
GENE KIM, JEZ HUMBLE, PATRICK DEBOIS & JOHN WILLIS

ADAPTED FROM THE DEVOPS HANDBOOK



How to Get Started with DevOps 

Part 1: Selecting which Value Stream to Start With   3

 Determing Whether to Start with a Greenfield or Brownfield Project  3

 Systems of Record vs. Systems of Engagment     4

 Expanding DevOps Across the Organization     5

Part 2: Understanding the Work in the Value Stream   8

 Identify the Teams         8

 Creating a Value Stream Map        9

 DevOps Transformation Team       11

Part 3: How to Design with Conway’s Law in Mind   17

 Conway’s Law          17

 Organizational Archetypes        18

 Developing the Right Habits and Capabilities in Your Team    21

Part 4: Integrating Ops into the Daily Work of Dev   25

 Use Shared Services to Create Internal Marketplace     25

 Create Self-Sufficient Teams by Embedding Ops into Dev    27

 Proactive Integration of the DevOps Team      28



3Part 1: Selecting Which Value Stream to Start With

HOW TO GET STARTED WITH DEVOPS

PART 1: SELECTING WHICH VALUE STREAM  

TO START WITH

Choosing the best value stream for your DevOps transformation deserves careful consideration. 

Not only does the value stream you choose dictate the difficulty of your transformation, but it 

also dictates who will be involved in the transformation, how you organize teams, and how you 

can best enable those teams and the individuals within them.

DETERMINING WHETHER TO START WITH A 

GREENFIELD OR BROWNFIELD PROJECT1

Reviewing best practices 

for expanding DevOps 

across your organization.

Whether they are 

systems of engagement 

or systems of record.

Whether they are a 

greenfield or brownfield 

service.

Select the best value stream for beginning your DevOps transformation 

by looking at three key components:

1 2 3

In urban development, many factors can make greenfield projects simpler than brownfield—

there are no existing structures that need to be demolished and there are no toxic materials that 

need to be removed.

In technology, a greenfield project is a new software project or initiative. Likely in the early stages 

of planning or implementation, greenfield projects are where applications and infrastructure are 

built anew and with few constraints. Starting with a greenfield software project can be easier, 

especially if the project is already funded and a team is either being created or is already in place.



4Part 1: Selecting Which Value Stream to Start With

Brownfield projects often come with significant amounts of technical debt, such as having no test auto-

mation or running on unsupported platforms.

When transforming brownfield projects, teams may face significant impediments and problems, espe-

cially when no automated testing exists or when there is tightly coupled architecture that prevents 

small teams from developing, testing, and deploying code independently.

Although many believe that DevOps is primarily for greenfield projects, DevOps has been used to 

successfully transform brownfield projects of all sorts. In fact, over 60% of the transformation stories 

shared at the DevOps Enterprise Summit in 2014 were for brownfield projects.

On the other end of the spectrum are brownfield DevOps projects—these are existing prod-

ucts or services that are already serving customers and have potentially been in operation 

for years or even decades.

SYSTEMS OF RECORD VS. SYSTEMS OF ENGAGEMENT2

Originally used for urban planning and building projects, greenfield development is when 

we build on undeveloped land. In software development, these are new projects or initia-

tives with few constraints 

The Gartner research firm has popularized the notion of bimodal IT, referring to the wide 

spectrum of services that typical enterprises support. Within bimodal IT there are systems of 

record and systems of engagement. 

While it may be convenient to divide up our systems into these categories; we know that the 

core, chronic conflict between “doing it right” and “doing it fast” can be broken with DevOps. 

The data from the State of DevOps Reports—following the lessons of Lean manufacturing—

shows that high-performing organizations are able to simultaneously deliver higher levels of 

throughput and reliability. Furthermore, because of how interdependent our systems are, our 

ability to make changes to any of these systems is limited by the system that is most difficult 

to safely change, which is almost always a system of record.

https://www.gartner.com/en/information-technology/glossary/bimodal


5Part 1: Selecting Which Value Stream to Start With

Scott Prugh, Chief Technology Officer at CSG, observed:

Consequently, when we improve brownfield systems, we should not only strive to reduce 

their complexity and improve their reliability and stability, but we should also make them 

faster, safer, and easier to change.

Even when new functionality is added just to greenfield systems of engagement, they often 

cause reliability problems in the brownfield systems of record they rely on. By making these 

downstream systems safer to change, we help the entire organization achieve its goals more 

quickly and safely.

We’ve adopted a philosophy that rejects bi-modal IT, because every one of our 

customers deserves speed and quality. This means that we need technical excellence, 

whether the team is supporting a 30-year-old mainframe application, a Java  

application, or a mobile application.

Systems of record typically have a slower pace of change and often have regulatory and compli-

ance requirements (e.g., SOX). Gartner calls these types of systems “Type 1,” where the organi-

zation focuses on “doing it right.”

Example: Think ERP-like systems that run our business (e.g., MRP, HR, financial reporting systems), 

where the correctness of the transactions and data are paramount.

Systems of engagement typically have a much higher pace of change to support rapid feedback 

loops that enable them to conduct experimentation to discover how to best meet customer needs. 

Gartner calls these types of systems “Type 2,” where the organization focuses on “doing it fast.”

Example: Think customer-facing or employee-facing systems, such as e-commerce systems and pro-

ductivity applications.

EXPANDING DEVOPS ACROSS OUR ORGANIZATION3

Within every organization, there will be teams and individuals with a wide range of attitudes 

toward the adoption of new ideas, while others with more conservative attitudes resist them 

(the early adopters vs. the late majority and laggards).



