
PDF COMPANION TO THE AUDIO BOOK

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2017 by Mirco Hering.

All rights reserved, for information about permission to reproduce selections from this book,

write to Permissions, IT Revolution Press, LLC,

25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Cover design by Devon Smith

Book design by Devon Smith

Author photograph by [Name]

Library of Congress Catalog-in-Publication Data

Names: Hering, Mirco, author.

Title: DevOps for the modern enterprise : winning practices to transform

 legacy IT organizations / Mirco Hering.

Description: First edition. | Portland, OR : IT Revolution Press, 2017. |

Includes bibliographical references and index.

Identifiers: LCCN 2017053420 (print) | LCCN 2017056532 (ebook) | ISBN

 9781942788201 (ePub) | ISBN 9781942788225 (Kindle) | ISBN 9781942788195 (trade pbk.)

Subjects: LCSH: Computer system conversion. | Operating systems (Computers) |

 Computer software--Development. | Management information systems. |

Information technology—Management.

Classification: LCC QA76.9.C68 (ebook) | LCC QA76.9.C68 H47 2017 (print) |

DDC 004.068 —dc23

LC record available at https://lccn.loc.gov/2017053420

ISBN TP: 978-1942788195

ISBN ePub: 978-1942788201

ISBN Kindle: 978-1942788225

ISBN PDF: 978-1942788218

For information about special discounts for bulk purchases or for information

on booking authors for an event, please visit our website at ITRevolution.com.

DevOps for the Modern Enterprise Mirco Hering

Figures, Tables & Exercises

Preface and Introduction

 Figure 0.1 How Mirco’s understanding of organizational

 change evolved 6

 Figure 0.2 Relationship between Agile, and DevOps 7

 Figure 0.3 Relationship between transaction costs and

 batch size 8

Chapter 1

 Figure 1.1 Transformation roadmap 9

 Figure 1.2 Common transformation blueprint 10

 Table 1.1 Baseline metrics

 Figure 1.3 Deployment pipeline example 12

 Figure 1.4 Annotated burnup chart 13

 Excercise First steps for your organization 14

 Table 1.2 Metrics definitions example 25

Chapter 2

 Figure 2.1 Application radar 18

 Figure 2.2 Minimum viable cluster 19

 Figure 2.3 Governance checkpoints 20

 Excercise First steps for your organization 21

 Table 2.1 Application analysis example 23

Chapter 3

 Table 3.1 Example scorecard 25

 Excercise First steps for your organization 26

Chapter 4

 Figure 4.1 Overall costs versus daily rates 27

 Excercise First Steps for Your Organization 28

Chapter 5

 Figure 5.1 Discovery versus delivery 34

 Figure 5.2a Technology tree 35

 Figure 5.2b DevOps technology tree showing

 dependencies 36

 Excercise First Steps for Your Organization 37

Chapter 6

 Figure 6.1 Organizational structure starting point 39

 Figure 6.2a Agile team scenario 1 40

 Figure 6.2b Agile team scenario 2 40

 Figure 6.2c Agile team scenario 3 40

 Excercise First Steps for Your Organization 41

Chapter 7

 Figure 7.1 Quality engineering process 43

 Figure 7.2 Test automation pyramid 44

 Excercise First Steps for Your Organization 45

Chapter 8

 Excercise First Steps for Your Organization 47

DevOps for the Modern Enterprise Mirco Hering

Chapter 9

 Figure 9.1 Model A—Continuous delivery 49

 Figure 9.2 Model B—Cloud-enabled delivery 50

 Figure 9.3 Model C—Container-enabled delivery 51

 Figure 9.4 Sample plan for initial build of capabilities 52

 Excercise First steps for your organization 53

Chapter 10

 Figure 10.1 Design view versus real view 54

 Excercise First steps for your organization 55

Chapter 11

 Figure 11.1 Advanced maturity state 56

 Figure 11.2 Reducing transaction costs enables smaller

 batch sizes 57

 Excercise First steps for your organization 58

 Table 11.1 DevOps tools review 59

Chapter 12

 Figure 12.1 Capacity versus time 60

 Excercise First steps for your organization 61

Appendix

 Figure A.1 T-shaped skills 63

 Figure A.2 Iterative versus incremental delivery 64

 Resources 65

 Glossary 68

 Notes 78

 Acknowledgments 84

 About the Author 86

DevOps for the Modern Enterprise Mirco Hering

DevOps for the Modern Enterprise Mirco Hering 6

The
Waterfall

Phase

Waterfall Agile DevOps Practices DevOps Culture

DevOps Tools People

Enforced Process

Methods & Process

Defined Process Guided by Principle

Chance of getting
home on time

Waterfa
ll

Agile

DevOps

Le
an Softw

are

Development

The
Agile
Phase

The
Lean

Phase

The
DevOps

Phase

Figure 0.1: How Mirco’s understanding of organizational change evolved

HOW
TO

HOW
TO

HOW
TO

HOW
TO

DevOps for the Modern Enterprise Mirco Hering 7

• Create flexibility

• Improve time to market

• Create effective change

• Add/modify features

Wall of
Conflict

Customers

Agile Development

BENEFITS OF AGILE
Alignment between business & IT
Flexibility
More effective solutions
Reduction in risk
(Speed to market—through smaller batches)

BENEFITS OF DEVOPS
Speed to market
Increased throughput
Reduction in risk
Faster feedback
(Reduced cost)

Wanting
Flexibility

Development

Wanting
Change

Culture of Lean

DevOps

Operations

Wanting
Stability

Wall of
Conflict

• Create stability

• Enhance services

Figure 0.2: Relationship between Agile and DevOps: How the principles Lean, Agile, and DevOps relate to each other

DevOps for the Modern Enterprise Mirco Hering 8

1000

900

800

700

600

500

400

300

200

100

0

1000

900

800

700

600

500

400

300

200

100

0

10 15 20 25 30 35 40 45 50

Optimal Batch

Total

Holding

Transaction

10 15 20 25 30 35 40 45 50

Optimal Batch

Total

Holding

Transaction

Figure 0.3: Relationship between transaction costs and batch size: Reducing transaction costs allow for smaller batch sizes

Batch Size

Co
st

Batch Size

Co
st

DevOps for the Modern Enterprise Mirco Hering 9

2
0

1
6

2
0

1
6

2
0

1
7

A
p

r
A

ctiv
ity

A
g

ile
 (%

 o
f p

ro
je

cts)
2

0
 to

 2
5

%
2

5
 to

 3
0

%
3

0
%

+

Define organization, operating m
odel, dependencies

 and m
easure the baseline

Build the infrastructure

Build DevOps capabilities and pilot on W
ave 0 (App A)

Im
plem

ent DevOps capabilities on W
ave 1 (App B,

 App C, App D)

Stabilize W
ave 1 DevOps im

plem
entation and

 m
easure benefits

DevOps platform
: default for any new

 applications

Run the DevOps platform

Setup and pilot of cloud program

Integrate w
ith cloud program

Im
plem

ent DevOps capabilities on W
ave 2

 (App E, App F, etc.)

Im
plem

ent DevOps capabilities on W
ave 3

 (App G, etc.)

M
a

y
Ju

n
e

Ju
ly

A
u

g
S

e
p

t
O

ct
N

o
v

D
e

c
Ja

n
Fe

b
M

a
r

A
p

r
M

a
y

Ju
n

e

Provide input to the

environm
ent provisioning

Start integration

w
ith new

 program
:

autom
ated environm

ent

provisioning

W
ave 1 im

plem
ented

Integration

W
ave 2 im

plem
ented

Integration

DevOps platform
 is the new

 standard

Figure 1.1: Roadmap example showing waves of applications and capabilities

DevOps for the Modern Enterprise Mirco Hering 10

P
h

a
se

 1
: A

d
o

p
tin

g
 A

g
ile

 a
n

d
 S

ca
lin

g
P

h
a

se
 3

: N
e

w
 IT

 O
p

 M
o

d
e

l

P
h

a
se

 2
: A

d
o

p
tin

g
 D

e
v

O
p

s &
 C

D

Bottom
-up driven

Agile pilots in pockets

Form
al establishm

ent of
Agile initiative and creation
of Agile fram

ew
ork

Com
plex, m

ultivendor
Agile program

 initiated

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
4

2
0

1
3

B
e

fo
re

 2
0

1
0

Agile training rollout,
central coaching team
established

SAFe as guiding m
ethodolgy

for scaling, including
SAFe training

Sim
ple projects in

custom
er facing

applications

Agile updates to
financial governance

M
ove from

centralized to
decentralized
coaching m

odel

Technical practice
assessm

ent for
m

ain applications

Test autom
ation

project

Transition to
broader IT

operating m
odel

Governance
and m

etrics,
including

productivity KPIs

Figure 1.2: Common transformation blueprint: Changing your organization takes time as you adopt different methods

DevOps for the Modern Enterprise Mirco Hering 11

Metric Definition Measurement

Release Cycle Time The average time it takes

to approve a work package

(user story, feature, set

of requirements) and

release it

Usually measured as the

time difference between

work item states in your

work tracking system

Cost of Release The effort it takes to

release new functionality,

measured as effort for

all release activities

performed for go-live

(a variation of this only

counts effort outside of

business hours)

Typically based on

timesheets

Regression Duration Time it takes to validate

that a change has not

caused regression

The time between

deployment and the

“all clear” from either an

automated or manual

validation

Production Availability Percentage production is

available to perform the

right service

Measured by a percentage

of time production is

functionally available or

percentage of successful

transactions

Mean time to Recovery Time it takes to rectify any

production issue

Measured from time of

occurrence until full user

functionality is achieved

Longevity of Teams The average duration

teams stay together

Measured as months

before teams get

disbanded and

restructured for new

projects

Table 1.1: Baseline metrics: These metrics have proven to be successful in guiding transformations

DevOps for the Modern Enterprise Mirco Hering 12

Com
m

it ID
: 113

R
un

 U
n

it Tests

Com
m

itter: jdoe
Story: 25

Create ST Env.

Com
pile

&
 Package

Son
ar Code

A
n

alysis

D
eploy Code

Load Test D
ata

R
un

 System
 Tests

D
eploy Code

R
un

 Perf. Test
Create Clustered

Env.

