
Monoliths vs
Microservices is

Missing the Point—
Start with Team
Cognitive Load

Matthew Skelton and

Manuel Pais

DevOps Enterprise Summit London 2019

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

The contents of this eBook are a transcript of the complete presentation given by Matthew Skelton and

Manuel Pais, “Monoliths vs Microservices is Missing the Point—Start with Team Cognitive Load”

at the DevOps Enterprise Summit London 2019. To view the original presentation,

please visit https://www.youtube.com/watch?v=haejb5rzKsM

eBook published 2019 by IT Revolution Press.

For further information on this or any other books and materials produced by

IT Revolution Press, please visit our website at ITRevolution.com

This eBook is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter

to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 3

Matthew S.: Hi. Good afternoon everyone. It’s good to see you here. My name’s

Matthew Skelton.

Manuel P.: And I’m Manuel Pais.

Matthew S.: And together, we are the co-authors of a new book called Team Topologies.

We’re here today to share with you some insights, advice, and experiences on how to

size software services, and the focus of that is team cognitive load.

So, today’s talk will look something like this. We’ll have a section where we’re

looking at monoliths and microservices, different kinds of sizes of software. We’ll

then look at what we mean by team cognitive load. We’ve actually had this term men-

tioned a couple of times already today in some of the earlier talks. Manuel will then

take us through some case studies. Organizations that have used team cognitive load

as a way of helping them to evolve their software systems. And then, right at the end,

we’ll look at a few tips for getting started with this approach.

So, in the past few years, many organizations have started to adopt micro-

services as a way of being able to deploy software systems more rapidly with greater

focus on specific areas of the system. But there’s often lots of debate around what size

microservice should be. Should it be ten lines of code? Should it be a hundred lines of

code? And it starts to look a little bit like this. It’s like kind of a Mortal Kombat thing.

So, in the blue, we’ve got Tammer Saleh who says, “Start with monolith and extract

microservices.” And then, over the other side of the arena, we’ve got Stefan Tilkov

who says, “Don’t start with a monolith when your goal is a microservice.” And then

the wise words of Simon Brown, who says, “If you can’t build a monolith, what makes

you think microservices are the answer?”

So, what’s going on here? Where should we actually focus? And I think that

Daniel Terhorst-North has got it right when he, in his phrase, talks about software

that fits in your head. And there’s an awful lot of experience and awareness behind

that recommendation or that phrase. In the context of teams, if we’re thinking about

building software in the context of teams, teams owning and running software, we

might rephrase this to be software that fits in our heads as a team. But the intent is

the same.

Who has yet to buy or read a copy of Accelerate (by Nicole Forsgren, PhD, Jez

Humble, and Gene Kim). Put your hand up and be shamed. Right. Fine. So you need

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 4

to get yourself a copy from the stand. Very straightforward. These are the four key

metrics from Accelerate based on five years’ worth of State of DevOps Reports and

assessment from many thousands of companies around the world. These are the

four key metrics that are strongly indicative of high organizational performance:

lead time, deployment frequency, mean time to restore (MTTR), and change fail

percentage.

The problem is if the software which we’re working with does not fit in our

heads, these things are going to be very difficult to improve upon. If the lead time is

the time from, say, version control to production, if the software is too big, we’re likely

to distrust the kind of tests, we’re likely to want to take more time to find out what’s

going on, the lead time’s going to extend. Same with the prog frequency. If we don’t

understand the software well enough, are we going to have the confidence to deploy

more and more frequently? Probably not. We’re probably going to want to restrict

how many times we deploy and so on. If the software we’re working with is too com-

plex and too complicated, and fails in really awkward ways in production, it’s going to

be difficult for us to restore that service quickly. So, again our MTTR will extend.

So, if we want to start to move toward these kind of . . . improving these kind of

faulty metrics, as recommended by Accelerate, then we need to start thinking about

the size software that we’re expecting teams to work with. Software that is too big for

our heads works against organizational agility.

And this is a kind of different starting point compared to how many organiza-

tions, many people, have started thinking about software and architecture and so

on. Because often in the past, we’ve thought we’ve started with bits of technology.