6Part 1: Selecting Which Value Stream to Start With

Your goal should be to find those teams that already believe in the need for DevOps principles 

and practices, and who possess a desire and demonstrated ability to innovate and improve 

their own processes. Ideally, these groups will be enthusiastic supporters of the DevOps jour-

ney. 

Especially in the early stages, do not spend much time trying to convert the more conserva-

tive groups. Instead, focus your energy on creating successes with less risk-averse groups and 

build out your base from there.

Even if you have the highest levels of executive sponsorship, it’s best to avoid the big bang 

approach (i.e., starting everywhere all at once). Instead, focus your efforts in a few areas of 

the organization, ensuring that those initiatives are successful, and thenexpand from there. 

It is also important to follow a safe sequence that methodically grows your levels of credibil-

ity, influence, and support. The following list, adapted from a course taught by Dr. Roberto 

Fernandez, a William F. Pounds Professor in Management at MIT, describes the ideal phases 

used by change agents to build and expand their coalition and base of support:

1: FIND INNOVATORS AND EARLY ADOPTERS

In the beginning, focus your efforts on teams who actually want to help—these are your kin-

dred spirits and fellow travelers who are the first to volunteer to start the DevOps journey. 

In the ideal, these are also people who are respected and have a high degree of influence over 

the rest of the organization, giving your initiative more credibility.

Especially in the early stages, you will not spend much time trying to convert the more 

conservative groups. Instead, focus your energy on creating successes with less risk-averse 

groups and build out your base from there.

2: BUILD CRITICAL MASS AND SILENT MAJORITY 

In the next phase, seek to expand DevOps practices to more teams and value streams with 

the goal of creating a stable base of support. By working with teams who are receptive to 

your ideas, even if they are not the most visible or influential groups, you create a coalition of 

teams generating more successes, creating a “bandwagon effect” that further increases your 

influence. It’s important to specifically bypass dangerous political battles that could jeopar-

dize your initiative.



7Part 1: Selecting Which Value Stream to Start With

You must demonstrate early wins and broadcast your successes. You can do this by break-

ing up your larger improvement goals into small, incremental steps. This not only creates 

improvements faster, it also enables you to discover when you have made the wrong choice 

of value stream—by detecting errors early, you can quickly back up and try again, making 

different decisions armed with new learnings.

3: IDENTIFY THE HOLDOUTS

The “holdouts” are the high profile, influential detractors who are most likely to resist (and 

maybe even sabotage) your efforts. In general, tackle this group only after you have achieved 

a silent majority, when you have established enough successes to successfully protect your 

initiative.

Ultimately, expanding DevOps across an organization is no small task. It can create risk to 

individuals, departments, and the organization as a whole. But as Ron van Kemenade, CIO 

of ING, who helped transform the organization into one of the most admired technology 

organizations, said:

By choosing carefully where and how to start, we are able to experiment and learn 

in areas of our organization that create value without jeopardizing the rest of the 

organization. By doing this, we build our base of support, earn the right to expand 

the use of DevOps in our organization, and gain the recognition and gratitude of an 

ever-larger constituency.



8Part 2: Understanding The Work In Our Value Stream And Improving Flow

IDENTIFY THE TEAMS1

PART 2: UNDERSTANDING THE WORK IN OUR VALUE 

STREAM AND IMPROVING FLOW

HOW TO GET STARTED WITH DEVOPS

Discuss how to create a 

dedicated transformation 

team and use tools to 

reinforce desired behavior.

Capture what work is 

required in a value stream 

map, which will provide the 

basis for understanding our 

current state and will inform 

how we set a future state.

Identify all 

the teams supporting 

our value stream.

How to Understand our Value Stream and Improve Flow

1 2 3

The next step in our DevOps transformation is to gain a sufficient understanding of how 

value is delivered to the customer, by evaluating what work is performed, by whom, and what 

steps we can take to improve flow.

In value streams of any complexity, no one person knows all the work that must be per-

formed in order to create value for the customer—especially since the required work must be 

performed by many different teams, often far removed from each other on the organization 

charts, geographically, or by incentives.



9Part 2: Understanding The Work In Our Value Stream And Improving Flow

CREATING A VALUE STREAM MAP2

As a result, after we select a service for our DevOps initiative, we must identify all the mem-

bers of the value stream who are responsible for working together to create value for the 

customers being served. In general, this includes:

Once we identify our value stream members, our next step is to gain a concrete understand-

ing of how work is performed, documented in the form of a value stream map.

In our value stream, work likely begins with the product owner, in the form of a cus-

tomer request or the formulation of a business hypothesis. Some time later, this work 

is accepted by Development, where features are implemented in code and checked 

into our version control repository. Builds are then integrated, tested in a production- 

like environment, and finally deployed into production, where they (ideally) create value for 

our customer.

In many traditional organizations, this value stream will consist of hundreds, if not thou-

sands, of steps, requiring work from hundreds of people. 

Product Owner

Operations

Technology Executives or Value Stream Manager

Development

Infosec

QA

Release Managers

The internal voice of the 

business that defines the 

next set of functionality in 

the service.

The team responsible for 

maintaining the production 

environment and ensuring 

required service levels are 

met.

In Lean literature, someone who is responsible for “ensuring that the value stream meets or exceeds the 

customer [and organizational] requirements for the overall value stream, from start to finish”

The team responsible for 

developing application 

functionality in the service.

The team responsible 

for securing systems and 

data.

The team responsible for  

ensuring feedback loops 

exist to ensure the service 

functions as desired.

The people responsible for 

managing and coordinating 

the production deployment 

and release processes.