Tear D
ow

n ST Env.
R

un
 Security Test

Prod. D
eploy

R
un

 O
ps Test

Figure 1.3: Deployment pipeline example: Accenture DevOps platform provides a look into the deployment process

DevOps for the Modern Enterprise Mirco Hering 13

tions

1200

1000

800

600

400

200

0

In
te

ra
tio

n
1

In
te

ra
tio

n
2

P
o

in
ts

Figure 1.4: Annotated burnup chart: Burnup charts provide an annotated status of the project

Ideal Accepted TargetPredicted Velocity (Based on 13-17 Avg)

In
te

ra
tio

n
3

In
te

ra
tio

n
4

In
te

ra
tio

n
5

In
te

ra
tio

n
6

In
te

ra
tio

n
7

In
te

ra
tio

n
8

In
te

ra
tio

n
9

In
te

ra
tio

n
10

In
te

ra
tio

n
11

83

11 45

150

251

332

424

512

605

699

792

886

166

248

331

414

497

580

663

745

828

911

Decision to push some

scope to next release

Removal of

duplicates

DevOps for the Modern Enterprise Mirco Hering 14

First Steps for Your Organization

There are three exercises that I find immensely powerful because

they achieve a significant amount of benefit for very little cost: (1)

value stream mapping of your IT delivery process, (2) baselining

your metrics, and (3) reviewing your IT governance. With very

little effort, you can get a much better insight into your IT process

and start making improvements.

Value Stream Mapping of Your IT Delivery Process

While there is a formal process for how to do value stream map-

ping, I will provide you with a smaller-scale version that, in my

experience, works reasonably well for the purpose that we are after:

making the process visible and improving some of the bottlenecks.‡

Here is my shortcut version of value stream mapping:

1. Get stakeholders from all key parts of the IT delivery

supply chain into a room (e.g., business stakeholders,

development, testing, project management office (PMO),

operations, business analysis).

2. Prepare a whiteboard with a high-level process for

delivery. Perhaps write “business idea,” “business case,”

“project kickoff,” “development,” “testing/QA,” “deploy-

ment/release,” and “value creation” on the board to

provide some guidance.

3. Ask everyone in the room to write steps of the IT pro-

cess on index cards for fifteen minutes. Next, ask them

to post these cards on the whiteboard and work as a

‡ It is worthwhile for you to pick up Value Stream Mapping by Karen Martin and Mike

Osterling if you want to formalize this process further.

DevOps for the Modern Enterprise Mirco Hering 15

group to represent a complete picture of the IT delivery

process on the whiteboard. Warning: you might have to

encourage people to stand up and work together, or you

may need to step in when/if discussions get out of hand.

4. Once the process is mapped, ask one or more people

to walk the group through the overall process, and ask

everyone to call out if anything is missing.

5. Now that you have a reasonable representation of the

process, you can do some deep dives to understand cycle

times of the process, hot spots of concerns for stake-

holders due to quality or other aspects, and tooling that

supports the process.

6. Get people to vote on the most important bottleneck

(e.g., give each person three votes to put on the board by

putting a dot next to the process step).

In my experience, this exercise is the best way to make your

IT delivery process visible. You can redo this process every three

to six months to evaluate whether you addressed the key bottle-

neck and to see how the process has evolved. You can make the

outcome of this process visible somewhere in your office to show

the improvement priorities for each person/team involved. The

highlighted bottlenecks will provide you with the checkpoints for

your initial roadmap, as those are the things that your initiatives

should address.

Baselining Your Metrics

Because having a baseline of your metrics is such an important

part of the transformation governance, I want you to spend a few

minutes filling out your own Table 1.2. Identify the metrics you

care about now and in the future, and identify the mechanism

DevOps for the Modern Enterprise Mirco Hering 16

you will use to baseline them. There are a couple of ways to iden-

tify the baseline. The baseline approach can be based on surveys,

time-in-motion studies, or, ideally, existing and historical data.

Where this is not possible, you should think about investing in

an automated way to measure this metric. Where that fails, you

can run a manual investigation and measuring process (e.g.,

time-in-motion studies), but those are less reliable and more time

consuming.

Metric Definition
Measurement
Mechanism

Baseline
Approach

Baseline
Value

Release cycle

time

The average

time it takes

for a story

to go from

a “ready”

state to being

deployed in

production

Extract of

date and time

from Agile

life-cycle-

management

system

Historical

analysis of

the last six

months of

user stories

that were

successfully

deployed in

production

168 days

Table 1.2: Metrics definitions example: Metrics should have definitions, measuring mechanisms, and baseline values

Reviewing Your IT Governance Process

There is a lot of talk about automation to help improve the IT

delivery process when it comes to speed of delivery and quality.

One thing that people underestimate is how much they can influ-

ence by just improving their governance process. Here is a short

checklist that you can use to review your governance process. Ask

these questions to guide where IT delivery governance is really

required. Based on the answers, you can evaluate the impact and

risk of removing the process step, ideally even with an economic

model reflecting monetary impact and risk probability.

DevOps for the Modern Enterprise Mirco Hering 17

IT governance checklist:

• How often has someone rejected a submission to the check-

point based on reasons other than process compliance?

• What would really happen to the process if an incorrect

decision was made?

• What value is being added by the person approving this

checkpoint that a computer could not provide automati-

cally based on a number of inputs?

• How much time and money are being spent on this gover-

nance process (including the usual wait time that initiatives

encounter while waiting for approvals)?

• Is this governance step based on objective measures or a

subjective measure? How do you know?

DevOps for the Modern Enterprise Mirco Hering 18

True Legacy

Workhorses

Innovation Engine

Figure 2.1: Application radar: Makes the status of each application visible

Online
Banking

Transaction
Management User Portal

CRM

DevOps for the Modern Enterprise Mirco Hering 19

Master
App

App 1

App 2 App 3

Key application to be

improved by DevOps

Application that must

change 80% of the time

the master app changes

Application that must

change 20% of the time

the master app changes

Figure 2.2: Minimum viable cluster: Applies system thinking to application analysis

DevOps for the Modern Enterprise Mirco Hering 20

Program
Governance
Process

Initiation
Idea > initial

business case >

budget allocation

Leaner Process to Release Money and Govern Individual Release

Discovery
Problem, solution,

high-level plan

Go-Live Go-Live

Feedback Feedback

Go-Live

Release 1 Dev

BAU
Operations

BAU
Operations

BAU
Operations

Release 2 Dev Release 3 Dev

Figure 2.3: Governance checkpoints: An Agile governance process with four checkpoints

Program
Delivery
Process

BAU
Process

Governance Checkpoint 1
• Is it a good idea?
• Allocate $ to do Discovery

Governance Checkpoint 2
• Is the solution viable?
• Allocate $ for Release 1

Governance Checkpoint 3
• Allocate OPEX $ for BAU
• Operations after Go-Live

Governance Checkpoint 4
• Business case validation–
 does this solve the business
 problem?
• If not: no more money gets
 spent on project after release

DevOps for the Modern Enterprise Mirco Hering 21

First Steps for Your Organization

To support you in adopting what I have described in this chapter,

I will provide two exercises for you to run in your organization.

This time, both of them are highly related: the first is an analysis

of your application portfolio and the second is the identifica-

tion of a minimum viable cluster of application for which a

capability uplift will provide real value.

Application Portfolio Analysis

If you are like most of my clients, you will have hundreds or

thousands of applications in your IT portfolio. If you spread your

change energy across all of those, you will likely see very little

progress, and you might ask yourself whether the money is actu-

ally spent well for some of those applications. So, while we spoke

about the IT delivery process in the chapter 1 exercises as one

dimension, the application dimension is the second dimension

that is important. Let’s look at how to categorize your application

in a meaningful way.

Each organization will have different information available

about its applications, but in general, an analysis across the fol-

lowing four dimensions can be done:

• Criticality of application: How important is the appli-

cation for running our business? How impactful would

an issue be on the user experience for our customers or

employees? How much does this application contribute

to regulatory compliance?

• Level of investment in application: How much money

will we spend in this application over the next 12–36

months? How much have we spent on this application in

DevOps for the Modern Enterprise Mirco Hering 22

 the past? How many priority projects will this application

be involved with over the next few years?

• Preferred frequency of change: If the business could

choose a frequency of change for this application, how

often would that be (hourly, weekly, monthly, annually)?

How often have we deployed change to this application

in the last 12 months?

• Technology stack: The technology stack is important,

as some technologies are easier to uplift than others.

Additionally, once you have a capability to deliver, for

example, Siebel-based applications more quickly, any

other Siebel-based application will be much easier to

uplift too, as tools, practices, and methods can be reused.

Consider all aspects of the application in this technology

stack: database, data itself, program code, application

servers, and middleware.

For each of the first three dimensions, you can either use

absolute values (if you have them) or relative numbers represent-

ing a nominal scale to rank applications. For the technology stack,

you can group them into priority order based on your technical

experience with DevOps practices in those technologies. I rec-

ommend using a table with headings much like the one in Table

2.1. On the basis of this information, you can create a ranking

of importance by either formally creating a heuristic across the

dimensions or by doing a manual sorting. It is not important for

this to be precise; we are aiming only for accuracy here.

It’s clear that we wouldn’t spend much time, energy, and money

on applications that are infrequently changed— applications

that are not critical for our business and on which we don’t

DevOps for the Modern Enterprise Mirco Hering 23

intend to spend much money in the future. Unfortunately, just

 creating a ranking of applications is usually not sufficient, as the

IT landscape of organizations is very complex and requires an

additional level of analysis to resolve dependencies in the appli-

cation architecture.

#

A
p
p
lica

tio
n

T
e
ch

n
o
lo
g
y

S
tra

te
g
ic A

p
p
lica

tio
n

F
re
q
u
e
n
cy

 o
f Ch

a
rg
e

S
ize

 o
f th

e
 A
p
p
lica

tio
n
 in

 th
e

In
v
e
stm

e
n
t P

o
rtfo

lio

95 App A Java, .NET,

Oracle

4–Critical 9 4–Very

High

Table 2.1: Application analysis example: A table like this will help you structure the application analysis

Identifying a Minimum Viable Cluster

As discussed above, the minimum viable cluster is the subset of

applications that you should focus on, as an uplift to these will

speed up the delivery of the whole cluster. Follow the steps below

to identify a minimum viable cluster:

1. Pick one of the highest-priority applications (ideally

based on the portfolio analysis from the previous exer-

cise) as your initial application set (consisting of just one

application).

2. Understand which other applications need to be changed

in order to make a change to the chosen application set.

DevOps for the Modern Enterprise Mirco Hering 24

3. Determine a reasonable cutoff for those applications

(e.g., only those covering 80% of the usual or planned

changes of the chosen application).

4. You now have a new, larger set of applications and can

continue with steps 2 and 3 until the application set stabi-

lizes to a minimum viable cluster.