We’ve started with a database. We’ve started with a message bus. We’ve started with

something else. If we start with the team and the cognitive load for that team, we get

some different results.

So, let’s have a little look at what we mean by team cognitive load. It was defined

in 1998 by psychologist John Sweller as the total amount of mental effort being used

in the working memory. And there are three kinds of cognitive load that John Sweller

identified: intrinsic, extraneous, and germane. And in the context of software devel-

opment, we can think of them in these three ways. So, we can think of intrinsic as

something like how classes are defined in Java It’s something that we kind of . . . it’s

just a fundamental of how we’re kind of working with, in this case, software systems.

We don’t have that front and foremost all the time. Once we’ve spent six months or a

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 5

year doing Java development, that sort of becomes naturally . . . becomes an intrinsic

part of how we work.

Extraneous is something that works against what we’re doing. Something that

is kind of like a distraction. So, how do I deploy this app again? I can’t remember. It’s

really awkward. I’ve got to set this concrete property. Blah, blah, blah. This is extra-

neous cognitive load, and it’s effectively valueless. We don’t want to have this kind of

cognitive load on our teams.

Germane cognitive load is load that we have to deal with because it is the part

of the business problem we’re trying to solve. So, if we’re building an app for online

banking, then part of the germane cognitive load of the software developer or tester or

whoever is building the application to that point might be how do bank transfers work?

Because you need to have that kind of load in your head as you’re building the software.

So, you can sort of see these in a software context. As intrinsic is kind of like the

skills that we bring to the table. Extraneous is stuff to do with the mechanisms of

how we do things in a software world. And germane is sort of like the domain focus.

It’s a bit more involved than that, but that’s how you could think of it. And what

we’re really trying to do is maximize, give the most space to, the germane details, the

germane cognitive load. The intrinsic we have to deal with, we can’t get rid of it. It’s

just: we’re working with software, we’re working with computers, the stuff we just

have to know. We’re trying to minimize and squeeze the extraneous cognitive load.

Get rid of that as much as possible. If possible, just get rid of it entirely so that we’ve

got the most space available for the germane cognitive load, the business focus of the

problem we’re trying to deal with.

If you want to know more, by the way, about this in some detail, there’s a great

presentation by Jo Pearce if you search for “Hacking Your Head,” then you will find

lots of slides, lots of videos, and so on. There’s some really good material there.

So, this is the implication of what we’ve just been talking about. We should be

thinking about limiting the size of software, services, and products to the cognitive

load that the team can handle. So, we’re starting to take a socio-technical approach

to building our software systems here. We don’t just pretend that we can throw any

kind of software architecture or design or technology at a team and they’ll just have

to deal with it. We’re actually using the kind of, if you like, constraints or properties

of the human systems that we have in our organizations and working with them to

produce more effective delivery and more effective software systems.

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 6

So this again is software that fits in our heads. This is quite a different approach

to thinking about, kind of, software boundaries. This will feel very unfamiliar to

many people. Not to everyone, there are organizations already doing this, as we’ll see

very shortly. But it does feel a bit unusual.

When we’re talking about teams, we’re talking about a group of people, probably

less than about nine people in size. There are evolutionary reasons for this. Some

organizations have found patterns where you’re able to bring two of these kind of

teams together in close harmony. You can think about a rugby team. You have effec-

tively got two closely operating teams together. You’ve got the forwards and the peo-

ple at the back. I don’t play rugby, but I spoke to people who do and they do say it

feels a little bit like there’s two separate teams working really closely together.

So, some organizations have found ways in which they can do that, but gener-

ally speaking, we’re talking about a cohesive, long lived group of people who work

together on the same set of business problems for an extended period. And that

group of people is less than about nine.

We’ve heard from many of the talks this morning about ownership of software

services and how important that is. We need to move to the point where every ser-

vice must be fully owned by a team with sufficient cognitive capacity to build and

operate it. In the words of Andy Burgin from Sky Betting and Gaming earlier on,

it was you build it, you run it, you fix it, you support it, you diagnose it, and so on.

That’s what we’re talking about here. There’s no services, there’s no products which

do not have an owner.

