
C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

Praise for

With the introduction of the Flow Framework, Mik has provided a missing element to

any large-scale Agile transformation. I recommend that anyone involved in complex

product delivery read this book and think about how they can apply this thinking to

their value stream.

—Dave West, CEO Scrum.org and author of Nexus Framework for Scaling Scrum:

Continuously Delivering an Integrated Product with Multiple Scrum Teams

During our transformation to “100% Agile” BMW Group IT organization, we discov-

ered early on that the former project portfolio approach did not sufficiently support

our journey. Therefore, we started with a transition from “project to product.” The

exchanges with Mik on the topic of product orientation and the Flow Framework

was very helpful and a real inspiration for me. The fact that Mik is now sharing his

vast knowledge in this book makes me particularly happy. It provides the motivation

and the toolset necessary to help create a product portfolio based on a value driven

approach. For me it is a must read—and indeed it is also a fun read.

—Ralf Waltram, Head of IT Systems Research & Development, BMW Group

Organizing software development as a group of loosely connected projects will never

lead to good products. Kersten explains how to tie work products to value streams

corresponding to features, defects, security, and (technical) debt [Project to Product

is a] major contribution to the theory of management in the age of software.

—Carliss Y. Baldwin, William L. White Professor

of Business Administration at the Harvard Business School, Emerita,

and co-author of Design Rules, Volume 1: The Power of Modularity

If you want to get rid of obsolete practices and succeed with the new digital, read this

book.

—Carlota Perez, author of Technological Revolutions and Financial Capital:

The Dynamics of Bubbles and Golden AgesC
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

Every now and then, a body of work comes along with such timely precision that

you think hallelujah! Mik’s book Project to Product is the perfect antidote for those

businesses struggling with digital transformation, broken Agile implementations,

and the onslaught of enterprise disruption. In fact, it’s a really important component

in the world of flow which is at the forefront of business agility. Not only will this

framework help your teams to ignite their software delivery cadence but to do it at

scale with high quality, reduced costs, and increased value. And more importantly,

with happy teams—and with the metrics to prove it.

 —Fin Goulding, International CIO at Aviva and co-author of Flow:

A Handbook for Change-Makers, Mavericks, Innovation Activists,

Leaders: Digital Transformation Simplified, and

12 Steps to Flow: The New Framework for Business Agility

I had the pleasure of having an advance copy of Project to Product at my company over

the summer—and what an eye opener it is. This book is spot on the journey Volvo Car

Group is starting up right now. The insight Mik has in our industry and the way his

book describes the Age of Software makes this our new “go to” book for our product

journey in our digital landscape!

—Niclas Ericsson, Senior IT Manager, Volvo Car Corp

Project to Product is going to be one of the most influential reads of 2019 and beyond.

One that connects work outcomes to business results. One that provides models to make

better business decisions. One that gives technology leaders a framework to enable the

change necessary for companies to remain relevant.

—Dominica DeGrandis, author of Making Work Visible:

Exposing Time Theft to Optimize Work & Flow

Many large organizations are still applying a management model from the early 1900s

optimized for manual labor to everything they do, including complex, unique, product

development. With this book, Mik provides a great articulation of the importance

of focussing on the work not the workers, on the value stream network, and lessons

learned on what to avoid. Mik, who has many years experience working with hundreds

of companies on this topic, shares his wisdom and insights via a Flow Framework,

which is immensely valuable for organizations who recognize the need to move to

better ways of working.

—Jonathan Smart, Head of Ways of Working, Barclays

Project to Product is a very insightful book, and the overall model Mik lays out for the

Flow Framework is especially intriguing. Not only does Mik address the complexi-

ties of Agile transformation and moving to a product-based development, he also

discusses how to get your architecture, process, and metrics integrated in a way to

effectively measure value delivery. I got pretty excited about the Flow Framework and

look forward to applying it to my own technology transformation activities.

—Ross Clanton, Executive Director, Technology Modernization, Verizon

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2018 by Mik Kersten, all rights reserved.

For information about permission to reproduce selections from this book, write to

Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl., Suite 6314, Portland, OR 97210.

First Edition

Printed in the United States of America

22 21 20 19 18 1 2 3 4 5 6

Cover illustration by Rachel Masterson

Figure illustrations by Zhen Wang

Cover and book design by Devon Smith

Author photograph by Janine Coney

Library of Congress Catalog-in-Publication Data

is available upon request.

ISBN: 978-1-942-78839-3

eBook ISBN: 978-1-942-78840-9

Kindle ISBN: 978-1-942-78841-6

Web PDF ISBN: 978-1-942-78842-3

Publisher’s note: Many of the ideas, quotations, and paraphrases attributed to different thinkers

and industry leaders herein are excerpted from informal conversations, correspondence,

interviews, conference round tables, and other forms of oral communication with the

author. Although the author and publisher have made every effort to ensure that the information

in this book was correct at press time, the author and publisher do not assume and hereby

disclaim any liability to any party for any loss, damage, or disruption caused by errors or

omissions, whether such errors or omissions result from negligence, accident, or any other cause.

For information about special discounts for bulk purchases or for information on booking authors

for an event, please visit our website at ITRevolution.com.

The Flow Framework, the Value Stream Diagrams and studies, and all related materials,

to include tables, graphs, and figures, are copyrighted by Tasktop Technologies, Inc. 2017-2018,

with all rights reserved, and are used with permission wherever they may appear within this book.