5. If the cluster has become too large, pick a different start-

ing application or be more aggressive in step 3.

Once you have successfully identified your minimum viable

cluster, you are ready to begin the uplift process by implementing

DevOps practices such as test automation and the adoption of

cloud-based environments, or by moving to an Agile team deliv-

ering changes for this cluster.

DevOps for the Modern Enterprise Mirco Hering 25

Product A Product B Product C

Functionality

Func. Area 1

Func. Area 2

Func. Area 3

Architecture

Auto Scaling

Self-Healing

Monitoring

Changeability

Engineering

Capability

Source Code

APIs

Modularity

Cloud Enablement

In-House IT

Capability

Table 3.1: Example scorecard: New applications should be evaluated on four dimensions, not just functionality

DevOps for the Modern Enterprise Mirco Hering 26

First Steps for Your Organization

Determine Guidelines for New Applications

Based on the sample scorecard provided in the Table 3.1, derive a

scorecard for your organization. Take the next product decision

(or a historic one if nothing is coming up) and apply this score-

card to see how it differs from your current process. Determine

whether or not this scorecard, with an architecture focus, provides

a different result. I would recommend inviting stakeholders across

the organization to a workshop to discuss results and next steps to

change your evaluation process going forward.

Strengthen Your Architecture by Creating

an Empowering Ecosystem

So, you already have software packages in your organization like

so many others. In the previous chapter, we did an analysis of

your application portfolio, which you can leverage now to deter-

mine which software packages are strategic for your organization.

1. Based on the previous application portfolio analysis (or

another means), determine a small subset of strategic

applications (such as the first minimum viable cluster) to

devise a strategy for creating an empowered ecosystem

around them.

2. Now pick these strategic packages and run the scorecard

from this chapter. You can largely ignore the functional

aspects, as they are used more for the choice between

package and custom software. You could, however, use

the full scorecard in case you are willing to reconsider

whether your current choice is the right one. Given that

DevOps for the Modern Enterprise Mirco Hering 27

you are doing this after the fact, you will already know how

suitable the package was by the amount of customiza-

tions that your organization has already made.

3. Where you identify weaknesses in your software pack-

age, determine your strategy for them. How will you

work with the software vendor to improve the capabili-

ties? Will you work with them directly? Will you leverage

a system integrator or engage with a user group?

4. Results take time. Determine a realistic review frequency

to see whether or not your empowered ecosystem is help-

ing you improve the applications you are working with.

You can leverage the principles for measuring technical

debt from the previous chapter as a starting point if you

don’t have any other means to measure the improve-

ments in your packaged applications.

DevOps for the Modern Enterprise Mirco Hering 28

tions

Automation of

repeating tasks

$$$

Figure 4.1: Overall costs versus daily rates: Automating work reduces overall cost but increases average cost rate

$$

$

$$$

$$

$

DevOps for the Modern Enterprise Mirco Hering 29

First Steps for Your Organization

Horses for Courses—Determining the Partners You Need

This whole chapter is about finding the right partner that fits your

ambition and culture. But the truth is that you probably need dif-

ferent partners for different parts of your portfolio. If you have

done the application portfolio activity in chapter 2, this exercise

will be easier. There are three different types of applications for

the purpose of this exercise:

• Differentiator applications: These applications are evolv-

ing very quickly, are usually directly exposed to your

customers, and define how your company is perceived in

the marketplace.

• Workhorses: These applications drive the main processes

in your organizations, such as customer relationship man-

agement, billing, finance, and supply-chain processes.

They are often referred to as enterprise or legacy systems.

 They might not be directly exposed to the customer, but

the company derives significant value from these applica-

tions and continues to make changes to them to support

the evolving business needs.

• True legacy: These applications are pretty stable and don’t

require a lot of changes. In general, they tend to support

your more stable, main processes or some fringe aspects

of your business.

DevOps for the Modern Enterprise Mirco Hering 30

Based on these classifications, review your partner strategy

to see whether you need to change either the partner itself or the

way you engage with the existing one. For the first two categories,

you want to engage strategic partners. For legacy applications, you

are looking for a cost-effective partner who gets paid for keeping

the system running. The incentives for your strategic partners are

different. Your partners for the workhorse applications should be

evaluated by the efficiencies they can drive into those applica-

tions; for the differentiator applications, you want someone who

is flexible and will co-invent with you. The outcome of this activ-

ity will feed into the second exercise for this chapter.

Run a Strategic Partners Workshop

for Your Workhorse Applications

Organizations spend the majority of their money on their work-

horse applications. This makes sense, as these applications are the

backbone of the business. For this exercise, I want you to invite

your strategic partners who support your workhorse applica-

tions (and possibly the differentiator ones) to a workshop. You

can do this with all of the partners together, which can be more

difficult, or by running separate workshops for each partner. It is

important to tell them to assume that the current contract struc-

ture is negotiable and to be open-minded for the duration of the

workshop.

The structure of this workshop should be as follows:

• Explain to your partner what is important for you in

regard to priorities in your business and IT.

• Discuss how you can measure success for your priorities.

DevOps for the Modern Enterprise Mirco Hering 31

• Let your partner explain what is important for them in

their relationship with you and what they require in their

organization to see the relationship as successful.

• Workshop how you can align your interests.

• Brainstorm what the blocks are to truly achieve a win-

win arrangement between your two organizations.

The key to this workshop is that both sides are open-minded

and willing to truly collaborate. In my experience, it will take a

few rounds of this before barriers truly break down—don’t be dis-

couraged if all of the problems are not solved in one workshop.

Like everything else we talk about, it will be an iterative process,

and it is possible that you will realize that you don’t have the right

partners yet and need to make some changes in the makeup of

your ecosystem.

Do a Quick Self-Check about Your Partnering Culture

A quick test to evaluate your DevOps culture with your system

integrator:

• Are you using average daily rate as indicator of produc-

tivity, value for money, and so on?

 +1 if you said no.

• Do have a mechanism in place that allows your SI to

share benefits with you when he improves through auto-

mation or other practices?

 +1 if you said yes. You can’t really expect the SI to invest

in new practices if there is no upside for him. And yes,

there is the “morally right thing to do” argument, but let’s

be fair. We all have economic targets, and not discussing

DevOps for the Modern Enterprise Mirco Hering 32

this with your SI to find a mutually agreeable answer is

just making it a bit a too easy for yourself, I think.

• Do you give your SI the “wiggle room” to improve and

experiment, and do you manage the process together?

 +1 if you said yes. You want to know how much time the

SI spends on improving things by experimenting with

new tools or practices. If she has just enough budget

from you to do exactly what you ask her to do, then start

asking for an innovation budget and manage it with her.

• Do you celebrate or at least acknowledge the failure of

experiments?

 +1 if you said yes. If you have an innovation budget, are

you okay when the SI comes back to let you know that

one of the improvements didn’t work? Or are you just

accepting successful experiments? I think you see which

answer aligns with a DevOps culture.

• Do you know what success looks like for your SI?

 +1 if you said yes. Understanding the goals of your SI

is important, not just financially but also for the peo-

ple who work for the SI. Career progression and other

aspects of HR should be aligned to make the relationship

successful.

• Do you deal with your SI directly?

 +1 if you said yes. If there is another party involved, such

as your procurement team or an external vendor, then

it’s likely that messages get misunderstood. And there

is no guarantee the procurement teams know the best

practices for DevOps vendor management. Are you dis-

cussing any potential hindrance in the contracting space

directly with your SI counterpart?

DevOps for the Modern Enterprise Mirco Hering 33

If you score 0–2 points, you have a very transactional rela-

tionship with your SI and should consider getting to know him

or her better to improve the relationship. If you score 3–4 points,

you are doing okay but with room for improvements, so you

could run a partner workshop to address the other dimensions. If

you score 5 or 6 points, you are up ahead with a real partnership

that will support you through your transformation. Well done!

DevOps for the Modern Enterprise Mirco Hering 34

Discovery Delivery

Figure 5.1: Discovery versus delivery: Discovery is like the first outline of a picture; delivery fills in the details

DevOps for the Modern Enterprise Mirco Hering 35

Figure 5.2a: Technology tree: Example showing dependencies between technologies

A
lp

h
ab

et

P
o�

ery

Cerem
on

ial
B

u
rial

M
ason

ry

En
gin

eerin
g

H
orseb

ack
R

id
in

g

B
ron

ze
W

orkin
g

B
rid

ge
B

u
ild

in
g

G
u

erilla
W

arfare
M

ob
ile

W
arefare

M
ach

in
e

Tools

W
arrior

Cod
e

W
ritin

g

M
ysticism

Cod
e of

Law
s

Th
e

Corp
oration

M
ath

e-
m

atics
Th

eory of
G

ravity
N

u
clear

P
ow

er

A
tom

ic
Th

eory
In

du
striali-

zation

Con
scrip

-
tion

R
efrig-

eration

M
in

iatu
ri-

zation

Com
b

in
ed

A
rm

s

M
ap

-
m

akin
g

P
olyth

eism
In

ven
tion

Ch
ivalry

Literacy

B
an

kin
g

Th
e

R
ep

u
b

lic
G

en
etic

En
gin

eerin
g

M
on

arch
y

N
avigation

Trad
e

P
h

ilosop
h

y

A
stron

om
y

Seafarin
g

Feu
d

alism

Steel
P

h
ysics

Exp
losives

Fligh
t

U
n

iversity

M
ed

icin
e

M
on

o-
th

eism

San
itation

R
ailroad

Electricity

Com
p

u
ters

R
ob

otics

M
agn

etism

Econ
om

ics

D
em

ocracy
Esp

ion
age

Com
bustion

A
utom

obile
Laser

Com
m

u
-

n
ism

M
ass

P
rodu

ction
N

u
clear

Fission
Su

p
er-

con
du

ctors
Fu

sion
P

ow
er

Ch
em

istry
R

efin
in

g
R

ecyclin
g

Steam
En

gin
e

Lab
or

U
n

ion
Sp

ace
Fligh

t
Electron

ics
R

ocketry
P

lastics
Stealth

Con
stru

c-
tion

Cu
rren

cy
Th

eology

Tactics

G
u

n
p

ow
d

er
Lead

ersh
ip

M
etallu

rgy
R

ad
io

Th
e

W
h

eel

Iron
W

orkin
g

A
m

phibious
W

arfare

A
d

van
ced

Fligh
t

DevOps for the Modern Enterprise Mirco Hering 36

Figure 5.2b: DevOps technology tree showing dependencies

Automated
functional testing

in application
domains

Automated
baseline

functional
regression in AT

Automated data
provisioning for
integrated evns.