We know that there are techniques to help us do that, this kind of stuff. We’ve got

techniques like mobbing, which apply to the whole team, which help the team to own

that service. We’ve got techniques like domain driven design (DDD) to help us choose

domain boundaries in an effective way that really works for the business context.

We’ve heard many people talk about the importance of developer experience.

Particularly when building a platform, making sure that platform is very compelling

and very easy and natural for product teams and development teams to use. So, we’re

making sure we’re explicitly addressing developer experience when we’re . . . partic-

ularly when we’re building a platform, but to be honest, when we’re doing anything

inside our organization where other people need to use our software.

 But we also need to think about the operator experience. What about the

people who actually need to run this stuff? People who are on call? How easy is it to

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 7

diagnose these systems and so on. If it’s . . . If we’ve built a system that’s fine for our

team but we’ve handed it over to another team and it’s terrible, it’s really difficult to

operate that stuff, the cognitive load is way too high. We’re in a bad place. We need to

focus on operability to make our stuff work.

And another technique what we’ve put in the book is called thinnest viable plat-

form, which is an approach where we explicitly define what the platform looks like.

So, again, from Andy Burgin’s talk this morning, there’s a really nice slide where he

showed the very beginning of their kind of platform evolution. They had a page, a

wiki page, which defined exactly what that platform was aiming to do and listed the

services it provided.

So, being super explicit about what our platform is, is important. It’s also import-

ant to make sure that it’s not bigger than necessary, hence “thinnest viable.” If you’re

a start-up and you’re quite small and there’s only maybe ten, fifteen people in your

organization, then the underlying platform is going to be something like AWS or

Azure or Google Cloud or whatever. You might decide to build an extra layer, plat-

form layer, on top of that, but your platform might simply be a wiki page listing the

five services that you are going to use from AWS. And if you don’t need to build any-

thing more, don’t build anything more. That’s enough. That is your thinnest viable

platform: just a wiki page with the list of five services.

We’re not trying to build a huge great thing. We need to make sure that the . . .

whatever we build is compelling to use, has strong developer experience. We’re treat-

ing product teams or what we call stream-aligned teams, as . . . we’re treating them as

customers. We’re treating them as people whom we need to speak to to understand

what they need, and we need to be set up to meet their needs.

So, I’ve talked about a few different team types. In the book, we’ve identified four

different kinds of team, which as far as we can see are really the only types of teams

that are really needed in this kind of context in building modern software systems.

And the first team type is the most fundamental and this is the stream-aligned team.

The team that is aligned to part of the value stream for the business ,and they have

end-to-end responsibility for building, deploying, running, supporting, and eventu-

ally retiring that slice of the business domain or that slice of service. And really, the

other kind of teams listed below are effectively there to reduce the cognitive load of

the stream-aligned team. That’s how we see it.

If we’ve chosen our domain boundaries well, the stream-aligned team should

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 8

have everything they need to deploy changes for that business, that part of the busi-

ness system.

But they can’t do everything. They need some supporting services, from a plat-

form for example. We heard a great talk from Tom this morning about the platform

at ICV. We need some support from the platform so we don’t have to think about how

do we spin a Kubernetes cluster? Because that would be too much increased cognitive

load compared to deploying something more business focused.

Likewise for a complicated-subsystem team. If there’s a part of the system where,

let’s say, in the case of media streaming we need to write a specialized video transcod-

ing component, we’ll probably hire some people with PhDs in math or something like

this and get them to work on a complicated subsystem. We’re taking the cognitive load

off the stream-aligned team to focus on more kind of custom end-to-end experience.

Enabling teams kind of helps to up-skill the stream-aligned teams. Perhaps on a

temporary basis. Typically on a temporary basis. And also to detect if there’s any gaps

in the platform or gaps in what the stream-aligned teams are expected to do.

So, this [see Figure 1] is maybe an organization here where maybe we’ve got

three stream-aligned teams. We’ve got a platform underneath. We’ve got a compli-

cated subsystem on the left in red. And toward the right-hand side we’ve got one of

those enabling teams kind of facilitating two of the stream-aligned teams. Perhaps

they’re moving from one container platform to another. Something like that. So,

they’re just trying to get up to speed.