10Part 2: Understanding The Work In Our Value Stream And Improving Flow

The goal here is not to document every step and associated minutiae, but to sufficiently 

understand the areas in the value stream that are jeopardizing the goals of fast flow, short 

lead times, and reliable customer outcomes. Ideally, you will have assembled those people 

with the authority to change their portion of the value stream.

Using the full breadth of knowledge brought by the teams engaged in the value stream, you 

should focus your investigation and scrutiny on either: 

• places where work must wait weeks or even months, such as getting production-like 

environments, change aproval processes, or security review processes

• places where significant rework is generated

Typically, even for complex value streams, groups can create a diagram with five to fifteen 

process blocks within a few hours. Each process block should include the lead time and pro-

cess time for a work item to be processed, as well as the %C/A (percent complete and accu-

rate) as measured by the downstream consumers of the output.

Because documenting any value stream map likely requires multiple days, you may 

conduct a multi-day workshop, where you assemble all the key constituents and remove 

them from the distractions of their daily work.

Wait State Rework

Your first pass at documenting your value stream should only consist of high- 

level process blocks.

Once you identify the metric you want to improve, you should perform the next level of 

observations and measurments to better understand the problem.



11Part 2: Understanding The Work In Our Value Stream And Improving Flow

DEVOPS TRANSFORMATION TEAM3

Next, you will need to construct an idealized, future value stream map, which serves as a tar-

get condition to achieve by some date (e.g., usually three to twelve months).

Leadership helps define this future state and then guides and enables the team to brainstorm 

hypotheses and countermeasures to achieve the desired improvement to that state, perform 

experiments to test those hypotheses, and interpret the results to determine whether the 

hypotheses were correct. The teams keep repeating and iterating, using any new learnings to 

inform the next experiments.

With these metrics in place, the next step in our DevOps transformation will be to create a 

dedicated transformation team.

One of the inherent challenges with initiatives such as DevOps transformations is that 

they are inevitably in conflict with ongoing business operations.

Part of this is a natural outcome of how successful businesses evolve. An organization 

that has been successful for any extended period of time (years, decades, or even cen-

turies) has created mechanisms to perpetuate the practices that made them successful, 

such as product development, order administration, and supply chain operations.

While this is good for preserving status quo, teams undergoing DevOps transformations 

often need to change how they work to adapt to changing conditions in the marketplace. 

Doing this requires disruption and innovation, which puts them at odds with groups who 

are currently responsible for daily operations and the internal bureaucracies, and who 

will almost always win.

So how do you move forward?

Based on the research of Dr. Vijay Govindarajan and Dr. Chris Trimble, both faculty 

members of Dartmouth College’s Tuck School of Business, organizations need to create a 



12Part 2: Understanding The Work In Our Value Stream And Improving Flow

dedicated transformation team that is able to operate outside of the rest of the organization 

that is responsible for daily operations (which they call the “dedicated team” and “perfor-

mance engine” respectively).

Create Accountability

First and foremost, hold this dedicated team accountable for achieving a clearly defined, mea-

surable, system-level result (e.g., reduce the deployment lead time from “code committed 

into version control to successfully running in production” by 50%).

In order to execute such an initiative, try the following:

• Assign members of the dedicated team to be solely allocated to the DevOps transfor-

mation efforts (as opposed to “maintain all your current responsibilities but spend 

20% of your time on this new DevOps thing.”

• Select people who are generalists, i.e., have skills across a wide variety of domains.

• Select team members who have longstanding and mutually respectful relationships 

with the rest of the organization.

• Create a separate physical space for the dedicated team, if possible, to maximize com-

munication flow within the team and to create some isolation from the rest of the 

organization.

Creating a dedicated team is not only good for the team, but also good for the performance 

engine. By creating a separate team, you create the space for them to experiment with new 

practices, protecting the rest of the organization from the potential disruptions and distrac-

tions associated with it.

Establish Shared Goals

Next, you need to agree on a shared goal for the organization to move toward. One of the 

most important parts of any improvement initiative is to define a measurable goal with a 

If possible, you may also want to free the transformation team from many of the rules and 

policies that restrict the rest of the organization. After all, established processes are a form 

of institutional memory—the dedicated team needs to create new processes and learnings to 

generate desired outcomes, creating new institutional memory.



13Part 2: Understanding The Work In Our Value Stream And Improving Flow

clearly defined deadline, usually between six months and two years in the future. It should 

require considerable effort but still be achievable. And, it should create obvious value for the 

organization as a whole and to your customers.

You also need to limit the number of these types of initiatives that are going on simultane-

ously to prevent you from over taxing the organizational change management capacity of 

leaders and the organization.

Examples of improvement goals might include:

Once the high-level goal is made clear, teams should decide on a regular cadence to drive the 

improvement work. Like product development work, transformation work needs to be done 

in an iterative, incremental manner.

A typical iteration will be in the range of two to four weeks. For each iteration, teams should 

agree on a small set of goals that generate value and make some progress toward the long-

term goal.

At the end of each iteration, teams should review their progress and set new goals for the 

next iteration.

Make Current State of Work Visible

Lastly, in order to be able to know if you are making progress toward your goal, it’s essential 

that everyone in the organization knows the current state of work.

These goals and the time frame should be agreed upon by the executives and known 

to everyone in the organization.

Reduce product  

support &  

unplanned work 

budget by 50%.

Lead time is 1 

week or less  

for 95% of  

changes.

Release  

during normal  

business hours 

with zero  

downtime.

Integrate  

infosec  

controls into  

deployment 

pipeline to pass 

required  

compliance  

requirements.



14Part 2: Understanding The Work In Our Value Stream And Improving Flow

There are many ways to make the current state of work visible, but what’s most important is 

that the information displayed is up to date and that you constantly revise what you measure 

to make sure it’s helping you understand progress toward your current target conditions.