(w/ aligned data)

Auto AT tests from
different apps

orchestrated to
run in intgd envs.

Automated
environment
infrastructure
provisioning

Traceability and information
transparency built into pipeline

(e.g. automatically generated release
notes, test plans)

Automated test
environment

provisioning on
virtual infrstre.

Automated
progression

testing in pre-CAT
(integrated)

Automated
data provisioning

for AT

Automated
middleware
provisioning

Automated
baseline

regression in CAT

E2E automated
functional testing

framework

Automated
acceptance

testing in pre-CAT
(integrated)

Virtual services/
smart stubs

Virtual services/
smart stubs

Virtual services/
smart stubs

Environment
levels defined

Same package
from CAT to prod.

Same package
through AT, CAT

& prod.

Regular quality
reviews

conducted

Baseline metrics
established for

current processes

Real-time graphs
and reports,

trends over time

Self-service
reports and
dashboards

Automated
reports are
cross-siloed

Virtual services/
smart stubs

Virtual services
defined strategy

Self-service
virtual services

Automated
middleware
provisioning

Self-service
virtual services

Self-service single
application test
environment
provisioning

Automated
integrated

environment
provisioning

Automated
progression

testing in CAT

Automated
acceptance

testing in CAT

Automated SVT
(integrated)

S
O
F
T
W
A
R
E

Q
U
A
L
IT
Y

P
A
C
K
A
G
E

P
R
O
M
O

R
E
P
O
R
T
 &

V
IS
IB
IL
IT
Y

V
IR
T
U
A
L
IZ
A
T
IO
N

F
U
N
C
T
IO
N
A
L
 T
E
S
T
IN
G

Code-based
feature toggles

Externalized
feature toggle
management

All artifacts
tagged/version

controlled

Centralized
feature toggle

framework

Centralized
feature toggle
management

Audience
switching

(for testing prod.)
SCM-based

feature toggles

Code granularity
at IR level

Tool-driven
merges

Automated
application
deployment

Automatic static
data deployment

Automated post-
deployment
smoke tests

Automated
database

deployment

Automated
rollback

Standardized
deployments into
all environments

Self-service
deployments

into CAT

Self-service
deployments

into prod

Auto-deploy into
CAT upon check-
in and successful
CAT quality gate

Auto-deploy into
pre-CAT at check-
in and successful
pre-CAT qlty. gate

Standardized
deployments into

all pre-CAT
environments

Self-service
deployments into

pre-CAT
environments Continuous

delivery

Code granularity
at feature level

Automated
merges

Dynamic
merges

Automated
unit testing
framework

Unit testing
coverage
5%–25%

Unit test use
mocks testing

coverage
25%–80%

Fast tests run on
build and teams
prioritize broken

build

Pre-check-in
quality checks

Unit testing
coverage >80%

Build once,
deploy many

Continuous
integration

Backward
compatible
interfaces

Unit test
regression suite

Standard
build

process

Automated build
(scheduled >1 day)

Build on commit/
other specified
SCM triggers

Dedicated build
server

Telstra build
artifact

repository

Daily
check ins

F
E
A
T
U
R
E

T
O
G
G
L
IN
G

C
O
N
F
IG

M
A
N
A
G
E
M
E
N
T

D
E
P
L
O
Y
M
E
N
T

P
R
A
C
T
IC
E
S

U
N
IT
 T
E
S
T
IN
G

B
U
IL
D
 P
R
A
C
T
IC
E
S

DevOps for the Modern Enterprise Mirco Hering 37

First Steps for Your Organization

Run a Discovery Workshop for an Initiative of Your Choice

I described the discovery workshop in some detail in this chapter,

and I encourage you to run a session in your organization. Here is

a sample agenda for a two-week long discovery workshop, which

you can adjust as required for larger or smaller initiatives. The

activities highlighted are just an example; there are many addi-

tional activities that you can embed in your discovery sessions to

enhance the experience.

Part 1: Explore the Business Problem (Two Days)

• briefing by initiative sponsor (leveraging the business

case where possible)

• current customer/stakeholder experience

• to-be customer experience workshop

• creating the mission statement

• success criteria definition

• in-scope and out-of-scope brainstorming

• stakeholder management workshop

• prioritization-scheme discussion

• risks, issues, and dependencies identification and

mitigation

Part 2: Solutioning (Three Days)

• high-level to-be process design

• high-level technical architecture to support to-be design

• breaking the scope up into features

• identification of minimum viable product (MVP)

• selected deep dives into technologies and processes

DevOps for the Modern Enterprise Mirco Hering 38

Part 3: Planning for Delivery (Five Days)

• Agile training (if required)

• team structure definition

• estimation of scope

• high-level roadmapping

• technical preparation (environment, quality, configura-

tion management strategies)

• setting up delivery governance

• social contract

• prepping the backlog

• discovery showcase to the organization

• planning workshop (PI planning when using SAFe)

DevOps for the Modern Enterprise Mirco Hering 39

Delivery Governance

Agile

Governance

Function

Agile
Team

Agile
Team

Agile
Team

DevOps

Governance

Function

Test Automation COE

Platform Team

Agile Release Train

Quality

Assurance

Figure 6.1:
Organizational structure starting point: This layered

organizational structure works well in larger organizations

Test Automation
Automated

App Release

Environment

Provisioning

DevOps for the Modern Enterprise Mirco Hering 40

M
ultiple

Technologies

W
ork w

ith a single onshore or off
shore captive w

here
m

ultiple vendors can w
ork in the sam

e location.

M
ultiple D

elivery
Vendors

Single
Location

S
ce

n
a

rio
 1

Te
a

m
 b

y Lo
ca

tio
n

Figure 6.2a:
Agile team

 scenario 1: Agile feature team
s in one location can be

from
 m

ultiple vendors and support m
ultiple technologies

M
ultiple

Technologies

Basing team
s around the function and allow

ing for
m

ultiple technologies can w
ork if a single vendor is

responsible across all technologies.

Single D
elivery

Vendor

D
istributed

S
ce

n
a

rio
 2

Te
a

m
 b

y Fu
n

ctio
n

Figure 6.2b:
Agile team

 scenario 2: Distributed Agile feature team
s

ideally consist of one vendor only

M
ultiple

Technologies

Build team
s by technology. This then m

akes them
 one

vendor, allow
ing for distributed location, but requires

additional overhead to facilitate business outcom
es

M
ultiple D

elivery

Vendors

D
istributed

S
ce

n
a

rio
 3

Te
a

m
 b

y
 Te

ch
n

o
lo

g
y

Figure 6.2c:
Agile team

 scenario 3: Agile com
ponent team

s in m
ulti vendor,

m
ulti location scenarios

DevOps for the Modern Enterprise Mirco Hering 41

First Steps for Your Organization

Identify One of Your Value Streams and the

Required Teams to Support It

We have spoken about creating a value stream map before (in

chapter 2). What we are looking for here is to identify value

streams from a business perspective. Once you have identified

the value stream, the next step is to identify the systems that sup-

port the value stream.

Looking at your backlog of work or your portfolio of initia-

tives, identify how much work impacts the systems supporting

this value stream. On this basis, you should now be able to create

a team structure supporting this value stream. It won’t be per-

fect, and you will have to adjust it over time; but you now have a

starting point. Using the SAFe terminology, you have identified

an Agile release train, and you can now go on to deliver work

through this team structure to support the value stream. Over

time, you will be able to shift the budgeting model to support the

teams as I mentioned earlier in the chapter.

Identify the Teams That Will Be Impacted by the

Move to a Platform Team

The platform team is a concept that is very transformational, and

the change required is often underestimated. To help you navigate

this change, I want you to identify all the teams that are currently

performing functions that would ultimately be performed by

the platform team or would be impacted by the platform team

(e.g., infrastructure teams, testing teams, database administrators

[DBAs]). Invite them to a workshop to discuss what the delivery

platform at your organization should look like from a functional

DevOps for the Modern Enterprise Mirco Hering 42

perspective. Once you have a level of agreement on that, discuss

how the delivery platform should be supported. Hopefully the

platform team emerges as something that everyone can agree on.

Then agree on next steps to get closer to achieving this end-state

vision.

DevOps for the Modern Enterprise Mirco Hering 43

Quality architects

define end-to-end

approach

Automated routines

inspect for quality

FROM . . . Quality issues accumulate and are manually captured at the end

TRANSFORMING TO . . . Automation and process changes capture quality
issues at the point of origin and enable faster, more frequent, and less
costly releases.

Testers

Leakage

Plan

Continuous
Quality

Continuous
Quality

Continuous
Quality

Continuous
Quality

Design Construct Test Release

Figure 7.1: Quality engineering process: Quality engineering shifts the focus to the whole delivery lifecycle

DevOps for the Modern Enterprise Mirco Hering 44

UI Layer

Service Layer

Unit Layer

More fragile;
aim to have less

More stable;
aim to have more

Figure 7.2: Test automation pyramid: The slower the layer, the less we should use it in automating tests

DevOps for the Modern Enterprise Mirco Hering 45

First Steps for Your Organization

Mapping the Quality Process of Your Organization

This activity is somewhat similar to the value mapping we did in

chapter 1. Here again, you should prepare a whiteboard or other

wall space, and be ready with Blu Tack and system cards.

First, create a high-level work flow on the wall, showing

requirements to production, including all the relevant process

steps represented on the cards. Then use a different color of cards

or pen and list each quality activity where it happens in the life

cycle.

To make sure the picture is complete, ask yourself whether

you have covered all concerns, including performance, security,

availability, and any other concerns. It’s okay if you have some

aspects missing from the original list; simply highlight these on

the side.

As a next step, your team needs to think about automation:

What can be automated and hence be done earlier and more fre-

quently? Consider breaking up activities into an automated part

that can be completed earlier and more frequently, as well as a

part that continues to require a manual inspection. Remember

that automated activities are nearly free of effort once imple-

mented, so doing them more often does not add much cost.

Now, you want to identify opportunities to check for qual-

ity aspects earlier, as this relates to manual inspection. For each

activity think of possible ways to do the full scope or at least

aspects of it earlier.

Finally, create a backlog in which your teams can make the

required shifts toward quality engineering, and then start mak-

ing the shift.

DevOps for the Modern Enterprise Mirco Hering 46

Measuring Quality

As discussed in this chapter, measuring quality is not easy. Many

measures are only valid temporarily, while you are addressing

specific concerns. Sit down with your quality or testing leadership

and, on a piece of paper, list out at all the metrics and measures

you use to determine quality. Then determine which ones are

objective and automated.