Figure 1: The Four Fundamental Topologies

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 9

Another key idea in the book that we’ve identified is the need to be much more

explicit about the ways in which teams interact. Because what we can see from our

experience, and what we hear from other people talking about their experience, that

in many organizations teams don’t understand why or how they should interact

with other teams. So, what we’ve defined is three interaction modes, and part of the

purpose of these three interaction modes is to help reduce confusion and effectively

reduce the, kind of irrelevant, cognitive load so that it’s easier for teams to under-

stand how they should be operating effectively.

Figure 2: Three Core Interaction Modes

So, if the complicated-subsystem team is transcoding components, let’s say . . . If

that team is busy building that, if we set up the expectation that they’re simply pro-

viding that component, if you like, as a service to these two teams at the bottom then

those . . . all those three teams involved in that interaction have a clear understanding

about how they’re supposed to interact, how they’re supposed to provide something

or consume something.

So, we’ve minimized the kind of cognitive load around how we should kind of

operate as a team. And similarly, the stream-aligned team at the bottom here is cur-

rently collaborating with the platform to discover something about, let’s say, logging

or a better way of doing committees, something like this. They know that for a period

of time, their cognitive load is going to be higher because they’re working together

closely with another team.

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 10

 But perhaps after, say, three months, we finish that discovery and we go back

to consuming the container platform as a service. So, the mechanisms here that . . . if

we define much more clearly ways of working with other teams, we’re actually able to

address cognitive load too and minimize that in different parts of the organization.

So, we’re now going to look at some case studies from organizations.

Manuel P.: All right. So, I’m going to talk about the case studies from the book. The

first one is a large, worldwide retailer. And they’re still growing into new markets.

And back in 2016, they decided they wanted new mobile site for one of these new

markets. They put a team together from scratch. A cross-functional team with busi-

ness people directly involved in the team. They had all the technical skills to kind

of have this end-to-end ownership that Matthew was talking about. They had good

DevOps practices. Everything was in the cloud. Kind of the typical success story that

you would include in a presentation like this. And so given that success, they were

able to quickly release working versions of the mobile website and then iterate fre-

quently.

So, after a while they were asked to do the same for a new market. New mobile

site. Though they wanted this to be rather independent, that it could evolve the dif-

ferent sites for different markets more or less independently, but in the backend they

started to have a need for a little bit more complexity. They needed a content man-

agement system so they could upload content to different sites. But overall, this was

working quite well still.

And of course, over time, they were asked to do even more markets, more sites.

And the backend started to get a little bit more complicated. They needed a sub-

sistent to handle product management, product catalog. So, different markets are

going to have different sets of products and versions available, and pricing, etc. So,

they needed to manage that. They also started this framework which is a collection

of common services to all the sites. Things like searching for a product or uploading

static files to a CDN, things like this that all the sites would need, but you wouldn’t

want to repeat it for every code base.

So, I think you can probably tell what’s happening here. The system is growing,

and the team is growing along with it. So, by now, they had far more people than in

the beginning. And it’s becoming a little bit of a monolith, right? And some of the

people on the team start to actually realize, now we also have different work streams

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 11

going through the teams. So, you have maybe feature requests for one of the market’s

sites. Other feature requests for other markets. You also might have changes that

need to be done in the CMS for the content editors and so on. And the fact that the

system was a little bit monolithic by now meant that these work streams were kind of

impeding each other. There were dependencies, and they were actually slowing down

pace of delivery. The thing that had made them so successful in the beginning was

now harder to achieve.

So . . . Particularly two people in this team who had a kind of senior architect role

started to realize this, and even though the team worked quite well together, they

were a high performing team, if you like, they noticed these dependencies. And also,

people had to start specializing in certain parts of the system. While before it was

pretty fluid, you’d get a change request or a feature and it would go… you would know

exactly which parts of the system to change and get it out, now people were starting

to specialize in specific parts.

So, these two people, these two senior architects, proposed to split the team in

two, and they got a lot of pushback because the team members felt that they were

working well together. But eventually they did this. So, they got into this pattern

Matthew mentioned, kind of a paired team. So, obviously there was a lot of commu-

nication going on, on a regular basis. But after doing some refactoring of the system

and re-architecting a bit, they were able to kind of split into two teams essentially.