With your goal in place, the next step will be for the organization to keep their improvement 

planning horizons short, just as if you were in a startup doing product or customer develop-

ment. Your initiative should strive to generate measurable improvements or actionable data 

within weeks (or in the worst case, months).

By keeping your planning horizons and iteration intervals short, you achieve the following:

Reserve 20% Time for Reduction of Tech Debt

The final responsibility of the dedicated transformation team is to reserve 20% of cycles for 

non-functional requirements and reducing technical debt.

A problem common to any process improvement effort is how to properly prioritize it. After 

all, organizations that need it most are those that have the least amount of time to spend on 

improvement. This is especially true in technology organizations because of technical debt.

Flexibility and the  

ability to re-prioritize and 

replan quickly.

Decrease the delay 

between work  

expended and  

improvement  

realized.

Faster learning  

generated from the 

first iteration, 

meaning faster  

integration of your 

learnings into the next 

iteration.

Reduction in  

activation energy  

to get improvements.

Quicker realization of 

improvements that 

make meaningful  

differences in your 

daily work.

Less risk that your  

project is killed before  

it can generate  

any demonstrable  

outcomes.



15Part 2: Understanding The Work In Our Value Stream And Improving Flow

Organizations that struggle with financial debt only make interest payments and never 

reduce the loan principal, and may eventually find themselves in situations where they can 

no longer service the interest payments. In other words, they are now only making the inter-

est payment on their technical debt.

You will need to actively manage this technical debt by ensuring that you invest at least 20% 

of all Development and Operations cycles on refactoring, investing in automation work and 

architecture, and non-functional requirements (NFRs, sometimes referred to as the “ilities”), 

such as maintainability, manageability, scalability, reliability, testability, deployability, and 

security.

By dedicating 20% of your cycles so that Dev and Ops can create lasting countermeasures 

to the problems you encounter in your daily work, you ensure that technical debt doesn’t 

impede your ability to quickly and safely develop and operate your services in production. 

Alleviating added pressure of technical debt from workers can also reduce levels of burnout.

Reinforce Behavior with Tools

With your dedicated team in place, you can use tools to reinforce desired behavior. As Chris-

topher Little, a software executive and one of the earliest chroniclers of DevOps, observed, 

Anthropologists describe tools as a cultural artifact. Any discussion of culture after 

the invention of fire must also be about tools.

Similarly, in the DevOps value stream, teams use tools to reinforce their culture and acceler-

ate desired behavior changes. By doing this, Development and Operations may end up cre-

ating a shared work queue, instead of each silo using a different one (e.g., Development uses 

JIRA while Operations uses ServiceNow).

Organizations that don’t pay down technical debt can find themselves so burdened 

with daily workarounds for problems left unfixed that they can no longer complete 

any new work.

One goal is that tooling reinforces that Development and Operations not only have 

shared goals, but also have a common backlog of work, ideally stored in a common 

work system and using a shared vocabulary, so that work can be prioritized globally.



16Part 2: Understanding The Work In Our Value Stream And Improving Flow

A significant benefit of this is that when production incidents are shown in the same work 

systems as development work, it will be obvious when ongoing incidents should halt other 

work, especially when teams have a kanban board.

Another benefit of having Development and Operations using a shared tool is a unified back-

log, where everyone prioritizes improvement projects from a global perspective, selecting 

work that has the highest value to the organization or most reduces technical debt.

As you identify technical debt, add it to your prioritized backlog if you can’t address it imme-

diately. For issues that remain unaddressed, use your “20% time for non-functional require-

ments” to fix the top items from your backlog.

In addition, because everything is being recorded, you may not need to ask someone else for 

help in the future—you will simply search for it.

With these practices in place, you can enable dedicated transformation teams to rapidly iter-

ate and experiment to improve performance. You can also make sure that you allocate a suf-

ficient amount of time for improvement, fixing known problems and architectural issues, 

including non-functional requirements.

An amazing dynamic is created when we have a mechanism that allows any team member to 

quickly help other team members, or even people outside their team—the time required to get 

information or needed work can go from days to minutes.



17Part 3: How To Design With Conway’s Law In Mind

CONWAY’S LAW1

PART 3: HOW TO DESIGN WITH CONWAY’S  

LAW IN MIND

HOW TO GET STARTED WITH DEVOPS

Over the past two sections, you have learned the necessary steps to start your DevOps trans-

formation, including the three key components to consider in choosing a starting place and 

how value is delivered to the customer and how to improve flow. 

Next it’s time to discuss how and why to design with Conway’s law in mind. 

Conway’s Law has a tremendous impact on the performance of your value stream. Let’s illus-

trate this with a story—in 1968, Dr. Conway was performing a famous experiment. Together, 

with a contract research organization of eight people, Conway and his team were commis-

sioned to produce a COBOL and an ALGOL compiler. 

Developing the habits 

and capabilities in people 

and the workforce as a 

means of facilitating these 

structures.

Evaluating your 

organizational 

archetypes.

Understanding Conway’s 

Law and its impact on the 

performance of your 

value stream.

 Designing with Conway’s Law in Mind

1 2 3



18Part 3: How To Design With Conway’s Law In Mind

ORGANIZATIONAL ARCHETYPES2

During the experiment, he observed:

These observations led to what is now known as Conway’s Law, which states:

In other words, how you organize your teams has a powerful effect on the software you pro-

duce, as well as your resulting architectural and production outcomes.

In order to get fast flow of work from Development into Operations, with high quality and 

great customer outcomes, you must organize your teams so that Conway’s Law works to your 

advantage.

This process begins by evaluating the organizational archetypes.