If you don’t have a good set of automated and objective met-

rics, then workshop how to get to a small set of these. I think two

of the easy ones to agree on are duration for a successful regres-

sion test run and incidents found in production per time period.

These are pretty noncontroversial and applicable to all kinds of

companies, but you will want to define a small number of addi-

tional metrics relevant to your business.

DevOps for the Modern Enterprise Mirco Hering 47

First Steps for Your Organization

Set Up One-On-Ones

It is important to find time in your calendar for each of your

directs starting two weeks from now, and be sure to make them

recurring meetings on a weekly basis. Make them thirty minutes

each, and set the agenda as fifteen minutes for the direct first and

fifteen minutes for you second. It is common that the direct may

run over with his/her fifteen minutes, and that’s okay. You can

find another chance during the week to update the direct with

any information that you didn’t have time to share during your

portion of the one-on-one. I also highly encourage you to take

notes and to follow up on the points discussed in the previous

week; this will provide a very rich background of information

when it comes to performance discussions, providing a progress

measure for your direct report.

Define Culture KPIs for Your Managers

You probably have heard the saying “you get what you measure.”

Though culture is somewhat evasive to metrics, there are some

things you can do:

• Leverage the internal NPS that I highlighted in this

chapter, and break it down by team as a good high-level

measure.

• Measure one-on-ones of your managers. This allows you

to measure whether or not your manager builds effective

relationships.

DevOps for the Modern Enterprise Mirco Hering 48

• Spot-check the strength of the relationships of your

managers. Ask them about some of the fundamental and

noninvasive things a boss should know about their peo-

ple if they have a positive relationship. For example, do

they know the names of their directs’ kids and partners,

and their directs’ favorite pastimes?

And yes, you should do the same for yourself to avoid looking

for the proverbial speck of sawdust in your manager’s eye while

ignoring the wooden beam in your own.

DevOps for the Modern Enterprise Mirco Hering 49

Dev
Team

s

1. Creating the Application

Autom
ation Orchestration

Environm
ent Configuration

Code Review
Libraries

Check-in,
store in SCM

Identify code changes,
com

pile &
 package

Persistent
Envs.

Autotest

D
ev.

Asset
M

gm
t.

SCM
App

2. Deploying the Application

3. Testing the Application

4. Visualizing the Delivery Process

App
Deploym

ent

Test

Data

Scr.
Test

Prod.

W
ork

M
gm

t.
Process

Tailor to Env.

M
o

d
e

l A
—

C
o

n
tin

u
o

u
s D

e
liv

e
ry

M
o

d
e

l A
 d

e
p

lo
ys a

p
p

lica
tio

n
s a

u
to

m
a

tica
lly in

to
 p

e
rsiste

n
t e

n
v

iro
n

m
e

n
ts

(e
ith

e
r clo

u
d

 o
r o

n
 p

re
m

ise
s).

24/7

Figure 9.1: Model A—Continuous delivery: Continuous delivery automates delivery to persistent environments

DevOps for the Modern Enterprise Mirco Hering 50

3. Deploying the Application
5. Visualizing the Delivery Process

4. Testing the
 Application

2. Creating the
 Environm

ent
Autotest

Push from
 Jenkins or Deploym

ent Tool

Pull from
 Puppet Asset

M
gm

t.
(Infra.)

Env.

Env.

Env.

Dev
Team

s

1. Creating the Application

Autom
ation Orchestration

Libraries

QA

Asset
M

gm
t.

(App)

SCM
App

Test

Data

Scr.

W
ork

M
gm

t.
Process

M
o

d
e

l B
—

C
lo

u
d

-E
n

a
b

le
d

 D
e

liv
e

ry

M
o

d
e

l B
 d

e
p

lo
ys a

p
p

lica
tio

n
s a

u
to

m
a

tica
lly a

fte
r p

ro
v

isio
n

in
g

 a
 n

e
w

 e
n

v
iro

n
m

e
n

t

fro
m

 th
e

 clo
u

d
 o

r d
a

ta
 ce

n
te

r.

M
a

in
 d

iff
e

re
n

ce
 co

m
p

a
re

d
 to

 M
o

d
e

l A
 is th

e
 m

a
tu

rin
g

 o
f th

e
 in

fra
stru

ctu
re

 p
ra

ctice
s—

in
fra

stru
ctu

re
 a

s co
d

e
.

Figure 9.2: Model B—Cloud-enabled delivery: Cloud-enabled delivery creates a new environment with each deployment

DevOps for the Modern Enterprise Mirco Hering 51

Dev
Team

s

1. Creating the Application

Autom
ation Orchestration

Libraries

QA

Asset
M

gm
t.

(App)

SCM
App

Test

Data

Scr.

W
ork

M
gm

t.
Process

M
o

d
e

l C
—

C
o

n
ta

in
e

r-E
n

a
b

le
d

 D
e

liv
e

ry

M
o

d
e

l C
 d

e
p

lo
ys a

p
p

lica
tio

n
s a

s a
 se

t o
f co

n
ta

in
e

rs in
to

 o
n

e
 o

r m
o

re
 h

o
sts th

a
t

a
re

 d
yn

a
m

ica
lly cre

a
te

d
.

M
a

in
 d

iff
e

re
n

ce
 co

m
p

a
re

d
 to

 M
o

d
e

l B
 is th

e
 m

a
tu

rity o
f th

e
 co

n
ta

in
e

r p
ra

ctice
s a

n
d

 th
e

 m
o

re

m
o

d
u

la
r a

p
p

lica
tio

n
 a

rch
ite

ctu
re

.

5. Testing the Application

3. Creating the
 Host VM

/OS

6. Visualizing the Delivery Process

2. Creating the Application Container

Autotest

4. Container
 Deploym

ent
Build Container from

 Dockerfile

Asset
M

gm
t.

(Infra.)

D
ocker

Repository

H
ost

VM

Env.

Env.

Figure 9.3: Container-enabled delivery manages an application in containers

DevOps for the Modern Enterprise Mirco Hering 52

M
arch

April
M

ay

YEA
R

June
July

August
A

ctiv
ity

D
efi

ne organization, operating m
odel, and

dependencies, and m
eaure the baseline

D
evO

ps infrastructure setup

Building the capabilities and w
ave 1 im

plem
entation

Stabilization and run of w
ave 1

Operationalize the new
 organization and operating m

odel
 (including process redesign)

Operationalize the “com
pany” DevOps standards

Operationalize the DevOps governance

Set up the environm
ent for the DevOps platform

Install and integrate the toolkit

Em
pty run of toolkit (”M

ove a file around”)

Restructure softw
are configuration m

anagem
ent

Integrate IDE and dev processes

Autom
ate deploym

ent (per app)

Im
plem

ent asset m
anagem

ent

Autom
ate first app setup

Integrate test autom
ation

Train developers on new
 process

Autom
ate build

Create test autom
ation fram

ew
ork

Create regression test

Create DevOps m
easures

Figure 9.4: Sample plan for initial build of capabilities: Container-enabled changes and infrastructure setup are common first steps

DevOps for the Modern Enterprise Mirco Hering 53

First Steps for Your Organization

Map Your Application Delivery Models

As I described above, it is not advisable to push all applications into

a container-enabled delivery model, as it would not be economical

or feasible. In organizations with a large amount of legacy, you

will probably have the largest proportion, targeting continuous

delivery and cloud-enabled delivery with some container-enabled

delivery in your digital applications. And that is realistic. Remem-

ber that the goal is to get better; too often, we make perfect the

enemy of better. With this in mind, run a workshop where you

review your applications and define what your current and ideal

delivery model is for each application. You will need to bring peo-

ple from your infrastructure, your architecture, and your delivery

organization into the same room for this. Then do a fit/gap anal-

ysis of the capabilities required for the delivery model you assign

to each application. Brainstorm a set of initiatives to build the

capabilities that are missing. Often, you can reuse capabilities for

applications of the same technology stack (e.g., Java) once they

are built for another application. Identify those opportunities for

reuse. With all these in mind, define a six-month roadmap, and

review the roadmap and progress on a monthly basis to repriori-

tize based on the lessons learned so far.

DevOps for the Modern Enterprise Mirco Hering 54

Design View

Front End Front End

Real View

Figure 10.1:
Design view versus real view:

Simple diagrams do not equal simple architectures

Database Database

Main System

(Magic happens

here)

Main System

DevOps for the Modern Enterprise Mirco Hering 55

First Steps for Your Organization

Identify Your Architecture Evolution Strategy

Invite your architects to a workshop about architecture strategies.

Let them explain what the current plan is, and try to map this

back to the architecture evolution strategies I have highlighted

in this chapter: decoupling your architecture; removing technical

debt; creating a new architecture on the side or eroding the old

architecture core. Then discuss alternative approaches with them

and see whether you can come to an aligned strategy that will

provide more decoupled services over time. Make sure that with

this architecture evolution strategy, related capabilities are cov-

ered too. Refer back to the delivery models and their associated

capabilities to make sure your architects are not talking just about

the system blueprints but also about the capability build-out to

support the architecture with the right engineering practices.

DevOps for the Modern Enterprise Mirco Hering 56

Identified by System

Identified by User/Customer

Auto-Corre
cted

RPA Augmented Resolution

Requiring Ticket

Manual Resolution

RPA Augmented Resolution

Manual Resolution

Figure 11.1: Advanced maturity state: Modern operations works based on the principle to minimize work that needs to be done

DevOps for the Modern Enterprise Mirco Hering 57

Figure 11.2: Reducing transaction costs enables smaller batch sizes

Batch Size

Batch Size

1000

900

800

700

600

500

400

300

200

100

0

1000

900

800

700

600

500

400

300

200

100

0

10 15 20 25 30 35 40 45 50

Optimal Batch

C
O

S
T

C
O

S
T

Total

Holding

Transaction

10 15 20 25 30 35 40 45 50

Optimal Batch

Total

Holding

Transaction

DevOps for the Modern Enterprise Mirco Hering 58

First Steps for Your Organization

Run Problem-Ticket Analysis

In this exercise, we will look at ways to improve your application

operations through analysis of your problem tickets to identify what

can be automated. As I said before, you have a lot of data that you

don’t use to its full potential. Get your hands on this problem-ticket

data, and run some simple analysis over it. I suggest using a word

cloud to identify common wording (e.g., “restart server,” “reset

password,” “out of storage”); then try to categorize on that basis.