One team more focused on the customer facing applications and markets. And the

other team focusing more on the CMS and this framework.

So, this worked quite well for them. And now these two teams were able to

deliver more independently. There was still obviously some correlation between the

roadmaps for these two teams and they had this communication going on, on a regu-

lar basis, but they were much more independent than at this point.

So, they realized at this point that there was too much cognitive load. The sys-

tem was too large to handle as efficiently as before. And from what we’ve heard, they

went on to actually further break down this team. So, I believe now they have smaller

teams aligned to markets on the customer facing side and they have split the CMS

and the frame, which is a kind of platform team, as Matthew was mentioning, with

common services. This worked quite well for them.

So, the key point here is that as they grew and were successful, the system became

larger and the team became larger. And things were starting not to work as well. Their

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 12

flow of work was getting blocked, or at least significantly delayed. The critical thing

here is that some people in the team were listening to the signals that something was

not as efficient as it was before. So, the software was getting too large in this kind of

monolithic architecture. Some people were overspecialized. So, if you read The Phoe-

nix Project, it’s kind of the brand syndrome where only this person or this couple

of people know how to change that part of the system. So, you’re introducing this

dependency. Even inside one team, this dependency that only when those people are

available we’ll be able to get this out the door. And overall just increasing the need to

coordinate releases and make sure when is that part done so I can do this other part.

And introducing delays in delivery.

But it’s not always just about the size of the software that teams are responsible

for, there are other types of responsibilities. In the case of OutSystems, who is one of

the leading low-code platform vendors in the world, a few years ago, they started an

engineering productivity team. This team, in the beginning, were responsible to . . .

they worked as an enabling team around build and continuous integration and also

test automation. That’s what they started with. Their goal was actually to reduce cog-

nitive load for the other engineering teams who were in fact their customers, if you

like. So, they were helping them adopt good practices around these areas. Set up

tooling in a good way. And just overall helped the engineering teams increase their

maturity in this areas.

So, again, they were quite successful. And what happened was they took on

more domains. Particularly, infrastructure automation and CD (continuous delivery)

enablement. And the team grew to cope with that. And the interesting fact here is

that as this was happening the other engineering teams were getting really more

mature, more advanced, in the way they used test automation, CICD, etc. And so they

were coming back to them with requests for help that were much more specific, much

more domain specific for those teams.

What this productivity team was facing now was a large number of requests

across different domains and coming from different teams with specific needs. They

were barely able to keep afloat, let’s say, and respond on a timely enough basis to

these requests. And inside the team, what happened was that it became very difficult

for any one team member to work to understand all these different domains. So,

people were in practice working on only one or perhaps two domains, and motivation

went down significantly. Some of the people felt like they didn’t have enough effort

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 13

available to actually master the domains that they were supposed to support and

understand in detail. And at same time, they were spending a lot of time in planning

meetings. In standup meetings, where most of the things being discussed were not

directly related to the work that they were doing.

So, at this point, and this is quite recent, in late 2018 they took . . . they made

a bold decision to split into smaller teams. So, almost micro-teams where any one

team was only responsible for one of these domains. And the early results were quite

positive. So, motivation went up, people felt like they had more autonomy to actually

decide what the priorities for their domain of responsibility were. Also, they inter-

acted much more closely with the other engineering teams, their clients if you like.

And they were able to really understand, what are the problems we have? What are

the solutions, the best solutions I can find for you? And they had a little bit of breath-

ing space to actually master this domain, understand good practices, perhaps come

to conferences like this and get to know what other people were doing. And so the

motivation really went up. And there was a feeling of shared purpose inside each of

these teams.

And obviously, there were still issues and maybe requests that were crosscutting

across some of these domains as they are closely related, but it turns out those are

kind of the exception. So, when that happens, the people from different teams will

come together. If needed, they will create a temporary team to work on that specific

problem or need. And then, go back to their original teams.

In fact, before they were optimizing for this situation, which is the exception

that their actual needs and requests are across multiple domains. So, this has worked

quite well for them for now. And you also can see there’s still communication going

on between different teams, but the required bandwidth there is much lower. So,

the key is that it’s not always about software size, but actually aligning the number

and complexity of the domains that the teams are responsible for to their cognitive

capacity.