In the field of decision sciences, there are three primary types of organizational structures 

that inform how DevOps value streams are designed with Conway’s Law in mind: functional, 

matrix, and market.

They are defined by Dr. Roberto Fernandez as follows:

Functional-oriented organizations optimize for expertise, division of labor, or  

reducing cost. These organizations centralize expertise, which helps enable career 

growth and skill development, and often have tall hierarchical organizational struc-

tures. This has been the prevailing method of organization for Operations,  

(i.e., serveradmins, network admins, database admins, and so forth are all  

organized into separate groups).

After some initial estimates of difficulty and time, five people were assigned to  

the COBOL job and three to the ALGOL job. The resulting COBOL compiler  

ran in five phases, the ALGOL compiler ran in three.

Organizations that design systems  are constrained to produce designs which are 

copies of the communication structures of these organizations. The larger an or-

ganization, the less flexibility it has and the more pronounced the phenomenon.



19Part 3: How To Design With Conway’s Law In Mind

Market-oriented organizations optimize for responding quickly to customer needs. 

These organizations tend to be flat, composed of multiple, cross-functional disci-

plines (e.g., marketing, engineering, etc.), which often lead to potential redundan-

cies across the organization. This is how many prominent organizations adopting  

DevOps  operate—in  extreme  examples,  such  as  at Amazon or Netflix, each 

service team is simultaneously responsible for feature delivery and service support.

Matrix-oriented organizations attempt to combine functional and market orien-

tation. However, as many who work in or manage matrix organizations observe, 

matrix organizations often result in complicated organizational structures, such as 

individual contributors reporting to two managers or more, and sometimes achiev-

ing neither of the goals of functional or market orientation.

In traditional IT Operations organizations, functional orientation is often used to organize 

teams by their specialties. However, there are several problems that can occur by overly func-

tional orientation (Optimizing for Cost).

For example: when database administrators are placed in one group, the network adminis-

trators in another, the server administrators in a third, and so forth—one of the most visi-

ble consequences is long lead times. Especially for complex activities like large deployments 

where developers must open up tickets with multiple groups and coordinate work handoffs, 

resulting in work waiting in long queues at every step.

In addition to these long queues and long lead times, this situation results in poor hand-

offs, large amounts of re-work, quality issues, bottlenecks, and delays. This gridlock impedes 

the achievement of important organizational goals, which often far outweigh the desire to 

reduce costs.

Similarly, functional orientation can also be found with centralized QA and Infosec func-

tions, which may have worked fine (or at least, well enough) when performing less frequent 

software releases. However, as we increase the number of Development teams and their 

deployment and release frequencies, most functionally oriented organizations will have dif-

ficulty keeping up and delivering satisfactory outcomes, especially when their work is being 

performed manually.



20Part 3: How To Design With Conway’s Law In Mind

Taken to the extreme, market-oriented teams are responsible not only for feature develop-

ment, but also for testing, securing, deploying, and supporting their service in production, 

from idea conception to retirement.

These teams are designed to be cross-functional and independent—able to design and run 

user experiments, build and deliver new features, deploy and run their service in production, 

and fix any defects without manual dependencies on other teams, thus enabling them to 

move faster.

To achieve market orientation, don’t perform a large, top-down reorganization, which often 

creates large amounts of disruption, fear, and paralysis. Instead, embed the functional engi-

neers and skills (e.g., Ops, QA, Infosec) into each service team, or provide their capabilities to 

teams through automated self-service platforms that provide production-like environments, 

initiate automated tests, or perform deployments.

This enables each service team to independently deliver value to the customer without hav-

ing to open tickets with other groups, such as IT Operations, QA, or Infosec.

However, having just recommended market-orientated teams, it is worth pointing out that it 

is possible to create effective, high-velocity organizations with functional orientation.

Cross-functional and market-oriented teams are one way to achieve fast flow and reliabil-

ity, but they are not the only path. You can also achieve desired DevOps outcomes through 

functional orientation, as long as everyone in the value stream views customer and organiza-

tional outcomes as a shared goal, regardless of where they reside in the organization.

What these organizations have in common is a high-trust culture that enables all depart-

ments to work together effectively, where all work is transparently prioritized and there is 

sufficient slack in the system to allow high-priority work to be completed quickly.

This model has been adopted by Amazon and Netflix and is touted by Amazon as one 

of the primary reasons behind their ability to move fast even as they grow.

Therefore, reduce the effects of functional orientation (“optimizing for cost”) and en-

able market orientation (“optimizing for speed”), i.e., have many small teams working 

safely and independently, quickly delivering value to the customer.



21Part 3: How To Design With Conway’s Law In Mind

DEVELOPING THE RIGHT HABITS AND CAPABILITIES IN 

YOUR TEAM3

To be able to employ this correctly, testing, operations and security needs to be, first and 

foremost, everyone’s job, every day. In high-performing organizations, everyone within the 

team shares a common goal—quality, availability, and security aren’t the responsibility of 

individual departments, but are a part of everyone’s job, every day.

This means that the most urgent problem of the day may be working on or deploying a cus-

tomer feature or fixing a Severity 1 production incident.

Alternatively, the day may require reviewing a fellow engineer’s change, applying emergency 

security patches to production servers, or making improvements so that fellow engineers are 

more productive.

Secondly, we need to enable every team member to be a generalist.

Avoid Siloization of Teams

In extreme cases of a functionally oriented Operations organization, there will be depart-

ments of specialists, such as network administrators, storage administrators, and so forth 

When departments over-specialize, it causes siloization, which means they end up operating 

more like “sovereign states,” as Dr. Spear has been created as saying.