Once you have done that, you can go through the ones with the

highest count to see what can be done to improve the system by

resolving it either automatically or with the support of automa-

tion. It usually takes two to three rounds of refinement before the

 categorization—based on wording and other metadata—is accu-

rate enough for this analysis. This will give you the starting point for

your automated production system that can self-correct over time.

Review Your DevOps Tools

With the principles of good DevOps tooling in mind (strong APIs,

configuration as code, supportive licensing model), sit down with

the architects in your organization and make a list of the tools you

are using for DevOps capabilities. You will be surprised by how

many tools you have and how many of them are overlapping in

regard to their functionality. Analyze the tools for how future-

ready they are (utilizing Table 11.1, which you can enhance with

further criteria specific to your context), and define your weak

spots, where you have tools that are really not compatible with

the DevOps way of working and are holding you back. Identify a

strategy to replace these tools in the near future.

DevOps for the Modern Enterprise Mirco Hering 59

Criteria Tool A Tool B

API support

Configuration management

Multienvironment / code-branch support

License model

Data access

Table 11.1: DevOps tools review: DevOps tools should follow DevOps good practices themselves

DevOps for the Modern Enterprise Mirco Hering 60

Capacity

Time

Cloud Capacity

Undercapacity

Overcapacity

Real Capacity

Classic Capacity

Figure 12.1: Capacity versus time: When done correctly, cloud capacity moves according to the need

DevOps for the Modern Enterprise Mirco Hering 61

First Steps for Your Organization

Review Your Cloud Applications

With the understanding of how the cloud is benefiting you most

(based on the two factors—granularity of the architecture and

maturity of the application in regard to DevOps practices), review

your existing cloud applications (or the ones you are planning to

move). To do this, first analyze the architecture to identify the com-

ponents that are decoupled from each other and have the potential

to be scaled independently. Also identify services that should

be decoupled for later architectural refactoring. For each of the

decoupled components, review their maturity of DevOps practices

(SCM, build and deployment management, test automation) to

identify gaps that require closing.

Next, ask yourself whether you would really benefit from the

flexibility of the cloud for these applications, because you can

leverage the elasticity of the architecture. Only if you have the

right architecture and automation capabilities will you be able

to fully benefit from the cloud. You should start building these

capabilities—either before moving to the cloud or once you are

in the cloud—to reduce the cost of your cloud infrastructure and

the risk of business disruptions from application issues.

Based on this analysis, you will have a list of applications that

are cloud ready and a backlog of work to make more and more

applications cloud ready through architecture refactoring and the

building of additional DevOps capabilities.

DevOps for the Modern Enterprise Mirco Hering 62

Plan a Cloud Disaster Event

Pick a scenario (e.g., your cloud provider going bust and you los-

ing access to all the systems and data stored on the cloud) and run

a full rehearsal of what it would take to come back online. This

will include activities such as creating a new infrastructure with

a different cloud provider, installing the applications you need to

run your business, and restoring data from an external backup.

There are two things that you want to do:

1. Identify your weak spots and prioritize them to improve

your cloud architecture.

2. Measure the impact and duration of your rehearsal so

that you can study how you become better over time.

DevOps for the Modern Enterprise Mirco Hering 63

Analysis

Figure A.1: T-shaped skills: T-shaped employees have broader skills than I-shaped employees

Coding Testing Coding

DevOps for the Modern Enterprise Mirco Hering 64

Figure A.2: Iterative versus incremental delivery: Iterative delivery slowly increases the benefits of the product,

while incremental requires the full product before it is useful

NOT LIKE THIS

LIKE THIS!

1 2 3 4

1 2 3 4 5

(Recreated based on image by Henrik Kniberg, “Making Sense of MVP (Minimum Viable Product)—and why I prefer Earliest Testable/Usuable/Lovable,”

Crisp’s Blog, January 25, 2016, http://blog.crisp.se/2016/01/25/henrik kniberg/making-sense-of-MVP.)

DevOps for the Modern Enterprise Mirco Hering 65

Resources

Books

Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation by Jez Humble and David Farley: a very

technical reference book on how to implement continuous delivery

Leading the Transformation: Applying Agile and DevOps Principles at Scale

by Gary Gruver and Tommy Mouser: a great book with very prag-

matic advice on how to start the transformation for IT.

The DevOps Handbook: How to Create World-Class Agility, Reliability,

and Security in Technology Organizations by Gene Kim, Jez Humble,

Patrick Debois, and John Willis: this book provides a lot of useful

guidance on implementing DevOps practices.

The Effective Manager by Mark Horstman: this is a great book on good

management that focuses on the people who work for you.

DevOps for the Modern Enterprise Mirco Hering 66

The Goal: A Process of Ongoing Improvement by Eliyahu M. Goldratt and

Jeff Cox: an easy-to-read business novel introducing you to systems

thinking

The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation

to Create Radically Successful Businesses by Eric Ries: Eric describes

how structured experimentation allows you to better solve business

problems.

The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business

Win by Gene Kim, Kevin Behr, and George Spafford: this one is an

easy-to-read novel introducing you to DevOps concepts and culture.

The Principles of Product Development Flow: Second Generation Lean

Product Development by Donald G. Reinertsen: a great book includ-

ing some of the best discussion of batch size

Site Reliability Engineering: How Google Runs Production Systems by Betsy

Beyer, Chris Jones, Jennifer Petoff and Niall Richard Murphy: learn

about modern operations for applications inspired by Google.

Podcasts and Online Resources

The Agile Revolution: an Australia-based Agile podcast (TheAgileRevo-

lution.com)

Arrested DevOps: a podcast that provides information on upcoming con-

ferences as well as discussion on DevOps topics (ArrestedDevOps

.com)

Career Tools: a helpful podcast from Manager Tools designed to offer

advice to anyone at any point on their career path (https://www

.manager-tools.com/all-podcasts?field_content_domain_tid=5)

DevOps for the Modern Enterprise Mirco Hering 67

DevOps Café: a conversational-style podcast about all things DevOps

(DevOpsCafe.org)

The Economist Radio: a daily podcast for staying up to date with science

and politics (https://radio.economist.com/)

Freakonomics Radio: a podcast of surprising insights from science into the

world around us (http://freakonomics.com/archive/)

HBR IdeaCast: a business-focused podcast from Harvard Business Review

that dives deep into one specific area per episode (http://feeds.har

vardbusiness.org/harvardbusiness/ideacast)

Manager Tools: great guidance for managers and directors (https://www

.manager-tools.com/all-podcasts?field_content_domain_tid=4)

The Ship Show (now defunct, but episodes are still out there): one of the

earlier DevOps podcasts (TheShipShow.com)

Software Engineering Radio: an in-depth podcast on technical topics

(http://www.se-radio.net/)

TED Talks: inspirational talks that often cover science and technology

(https://www.ted.com/talks)

DevOps for the Modern Enterprise Mirco Hering 68

Glossary

abstract environment configuration: variables like IP addresses and

server names need to be abstracted so that configuration files only con-

tain placeholders and not the actual values.

abstraction layer: an abstraction layer decouples two layers of architec-

ture so that they can evolve independently from each other without being

tightly coupled and causing dependencies.

access layer: usually a user interface that makes accessing information in

the underlying systems easier and more user friendly than direct-access

systems.

application programming interface (API): is a set of clearly defined

methods of communication between various software components that

allows access to functionality from external systems.

average daily rate (ADR): the average cost for a day of work across a team

of resources with several daily cost rates per person.

DevOps for the Modern Enterprise Mirco Hering 69

bimodal IT: a concept introduced to demonstrate that newer, more mod-

ern IT systems are being developed differently from older systems.

black box mode: a type of IT delivery for which the customer does not

care about the means of delivery and is only interested in the outcome.

blameless postmortem: a review technique that focuses on systematic

problems and is purposefully not looking to attach blame to an individual.

build artifacts: the result of the build process, often as a binary that can

then be used to deploy an application.

business IT isomorphism: the organizational approach to align IT func-

tions with business functions to simplify the engagement model between

business and IT.

canary testing: inspired by the canary in the coal mine, this approach

deploys into a subset of production to validate the application before roll-

ing it out more widely.

cloud: the practice of using a network of remote servers hosted on the

internet to store, manage, and process data rather than using a local server.

cloud native application: an application built specifically to leverage the

abilities of cloud computing and hence be more resilient and efficient.

compilers: utilities that “translate” programming code into executable

programs.

compute environments: application environments that allow you to exe-

cute programs.

concept of error budgets: budgets that, instead of the more traditional

costs, allocate a level of errors or outages to teams that they have to man-

age in order to be seen as successful.

configuration drift: when a server configuration starts to drift away from

its intended configuration by either human or system intervention.

DevOps for the Modern Enterprise Mirco Hering 70

consumable services: IT services that can be called upon by other pro-

grams and that provide easy-to-consume interfaces as a contract of

engagement.

container images: representations of an application in a container that

can be deployed into a container engine for fast creation of the application.

continuous delivery: an IT practice made popular by a book of the

same name in which software is automatically evaluated for quality and

deployed into environments all the way up to production.

continuous integration: is a development practice that requires devel-

opers to integrate code into a shared repository several times a day. Each

check-in is then verified by an automated build, allowing teams to detect

problems early.

cost performance indicator (CPI): a metric that allows you to measure

how much work has been performed for a certain amount of cost.

COTS product: commercial-off-the-shelf products are preconfigured IT

applications that support certain business processes without much con-

figuration or programming required.

CRM system: a customer relationship management system allows a com-

pany to engage with its customers in a consistent way and leverage the

relationships for further business cutover.

cycle time: the total time from the beginning to the end of your process,

as defined by you and your customer.

dashboard: a visualization of several data points or reports aggregated

across several data sources so that the information is easily available.

decoupling of systems: a technique that enables systems to be changed

independently from each other by introducing interfaces that remain sta-

ble when each of the systems changes.

DevOps for the Modern Enterprise Mirco Hering 71

defect density: a metric that measures how many defects per day of pro-

gramming or line of code are introduced.

definition of done: an Agile practice that defines the exit criteria under

which user stories are considered to be done. (See also definition of ready.)

definition of ready: an Agile practice that defines the entry criteria for user

stories to be considered for the next sprint. (See also definition of done.)

develop-operate-transition (DOT) contracts: a popular contract struc-

ture that differentiates between vendors who deliver a solution, vendors

who operate the solution, and the state in which the organization transi-

tions the solution back in-house.