And if you aim for this kind of pattern, with smaller teams with high cohesion

internally, high communication internally, and shared purpose, then you need some

synchronization with other teams, but that can be much lower bandwidth. So, you

don’t need to be communicating across all teams all the time. That can work quite

well.

And then, finally, they again were listing to the signals that what worked for

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 14

us in the past, in the beginning, is now becoming a problem. So, awkward interac-

tions. Some people were not really invested. Some people may be almost burned out

because they were trying to really keep up with all these different domains. So, we’d

have to put in a lot of extra time to actually understand all of this. And definitely

frequent context switching inside the team.

The last example, it’s not from the book, it’s actually from a recent talk again

from Sky Betting and Gaming. And besides getting a slide of a cat in the presenta-

tion, it’s also just to show you, is this always the good pattern to split into smaller

teams? Well, not necessarily. In this case, they decided to keep a kind of large team

of twelve people because they had different applications. So, some older applications

that were making money today and new applications, more experimentation, trying

new markets.

And what happened was that within the same business domain, the demand for

working on one part, older applications or newer, would change over time. So, in one

quarter, maybe we need to increase the resilience of the older systems most of the

time. So, spend most of the time on that. Next quarter, maybe we want to push out

new applications and try new things so, it made sense to keep the same team, but

within the team there were clear work streams and people knew, now we’re focusing

on this part, this older systems or the older systems.

Matthew S.: So, how do we get started with this kind of approach? A few ideas here.

Simply speaking, just ask team members, just do a survey of members in a given

team how well they understand the software they’re working on. Give it a score of

one to five or something like this. And just get a very rough idea of which teams are

currently struggling with the cognitive load of the systems they’re being asked to

own and develop. Could there be some things that are candidates for pushing into a

platform? Don’t rush ahead and do it, but come up with a candidate list to start with

and have some conversations. We’re looking for missing skills or capabilities. That

could be, it could be that within the team they are actually missing skills. It could be

that the organization as a whole is missing skills.

If we adopted these three team interaction patterns that we saw earlier on . . . So,

a kind of closed collaboration, so we know our cognitive load’s going to be higher. Or

x-as-a-service, where we know we’re just supposed to consume something. Or if we’re

facilitating . . . So, we’re kind of helping or being helped. What would happen if we

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 15

adopted these patterns? How would teams actually react and behave in this context?

Because you need to sense your organizational situation. How you’re maturity or the

dynamics within your organization… as to where to start to apply some of these sort

of practices. Don’t just rush in and do it.

Is your platform well defined? If not, go ahead and define it and really quite

carefully. You’ll probably be surprised that there’s far more services that are actually

being run by a small group of nearly burned out platform engineers. And so, it’s time

to do something about that. What is the thinnest platform that could work in your

context? It doesn’t have to be thin, but the thinnest and no more.

So, as mentioned, here’s the book. We’ve got the signing at half-past seven this

evening. It goes on sale in September. You can pre-order now if you go to teamtopol-

ogies.com/book. And so, bookstores all over the world are currently stocking it which

is great. We’ve got some training if you’re interested, give us a shout. And you can

sign up for some news and tips if you go to teamtopologies.com. So, thank you very

much everyone for attending today. Hoping it’s useful.

About the Authors

MATTHEW SKELTON has been building, deploying, and operating commercial

software systems since 1998. Head of Consulting at Conflux, he specializes in Con-

tinuous Delivery, operability and organization design for software in manufacturing,

ecommerce, and online services, including cloud, IoT, and embedded software. He

currently lives in the UK.

MANUEL PAIS is a DevOps and Delivery Coach and Consultant, focused on teams

and flow first. He helps organizations adopt test automation and continuous delivery,

as well as understand DevOps from both technical and human perspectives. Manuel

has been in the industry since 2000, having worked in Belgium, Portugal, Spain, and

the UK. He currently lives in Madrid, Spain.

MONOLITHS VS MICROSERVICES IS MISSING THE POINT—START WITH TEAM COGNITIVE LOAD | 16

Additional Titles by the Authors

Team Topologies: Organizing Business and Technology Teams for Fast Flow

(IT Revolution Press, 2019)