Any complex operational activity then requires multiple handoffs and queues between the 

different areas of the infrastructure, leading to longer lead times (e.g., because every network 

change must be made by someone in the networking department).

Because we rely upon an ever increasing number of technologies, engineers who have special-

ized and achieved mastery in the technology areas are needed. However, you don’t want to 

create specialists who are “frozen in time,” only understanding and able to contribute to that 

one area of the value stream.

One countermeasure is to enable and encourage every team member to be a generalist.



22Part 3: How To Design With Conway’s Law In Mind

The term full stack engineer is now commonly used (sometimes as a rich source of parody) to 

describe generalists who are familiar—at least have a general level of understanding—with 

the entire application stack (e.g., application code, databases, operating systems, network-

ing, cloud).

When people are valued merely for their existing skills or performance in their current role 

rather than for their ability to acquire and deploy new skills, organizations (often inadver-

tently) reinforce what Dr. Carol Dweck describes as the fixed mindset, where people view their 

intelligence and abilities as static “givens” that can’t be changed in meaningful ways.

Instead, encourage learning and help people overcome learning anxiety, help ensure that 

people have relevant skills and a defined career road map, and so forth. By doing this, you 

help foster a growth mindset in your engineers. After all, a learning organization requires 

people who are willing to learn.

How Funding and Team Size Affects Outcomes 

One way to enable high-performing outcomes is to create stable service teams with ongoing 

funding to execute their own strategy and roadmap of initiatives. These teams have the ded-

icated engineers needed to deliver on concrete commitments made to internal and external 

customers, such as features, stories, and tasks.

Contrast this to the more traditional model where Development and Test teams are assigned 

to a “project” and then reassigned to another project as soon as the project is completed and 

funding runs out. This leads to all sorts of undesired outcomes, including developers being 

unable to see the long-term consequences of decisions they make (a form of feedback) and 

a funding model that only values and pays for the earliest stages of the software life cycle—

which, tragically, is also the least expensive part for successful products or services.

The goal with a product-based funding model is to value the achievement of organizational 

and customer outcomes, such as revenue, customer lifetime value, or customer adoption rate, 

ideally with the minimum of output (e.g., amount of effort or time, lines of code).

You can do this by providing opportunities for engineers to learn all the skills nec-

essary to build and run the systems they are responsible for, and regularly rotating 

people through different roles.



23Part 3: How To Design With Conway’s Law In Mind

Contrast this to how projects are typically measured, such as whether it was completed within 

the promised budget, time, and scope. You can improve deployment outcomes by creating 

loosely coupled architectures and designing team boudnaries to enable developer productiv-

ity and safety.

When architecture is tightly coupled, small changes can result in large scale failures. As a 

result, anyone working in one part of the system must constantly coordinate with anyone 

else working in another part of the system they may affect, including navigating complex and 

bureaucratic change management processes.

In contrast, having architecture that is loosely coupled means that services can update in 

production independently, without having to update other services.

Randy Shoup, former Engineering Director for Google App Engine, observed that 

organizations with these types of service-oriented architectures, such as Google and 

Amazon, have incredible flexibility and scalability. These organizations have tens of 

thousands of developers where small teams can still be incredibly productive.

As organizations grow, one of the largest challenges is maintaining effective communication 

and coordination between people and teams.

All too often, when people and teams reside on a different floor, in a different building, or 

in a different time zone, creating and maintaining a shared understanding and mutual trust 

becomes more difficult, impeding effective collaboration. Collaboration is also impeded when 

the primary communication mechanisms are work tickets and change requests, or worse, 

when teams are separated by contractual boundaries, such as when work is performed by an 

outsourced team.

Conway’s Law helps organizations design team boundaries in the context of desired commu-

nication patterns, but it also encourages orgs to keep team sizes small, reducing the amount 

of inter-team communication and encouraging you to keep the scope of each team’s domain 

small and bounded.

As part of its transformation initiative away from a monolithic code base in 2002, Am-

azon used the two-pizza rule to keep team sizes small—a team only as large as can 

be fed with two pizzas—usually about five to ten people.



24Part 3: How To Design With Conway’s Law In Mind

This limit on size has four important effects:

1. It ensures the team has a clear, shared understanding of the system they are work-

ing on. As teams get larger, the amount of communication required for everybody to 

know what’s going on scales in a combinatorial fashion.

2. It limits the growth rate of the product or service being worked on. By limiting the 

size of the team, we limit the rate at which their system can evolve. This also helps to 

ensure the team maintains a shared understanding of the system. 

3. It decentralizes power and enables autonomy. Each two-pizza team (2PT) is as auton-

omous as possible. The team’s lead, working with the executive team, decides on the 

key business metric that the team is responsible for, known as the fitness function, 

which becomes the overall evaluation criteria for the team’s experiments. The team is 

then able to act autonomously to maximize that metric.

4. Leading a 2PT is a way for employees to gain some leadership experience in an envi-

ronment where failure does not have catastrophic consequences. An essential ele-

ment of Amazon’s strategy was the link between the organizational structure of a 2PT 

and the architectural approach of a service-oriented architecture.

In 2005, then Amazon CTO Werner Vogels explained the advantages of this structure to 

Larry Dignan of Baseline. Dignan writes: 

Small teams are fast . . . and don’t get bogged down in so-called adminis-

trivia . . . . Each group assigned to a particular business is completely responsible for 

it . . . . The team scopes the fix, designs it, builds it, implements it and monitors its 

ongoing use. This way, technology programmers and architects get direct feedback 

from the business people who use their code or applications—in regular meetings 

and informal conversations.