DevOps tool chains: the set of tools that supports DevOps practices like

configuration management, deployment automation, and test automa-

tion, among others.

discovery: a phase in the beginning of an Agile project used to align all

stakeholders on the intended outcome of the project and the way the team

will achieve this.

discovery showcase: a meeting at the end of discovery in which the results

of the phase are shared with a broader set of stakeholders.

end-state architecture: the envisioned end state of the application archi-

tecture that will fully support the business of an organization.

ERP system: an enterprise resource planning system is the practice of

managing all the resources for the production and fulfillment process of

an organization.

front-end team: the team that delivers the front-end experience with

which the end customers interact.

function call: the programming technique that allows the usage of func-

tions provided by other applications or parts of the same application.

DevOps for the Modern Enterprise Mirco Hering 72

function points: an estimation technique that aims to provide an objec-

tive way to measure work in IT projects.

go-live: the release of new functionality or a new program when it is ready

for customer use.

graceful degradation: a practice that allows systems to provide basic

functionality even when core processes are not available; this is in con-

trast to being completely unavailable when one function fails.

green field setting: a project setting in which the team can start from

scratch instead of having to consider existing applications.

hardening: an Agile project phase right before production deployment in

which additional testing (such as performance and security testing) takes

place that was not able to be accommodated in the Agile sprints.

horizontal scaling: a scaling technique in which additional workflows are

distributed to more systems of the same size and shape instead of provid-

ing more resources to the same systems.

IDE extensions: extensions that are provided for developers in their

integrated development environment to support specific programming

languages with helpful utilities.

internet natives: companies that were built around solutions that leverage

the internet and hence considered internet capabilities in the application

architecture from the inception of the service.

iterative character: something that evolves over several iterations, with

each iteration bringing it closer to the real answer.

Jenkins: a continuous-integration tool.

lead time: the time between the initiation and the completion of a pro-

duction process.

DevOps for the Modern Enterprise Mirco Hering 73

legacy: in the context of IT, this describes applications that were built in

the past and need to be maintained.n (See also true legacy.)

LeSS: Large-Scale Scrum, a scaling method for Agile.

mean time to discovery (MTTD): the mean time it takes to identify that

a problem exists. (See also mean time to recovery.)

mean time to recovery (MTTR): the mean time it takes to rectify a prob-

lem. (See also mean time to discovery.)

mental models: the models that humans use to understand the world and

make decisions, often leveraging heuristics, as too much information is

available for full evaluation.

microservices: an architecture paradigm that tries to identify the smallest

possible independent component that can run as a service.

middleware: software that runs in between the operating system and

applications (i.e., integration services and data access layers).

minimum viable cluster: the minimum set of applications that can

be changed so that a real positive impact can be made by uplifting the

DevOps capabilities.

minimum viable product (MVP): a product that has only the absolute

necessary features to validate its viability with customers. Additional

scope is then built out over time.

monolithic applications: applications that provide many different ser-

vices that can only be deployed together.

multimodal IT: an IT environment that leverages several modes of deliv-

ery across the Agile and Waterfall spectrum.

NPS: the net promoter score is a metric that measures the satisfaction of

a constituency with a service provider or organization.

DevOps for the Modern Enterprise Mirco Hering 74

open source: a software distribution model that does not require payment

for usage and is based largely on voluntary contribution to the source code.

Perl: a scripting language often used for automating tasks.

PI planning: program increment planning is an implementation of

large-room planning in the Scaled Agile framework, which brings all stake-

holders together for a combined planning event of the next planning cycle.

PMI: Project Management Institute runs a training and certification pro-

gram for project managers.

program increment: a planning duration that consists of several sprints/

iterations. Usually consists of around five sprints and is around three

months long.

pulling model: an interaction model between services in which the con-

suming service pulls information rather than providing a queue in which

the production service pushes information.

queuing theory: a scientific approach to understanding how queues behave.

refactoring: a programming practice that allows programmers to improve

the structure of a program without making functional changes.

regression suite: a set of tests that ensure that previously implemented

functionality continues to work.

release train: a superstructure (team of teams) that delivers to a common

outcome, usually a team of 3–12 Agile teams.

robotic process automation (RPA): a tooling technique that provides

utilities to automate tasks in applications that would otherwise have to be

performed manually by human beings.

scale up/vertical: scaling techniques that add additional compute or

other services to the same instance instead of distributing workflows to

additional instances.

DevOps for the Modern Enterprise Mirco Hering 75

Scaled Agile Framework (SAFe): a popular scaling framework for Agile

delivery.

schedule performance indicator (SPI): a metric measuring whether or

not a project is on schedule according to a predefined plan.

shell scripts: a popular automation technique based on the UNIX shell.

site reliability engineering: a modern operations approach made popu-

lar by Google.

software as a service (SaaS): software that is provided as a service from

the cloud and in a per-consumption model.

software configuration management: is the practice of tracking and

controlling changes in software that includes version control, branching

of parallel development, and maintaining a view of what versions of code

are included in a software package.

software delivery life cycle (SDLC): this cycle describes all activities

required to implement requirements from idea to production go-live.

stateful calls: a programming technique that requires a service to remem-

ber the state of the transaction to successfully complete it over several

transactions.

stateless calls: a programming technique that does not require a service

to know the current state of the transaction.

story points: a sizing approach in Agile methods that is based on relative

sizing instead of absolute sizes, such as days or hours.

strangler pattern: a programming technique that builds new functional-

ity and diverts workflows to the new functionality incrementally until the

old program can be turned off.

systems integrator (SI): a company that helps organizations to bring the

different components of a system together through implementing,

DevOps for the Modern Enterprise Mirco Hering 76

planning, coordinating, scheduling, testing, improving, and sometimes

maintaining the system for the organization.

systems of engagement: systems that users directly engage with and that

evolve quickly. (See also systems of record.)

systems of record: systems that hold core data and do not need to evolve

quickly. (See also systems of engagement.)

systems thinking: an approach to analyzing systems as a whole instead of

as a sum of their parts.

technical debt: known or unknown parts of programs that are currently

suboptimal and should be refactored.

technology stack: all the technologies that are required to support busi-

ness functions from the operating system up to the actual applications.

telematics: a systematic approach to gathering and using information

that is generated during the use of a system.

theory of constraints: a scientific approach to analyzing systems based

on the constraints that exist in the system.

to-be process design: the planned state of a process to be implemented

that improves on the current condition.

true legacy: systems that are not being updated anymore and are only

kept running to support business functions. (See also legacy.)

twelve-factor application: an architecture concept that provides twelve

criteria for modern applications.

two-speed delivery model: a model that supports two different speeds

of delivery to differentiate between fast-changing and slow-changing

systems.

DevOps for the Modern Enterprise Mirco Hering 77

upskilling time: the time required for new people to become effective

when joining a new team or learning a new skill.

user stories: used in Agile methods to describe the functionality of the

system, often in the format of “As a <role>, I want to <functionality> so

that <outcome>.”

value stream mapping: an activity that maps out the whole legacy tran-

formation to support a process including contextual information such as

timings, tooling, and other actors.

versioning: the practice of storing multiple versions of a program or

other artifact so that it is possible to move between known states of

configuration.

walled-garden test automation tools: test automation tools that are not

enabled through application programming interfaces and that are only

possible to be used within a specific technology or vendor context.

Waterfall: an exaggerated delivery approach based on stage containment

between requirement, design, development, and test.

weighted shortest job first: is a way to determine the sequence of work

by dividing the value one derives from the work by the cost of the work.

An example formula for this is based on SAFe: cost of delay/duration.

XaaS: anything as a service.

DevOps for the Modern Enterprise Mirco Hering 78

Notes

Preface

1. Mirco Hering, “Agile Reporting at the Enterprise Level (Part 2)—Measuring Produc-

tivity,” Not a Factory Anymore (blog), February 26, 2015, https://notafactoryanymore

.com/2015/02/26/agile-reporting-at-the-enterprise-level-part-2-measuring-pro

ductivity.

Introduction

1. Stefan Thomke and Donald Reinertsen, “Six Myths of Product Development,”

Harvard Business Review, May 2012, https://hbr.org/2012/05/six-myths-of-product

-development.

2. Don Reinertsen, “Thriving in a Stochastic World,” speech, YOW! conference, Decem-

ber 7, 2015, Brisbane, Australia, YouTube video, 56:49, posted by “YOW! Conferences,”

December 25, 2015, https://www.youtube.com/watch?v=wyZNxB172VI.

3. “The Lean Startup Methodology,” The Lean Startup (website), accessed November 10,

2017, http://theleanstartup.com/principles.

4. Brad Power, “How GE Applies Lean Startup Practices,” Harvard Business Review, April

23, 2014, https://hbr.org/2014/04/how-ge-applies-lean-startup-practices.

5. Mirco Hering, “Let’s Burn the Software Factory to the Ground—and from Their Ashes

Software Studios Shall Rise,” Not a Factory Anymore (blog), November 9, 2015,

DevOps for the Modern Enterprise Mirco Hering 79

https://notafactoryanymore.com/2015/11/09/lets-burn-the-software-factory-to-the

-ground-and-from-their-ashes-software-studios-shall-rise.

6. Mark Rendell, “Breaking the 2 Pizza Paradox with Platform Applications,” speech,

DevOps Enterprise Summit 2015, San Francisco, CA, YouTube video, 25:26, posted

by “DevOps Enterprise Summit,” November 10, 2015, https://www.youtube.com

/watch?v=8WRRi6oui34.

Chapter 1

1. “The DevOps Platform: Overview,” ADOP (Accenture DevOps Platform on GitHub),

Accenture, accessed May 2, 2017, http://accenture.github.io/adop-docker-compose.

2. Carreth Read, Logic: Deductive and Inductive (London: DeLaMare Press, 1909), 320.

Chapter 2

1. “Gartner IT Glossary: Bimodal,” Gartner, Inc., accessed May 2, 2017, http://www.gart-

ner.com/it-glossary/bimodal.

2. Ted Schadler, “A Billion Smartphones Require New Systems of Engagement,” Forrester

Research, Inc. blogs, February 14, 2012, http://blogs.forrester.com/ted_schadler/12

-02-14-a_billion_smartphones_require_new_systems_of_engagement.

3. Martin Fowler, “Strangler Application,” MartinFowler.com (blog), June 29, 2004, http://

www.martinfowler.com/bliki/StranglerApplication.html.

Chapter 3

1. Mirco Hering, “How to Deal with COTS Products in a DevOps World,” InfoQ (blog),

July 24, 2016, https://www.infoq.com/articles/cots-in-devops-world.

Chapter 4

1. Francis Keany, “Census Outage Could Have Been Prevented by Turning Router On and

Off Again: IBM,” ABC News, October 25, 2016, http://www.abc.net.au/news/2016-10-25

/turning-router-off-and-on-could-have-prevented-census-outage/7963916.

