individual unit?

32 PART I

Make sure that what you’re measuring is commensurate with

what your overall goals are. Make sure people are rewarded appro-

priately, and they’re not unfairly penalized for improving flow

through the system. You need to think about the system, not about

the department.

And finally, how we’ve set things up, that’s all artificial, that’s

a constraint. It’s not a natural law of physics. Keep that in mind

because so much resistance comes from the uncertainty of doing

something differently.

There’s often this mindset that because we haven’t done some-

thing a certain way before, it can’t be done. But we’ve made all of this

stuff up. How a body responds to a treatment, that’s not artificial,

that is a natural law. But where you put a patient, who’s in charge of

them, how you move a patient from one unit to another, we all just

made that up and then perpetuated it. That’s all negotiable.15

This case study concretely illustrates using Goldratt’s Theory of

Constraint and his five focusing steps to identify and illuminate that

constraint and thus improve flow. In this example, the flow of people

through the hospital system shows that this theory can be applied to

any environment, not just manufacturing or software development.

Conclusion

Improving flow through the technology value stream is essential to achieving

DevOps outcomes. We do this by making work visible, limiting WIP, reducing

batch sizes and the number of handoffs, continually identifying and evaluating

our constraints, and eliminating hardships in our daily work.

The specific practices that enable fast flow in the DevOps value stream are

presented in Part IV of this book. In the next chapter, we present The Second

Way: The Principles of Feedback.