With these pieces in place, architecture and organizational design can dramatically improve 

outcomes. Done incorrectly, Conway’s Law will ensure that the organization creates poor 

outcomes, preventing safety and agility.

Done well, the organization enables developers to safely and independently develop, test, 

and deploy value to the customer.



25Part 4: How To Integrate Operations Into The Daily Work Of Development

USE SHARED SERVICES TO CREATE INTERNAL MARKETPLACE1

PART 4: INTEGRATING OPS INTO THE  

DAILY WORK OF DEV

WHERE TO START WITH DEVOPS

Finally, in any DevOps transformation one goal will be to enable market-oriented out-

comes where many small teams can quickly and independently deliver value to the cus-

tomer.

When done correctly, Ops can significantly improve the productivity of Dev teams 

throughout the entire organization, as well as enable better collaboration and organiza-

tional outcomes.

How to help Ops better 

understand existing Dev 

culture by integrating them 

into multiple aspects of 

planning and daily work.

How embedding Operations 

engineers within Dev 

teams can enable more 

self-sufficiency.

How shared services 

can create increased 

developer productivity.

Three Ways to Integrate Ops into the Daily Work of Development

1 2 3

To begin, let’s look at how shared services can create increased developer productivity. One 

way to enable market-oriented outcomes is for Operations to create a set of centralized plat-

forms and tooling services that any Dev team can use to become more productive—such as 



26Part 4: How To Integrate Operations Into The Daily Work Of Development

getting production-like environments, deployment pipelines, automated testing tools, and 

so forth.

By doing this, we enable Dev teams to spend more time building functionality for their cus-

tomer, as opposed to obtaining all the infrastructure required to deliver and support that 

feature in production.

All the platforms and services we provide should (ideally) be automated and available on 

demand, without requiring a developer to open up a ticket or manually perform work. This 

also ensures that Operations doesn’t become a bottleneck for their customers.

By creating this effective internal marketplace of capabilities, we help ensure that the plat-

forms and services we create are the easiest and most appealing choice available (the path of 

least resistance).

Like creating any great product, creating great platforms that everyone loves doesn’t happen 

by accident. An internal platform team with poor customer focus will likely create tools that 

everyone will hate and quickly abandon for other alternatives, whether for another internal 

platform team or an external vendor.

Often, these platform teams provide other services to help their customers learn their tech-

nology, migrate off of other technologies, and even provide coaching and consulting to help 

elevate the state of the practice inside the organization.

These shared services also facilitate standardization, which enable engineers to quickly 

become productive, even if they switch between teams. For instance, if every product team 

chooses a different toolchain, engineers may have to learn an entirely new set of technologies 

to do their work, putting the team goals ahead of the global goals.

In organizations where teams can only use approved tools, start by removing this require-

ment for a few teams, such as the transformation team, so that they can experiment and 

discover what capabilities make those teams more productive.

Creating and maintaining these platforms and tools is real product development—the 

customers of our platform aren’t our external customer but our internal Dev teams.



27Part 4: How To Integrate Operations Into The Daily Work Of Development

CREATE SELF-SUFFICIENT TEAMS BY EMBEDDING OPS 

INTO DEV2

Enable product teams to become more self-sufficient by embedding Operations engineers 

within them. These product teams may also be completely responsible for service delivery 

and service support.

By embedding Ops engineers into the Dev teams, their priorities are driven almost entirely by 

the goals of the product teams they are embedded in—as opposed to Ops focusing inwardly 

on solving their own problems. As a result, Ops engineers become more closely connected to 

their internal and external customers.

Furthermore, the product teams often have the budget to fund the hiring of these Ops engi-

neers, although interviewing and hiring decisions will likely still be done from the centralized 

Operations group, to ensure consistency and quality of staff.

For new large Development projects, you may want to initially embed Ops engineers into 

those teams. Their work may include helping decide what to build and how to build it, influ-

encing the product architecture, helping influence internal and external technology choices, 

helping create new capabilities in internal platforms, and maybe even generating new opera-

tional capabilities. After the product is released to production, embedded Ops engineers may 

help with the production responsibilities of the Dev team.

They will take part in all of the Dev team rituals, such as planning meetings, daily standups, 

and demonstrations where the team shows off new features and decides which ones to ship. 

As the need for Ops knowledge and capabilities decreases, Ops engineers may transition to 

different projects or engagements, following the general pattern that the composition within 

product teams changes throughout its life cycle.

Internal shared services teams should continually look for internal toolchains that are widely 

being adopted in the organization, deciding which ones make sense to be supported centrally 

and made available to everyone. In general, taking something that’s already working some-

where and expanding its usage is far more likely to succeed than building these capabilities 

from scratch.



28Part 4: How To Integrate Operations Into The Daily Work Of Development

PROACTIVE INTEGRATION OF THE DEVOPS TEAM3

This paradigm has another important advantage: pairing Dev and Ops engineers together is 

an extremely efficient way to cross-train operations knowledge and expertise into a service 

team. It can also have the powerful benefit of transforming operations knowledge into auto-

mated code that can be far more reliable and widely reused.

When Not to Embed Ops into Dev

However, there may be a variety of reasons, such as cost and scarcity, where you may be 

unable to embed Ops engineers into every product team. In these situations, you can get 

many of the same benefits by assigning a designated liaison for each product team.

Just like in the embedded Ops model, this liaison attends the team standups, integrating 

their needs into the Operations road map and performing any needed tasks.

You can rely on these liaisons to escalate any resource contention or prioritization issue. By 

doing this, you will identify any resource or time conflicts that should be evaluated and pri-

oritized in the context of wider organizational goals.

If you find that Ops liaisons are stretched too thin, preventing the product teams from achiev-

ing their goals, then you will likely need to either reduce the number of teams each liaison 

supports or temporarily embed an Ops engineer into specific  teams.