2. Mike Masnick, “Contractors Who Built Healthcare.gov Website Blame Each Other

for All the Problems,” Techdirt (blog), October 24, 2013, https://www.techdirt.com

/articles/20131023/18053424992/contractors-who-built-healthcaregov-website

-blame-each-other-all-problems.shtml.

DevOps for the Modern Enterprise Mirco Hering 80

Part B Introduction

1. Barry Schwartz, “The Way We Think about Work Is Broken,” filmed March 2014

in Vancouver, BC, TED video, 7:42, https://www.ted.com/talks/barry_schwartz

_the_way_we_think_about_work_is_broken.

2. Dan Pink, “The Puzzle of Motivation,” filmed July 2009 in Oxford, England, TED

video, 18:36, https://www.ted.com/talks/dan_pink_on_motivation.

Chapter 5

1. “PI Planning,” SAFe (Scaled Agile Framework), Scaled Agile, Inc., updated November

11, 2017, http://www.scaledagileframework.com/pi-planning.

2. Paul Ellarby, “Using Big Room Planning to Help Plan a Project with Many Teams,”

TechWell Insights (blog), November 26, 2014, https://www.techwell.com/techwell

-insights /2014/11/using-big-room-planning-help-plan-project-many-teams.

3. Wikipedia, s.v. “Dunning–Kruger effect,” last modified November 11, 2017, 19:01,

https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect.

4. Wikipedia, s.v. “Technology tree,” last modified November 13, 2017, 21:45, https://

en.wikipedia.org/wiki/Technology_tree.

Chapter 6

1. Jargon File (version 4.4.7), s.v. “Conway’s Law,” accessed November 14, 2017, http://

catb.org/~esr/jargon/html/C/Conways-Law.html.

2. 2016 State of DevOps Report (Portland, OR: Puppet Labs, 2016), p. 9, https://puppet

.com/resources/white-paper/2016-state-of-devops-report.

3. Rouan Wilsenach, “DevOpsCulture,” MartinFowler.com (blog), July 9, 2015, https://

martinfowler.com/bliki/DevOpsCulture.html.

4. Matthew Skelton, “What Team Structure Is Right for DevOps to Flourish?” ed. Manuel

Pais, DevOps Topologies (blog), accessed May 2, 2017, http://web.devopstopologies

.com.

5. “WSJF—Weighted Shortest Job First,” Black Swan Farming, accessed May 2, 2017,

http://blackswanfarming.com/wsjf-weighted-shortest-job-first.

Chapter 7

1. W. Edwards Deming, Out of the Crisis (Cambridge, MA: MIT Press, 1982), 29.

DevOps for the Modern Enterprise Mirco Hering 81

2. Kin Lane, “The Secret to Amazon’s Success Internal APIs,” API Evangelist blog,

January 12, 2012, http://apievangelist.com/2012/01/12/the-secret-to-amazons -success

-internal-apis.

3. Jeff Galimore et al., Tactics for Implementing Test Automation for Legacy Code (Port-

land, OR: IT Revolution, 2015).

Chapter 8

1. Anonymous, private conversation with author, 2004.

2. Dan Pink, “The Puzzle of Motivation,” filmed July 2009 in Oxford, England, TED

video, 18:36, https://www.ted.com/talks/dan_pink_on_motivation.

3. Mark Horstman, “Managerial Economics 101,” YouTube video, 4:33, posted by “Man-

ager Tools,” May 3, 2009, https://www.youtube.com/watch?v=gP-RC5ZqiBg.

4. John Goulah, “Making It Virtually Easy to Deploy on Day One,” Code as Craft (blog),

March 13, 2012, https://codeascraft.com/2012/03/13/making-it-virtually-easy-to

-deploy-on-day-one.

5. Mirco Hering, Dominica DeGrandis, and Nicole Forsgren, Measure Efficiency,

Effectiveness, and Culture to Optimize DevOps Transformation (Portland, OR: IT

Revolution, 2015), 14, https://itrevolution.com/book/measure-efficiency-effectiveness

-culture-optimize-devops-transformations.

Chapter 9

1. Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation (Crawfordsville, IN: Pearson Education, Inc.,

2011).

2. The Netflix Tech Blog, assessed November 16, 2017, http://techblog.netflix.com.

3. “Hygieia: An OSS Project Sponsored by Capital One,” Capital One DevExchange,

assessed November 16, 2017, https://developer.capitalone.com/opensource-projects

/hygieia.

Chapter 10

1. Jez Humble, “Architecting for Continuous Delivery,” speech, DevOps Enterprise Sum-

mit 2015, San Francisco, CA, YouTube video, 34:17, posted by “DevOps Enterprise

Summit,” November 17, 2015, https://www.youtube.com/watch?v=_wnd-eyPoMo.

2. Randy Shoup, “Pragmatic Microservices: Whether, When, and How to Migrate,”

speech, YOW! conference, December 2015, Brisbane, Australia, YouTube video,

DevOps for the Modern Enterprise Mirco Hering 82

49:00, posted by “YOW! Conferences,” December 30, 2015, https://www.youtube.com

/watch?v=hAwpVXiLH9M.

3. James Lewis, “Microservices—Building Software That Is #Neverdone,” speech,

YOW! conference, December 2015, Brisbane, Australia, YouTube video, 45:55,

posted by “YOW! Conferences,” December 29, 2015, https://www.youtube.com

/watch?v=JEtxmsJzrnw.

4. Wikipedia, c.v. “Conway’s law,” last modified November 3, 2017, 09:02, https://en.wiki

pedia.org/wiki/Conway%27s_law.

Chapter 11

1. “About IT4IT,” The Open Group, accessed August 4, 2017, http://www.opengroup

.org/IT4IT/overview.

Chapter 12

1. Keith Collins, “How One Programmer Broke the Internet by Deleting a Tiny Piece

of Code,” Quartz Media, March 27, 2016, https://qz.com/646467/how-one-pro

grammer-broke-the-internet-by-deleting-a-tiny-piece-of-code.

2. Josh Corman and John Willis, “Immutable Awesomeness,” speech, DevOps Enterprise

Summit 2015, San Francisco, CA, YouTube video, 34:25, posted by “Sonatype,” Octo-

ber 21, 2015, https://www.youtube.com/watch?v=-S8-lrm3iV4.

3. Debbi Schipp, “Bonus Bet Offers Peak as Online Agencies Chase Cup Day Dollars,” News

.com.au, November 1, 2016, http://www.news.com.au/sport/superracing/melbourne

-cup/bonus-bet-offers-peak-as-online-agencies-chase-cup-day-dollars/news-story

/8e09a39396fb5485cf1f24cbea228ff9.

4. Yury Izrailevsky and Ariel Tseitlin, “The Netflix Simian Army,” The Netflix Tech Blog,

July 18, 2011, http://techblog.netflix.com/2011/07/netflix-simian-army.html.

Appendix

1. Mirco Hering, “Agile Reporting at the Enterprise Level (Part 2)—Measuring Produc-

tivity,” Not a Factory Anymore (blog), February 26, 2015, https://notafactoryanymore.

com/2015/02/26/agile-reporting-at-the-enterprise-level-part-2-measuring-produc

tivity.

2. Andy Boynton and William Bole, “Are You an ‘I’ or a ‘T’?” Forbes Leadership (blog),

October 18, 2011http://www.forbes.com/sites/andyboynton/2011/10/18/are-you-an

-i-or-a-t/#2517d 45b351b.

DevOps for the Modern Enterprise Mirco Hering 83

3. Don Reinertsen, “Thriving in a Stochastic World,” speech, YOW! conference, Decem-

ber 7, 2015, Brisbane, Australia, YouTube video, 56:50 posted by “YOW! Conferences,”

December 25, 2015, https://www.youtube.com/watch?v=wyZNxB172VI.

4. Gary Gruver and Tommy Mouser, Leading the Transformation: Applying Agile and

DevOps Principles at Scale (Portland, OR: IT Revolution, 2015), 17.

5. Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering, anni-

versary ed., 2nd ed., (Crawfordsville, IN: Addison-Wesley Longman, Inc., 2010), 25.

6. Brooks, The Mythical Man-Month, 17.

DevOps for the Modern Enterprise Mirco Hering 84

Acknowledgments

Like they say about raising children, the same is true for writing a

 book—it takes a village to do so. And I am sure I will miss people who

should really be on these pages. Apologies for that. Grab me at the next

conference, and I will buy you a drink instead.

First of all, I have to thank the fantastic team that supported

me through the editing process: Todd, Gene, Anna, Leah, and Karen—

without you, my thoughts would have never found a presentable and

readable form. It was hard work but also a lot of fun working with you.

Then there are the peer reviewers who offered up some of their valu-

able time to provide feedback: Eric, Yong, Ajay, and Emily—you helped to

bring the book into final shape and kept me honest.

I have some special thanks to give to three people without whom this

book would have never happened: Eric, Todd, and Gene—you helped me

move from “I can never write a meaningful book” to “Hey, I might have

something to say that can help people.” Your early support kicked off all

of this.

DevOps for the Modern Enterprise Mirco Hering 85

I want to thank Accenture leadership—Bhaskar Ghosh, Adam Bur-

den, and Peter Vakkas—for their support of this project and for providing

me the flexibility at work to get this “labor of love” done.

And then there is Gary Gruver, who shared many pieces of advice

from his book-writing experience and helped me come up with my own

writing strategy.

I would also like to thank all the people in the Accenture DevOps

practice and other parts of the company who helped shape my approach

to enterprise transformations. I want to thank the clients that I have been

working with and from whom I always learn something new during the

engagements. You might find some of your thinking reflected in this book.

Last but not least, I need to say a huge thank you to my wife, Anjali,

who has been a fantastic support as I have been writing this book—and

at a time in our life that already has a full schedule thanks to a beautiful

little boy, who was born while this book was in progress. Anjali, you are

an absolute star!

DevOps for the Modern Enterprise Mirco Hering 86

About the Author

For over a dozen years, Mirco Hering has

worked on accelerating software delivery

through innovative approaches (what is now

called DevOps), and ten years ago, started

experimenting with Agile methods. As the Asia

Pacific lead for DevOps and Agile at Accenture,

he supports major public- and private-sector

companies around the world in their search

for efficient IT delivery. Mirco blogs about his

experiences at NotAFactoryAnymore.com and speaks at global confer-

ences to share what he has learned. You can also follow Mirco on Twitter:

@MircoHering.