Once Ops engineers are embedded or assigned as liaisons into product teams, the goal is to 

help Ops engineers and other non-developers better understand the existing Development 

culture. 

To proactively integrate them into all aspects of planning and daily work, you can:

Have Ops attend the 

daily standup.
Invite Ops to Dev 

retrospectives.

Make Ops work  

visible on shared  

Kanban boards.



29Part 4: How To Integrate Operations Into The Daily Work Of Development

As a result, Operations is better able to plan and radiate any needed knowledge into the prod-

uct teams, influencing work long before it gets into production.

Have Ops Attend the Daily Standup

One of the Dev rituals popularized by Scrum is the daily standup, a quick meeting where 

everyone on the team gets together and presents to each other three things: what was done 

yesterday, what is going to be done today, and what is preventing you from getting your work 

done.

The purpose of this ceremony is to radiate information throughout the team and to under-

stand the work that is being done and is going to be done.

By having team members present this information to each other, they learn about any tasks 

that are experiencing roadblocks and discover ways to help each other move work toward 

completion. Furthermore, by having managers present, they can quickly resolve prioritiza-

tion and resource conflicts.

A common problem is that this information is compartmentalized within the Development 

team. By having Ops engineers attend, Operations can gain an awareness of the Develop-

ment team’s activities, enabling better planning and preparation.

For instance, if you discover that the product team is planning a big feature rollout in two 

weeks, you can ensure that the right people and resources are available to support the rollout 

By doing this, you create the conditions where Operations can help solve your current team 

problems or future problems before they turn into a crisis.

Invite Ops to Dev Retrospectives

Another widespread ritual is the retrospective. At the end of each development interval, the 

team discusses what was successful, what could be improved, and how to incorporate the 

successes and improvements in future iterations or projects.

The team comes up with ideas to make things  better and reviews experiments from the pre-

vious iteration. This is one of the primary mechanisms where organizational learning and the 

development of countermeasures occurs, with resulting work implemented immediately or 

added to the team’s backlog.



30Part 4: How To Integrate Operations Into The Daily Work Of Development

Having Ops engineers attend project team retrospectives means they can also benefit from 

any new learnings. Furthermore, when there is a deployment or release in that interval, 

Operations should present the outcomes and any resulting learnings, creating feedback into 

the product team.

By doing this, you can improve how future work is planned and performed, improving your 

outcomes. Feedback from Operations also helps product teams better see and understand 

the downstream impact of decisions they make.

When there are negative outcomes, you can make the changes necessary to prevent them 

in the future. Operations feedback will also likely identify more problems and defects that 

should be fixed—it may even uncover larger architectural issues that need to be addressed.

Make Ops Work Visible on Shared Kanban Boards

Often, Development teams will make their work visible on a project board or kanban board. 

It’s far less common, however, for work boards to show the relevant Operations work that 

must be performed in order for the application to run successfully in production, where cus-

tomer value is actually created.

As a result, organizations and teams may not be aware of necessary Operations work until it 

becomes an urgent crisis, jeopardizing deadlines or creating a production outage.

Because Operations is part of the product value stream, put the Operations work that is rel-

evant to product delivery on the shared kanban board. This enables us to more clearly see all 

the work required to move code into production, as wel keep track of all Ops work required 

to support the product. Furthermore, this practice allows everyone to see where Ops work 

is blocked and where work needs escalation to highlight areas that may need improvement. 

When done well, this will achieve market-oriented outcomes, regardless of how the organiza-

tional charts have been drawn.



A CALL TO ACTION 

At a time when every technologist and technology leader is challenged with enabling secu-

rity, reliability, and agility, and at a time when security breaches, time to market, and massive 

technology transformation is taking place, DevOps offers a solution. Hopefully, this getting 

started guide has provided an introductory understanding of the problem and a beginning 

road map to creating relevant solutions.

Next, we invite you to dive deeper into the DevOps practices that can propel your organizatin 

into the future with The DevOps Handbook Second Edition.

The DevOps Handbook can help you create a dynamic learning organization that’s able to 

achieve the amazing outcomes of fast flow and world-class reliability and security, as well as 

increased competitiveness and employee satisfaction.

DevOps is not just a technology imperative but an organizational imperative. The bottom 

line is, DevOps is applicable and relevant to any and all organizations that must increase flow 

of planned work through the technology organization, while maintaining quality, reliability, 

and security for our customers.

Our call to action is this: no matter what role you play in your organization, start finding peo-

ple around you who want to change how work is performed. Show them this guide and The 

DevOps Handbook to create a coalition of like-minded thinkers. Ask organizational leaders to 

support these efforts or, better yet, sponsor and lead these efforts yourself.

DevOps benefits all of us in the technology value stream, whether we are Dev, Ops, QA, 

Infosec, Product Owners, or customers. It brings joy back to developing great products. It 

enables humane work conditions with fewer weekends worked and fewer missed holidays 

with our loved ones. It enables teams to work together to survive, learn, thrive, delight our 

customers, and help our organization succeed.

We sincerely hope this guide and The DevOps Handbook help you achieve these goals.



Continue your DevOps tranformation journey with 

The DevOps Handbook, Second Edition:  

How to Create World-Class Agility, Reliability, & Security in  

Technology Organizations

By Gene Kim, Jez Humble, Patrick Debois, and John Willis

Featuring new foreword and updated material by Nicole Forsgren, PhD

Original Foreword by John Allspaw

Available for purchase at all major book retailers.

Learn more at itrevolution.com/the-devops-handbook

http://itrevolution.com/the-devops-handbook