PROJECT TO PRODUCT

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

FOREWORD BY
GENE KIM

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

To my mother, who made me who I am,

and my father, who taught me who to be.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CONTENTS vii

 List of Illustrations vii

 Foreword by Gene Kim xi

Introduction: The Turning Point xiii

 PART I: THE FLOW FRAMEWORK 1

 Chapter 1 The Age of Software 9

 Chapter 2 From Project to Product 29

 Chapter 3 Introducing the Flow Framework 63

 PART II: VALUE STREAM METRICS 83

 Chapter 4 Capturing Flow Metrics 87

 Chapter 5 Connecting to Business Results 111

 Chapter 6 Tracking Disruptions 125

 PART III: VALUE STREAM NETWORKS 145

 Chapter 7 The Ground Truth of Enterprise Tool Networks 151

 Chapter 8 Specialized Tools and the Value Stream 163

 Chapter 9 Value Stream Management 179

 Conclusion: Beyond the Turning Point 205

 RESOURCES 209

 Flow Framework Quick Reference Guide 211

 Glossary 213

 Notes 221

 Index 233

 Acknowledgments 245

 About the Author 251

CONTENTS

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

viii ILLUSTRATIONS

 FIGURES

0.1 Technological Revolutions and the Age of Software xii

1.1 The BMW Group Leipzig Plant Central Building 12

1.2 Software as Approximate Proportion of Car Cost 14

1.3 From Installation Period to Deployment Period 20

2.1 The BMW Group Leipzig Plant 33

2.2 The Three Ways of DevOps 41

2.3 Zone Management (Moore) 52

2.4 Functional Optimization vs. Business Outcomes 58

2.5 Bringing the People to the Work vs. Work to the People 60

3.1 Manufacturing Value Stream Map 72

3.2 The Flow Framework 74

4.1 Flow Metrics 91

4.2 Dashboard Showing Flow Distribution 93

4.3 Flow Distribution Timeline 95

4.4 Sample Flow Velocity Dashboard 99

4.5 Comparison of Lead Time, Flow Time, and Cycle Time 104

4.6 Flow Efficiency 108

5.1 Connecting Flow Metrics to Business Results 113

5.2 Sample Value Stream Dashboard 121

6.1 Recalls of Electronic Car Components in the

United States 128

6.2 The Rise and Fall of Nokia 134

8.1 Agile and DevOps Tool Roles and Specialization 166

8.2 Fragmented Value Streams 171

8.3 Examples of Value Stream Integration Diagrams 173

9.1 More Like an Airline Network 183

9.2 Value Stream Network 188

9.3 The Tool Network 190

9.4 Integration Model Field Mapping 191

9.5 Integration Model Artifact Mapping 193

ILLUSTRATIONS

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

ILLUSTRATIONS ix

9.6 Sample Artifacts and Workflow States Corresponding

to Activity Model 195

9.7 The Product Model 197

 TABLES

1.1 Technological Revolutions 21

2.1 Project-Oriented Management vs. Product-Oriented

Management 54

3.1 Flow Items 78

4.1 Flow Metrics 97

5.1 Business Results Metrics 114

8.1 Dimensions of Scale 169

8.2 Types of Tools Used 174

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

FOREWORD xi

by Gene Kim

T
he mark of a great book is that it makes obvious what is wrong

with the old worldview and replaces it with one that is simulta-

neously simpler and yet presents a better model of reality. The

transition from Copernican to Newtonian physics has been long held

as a great example of such a breakthrough. I believe Project to Product

presents a new way to think that enables a new way of doing.

In today’s business landscape, with companies facing the threat of

digital disruption, the old ways of planning and executing no longer

seem enough to survive. For decades, great minds have been seeking

a way to manage technology to achieve business goals—after all, we

know there is something very, very wrong with the way we’re managing

technology, we see the poor outcomes with our own eyes.

Project to Product makes the solid case that in the Age of Software,

the methods that served us well for over a century are truly coming

to an end: project management, managing technology as a cost center,

traditional outsourcing strategies, and relying on software architecture

as the primary means to increase developer productivity. And better

yet, it provides a wonderful framework to replace it, namely the Flow

Framework.

You’ll learn what it looked like when an organization spent over a

billion dollars on a technology transformation that was doomed to fail

from the beginning because it was trying to solve the wrong problem.

You will learn how some of the fastest growing companies nearly died

by ignoring technical debt that was accumulated in their need to cut

corners to ship products quickly, which included Nokia’s massive Agile

transformation that did nothing to stop its demise.

FOREWORD

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

xii FOREWORD

Dr. Mik Kersten brings the perspective of someone who got his PhD

in software engineering only to discover that the massive productivity

gains were not to be found there. Instead, those productivity gains can

only be reaped when we change how teams across the entire business

value stream work together, an epiphany common to so many of us in

the DevOps community.

But he also brings the perspective of someone who built the large

open-source software community around Mylyn in the Eclipse eco-

system, used by millions of Java developers. As founder and CEO of a

software company, he brings a visceral understanding of what it’s like

to live and die by the ability of business, product, and engineering lead-

ership to work together effectively.

You’ll also follow in Dr. Kersten’s professional journey and relive his

three biggest epiphanies—fans of The Phoenix Project will especially

love the lessons learned from the BMW Group Leipzig manufacturing

plant, which he rightly calls “a pinnacle of the Age of Mass Production,”

and the profound lessons that the software industry can learn from it.

Project to Product is an incredible achievement. Dr. Kersten provides

a better way to think about how business and technology organizations

create value together, and provides the Flow Framework as a way for

those leaders to plan and execute together, to innovate for their cus-

tomers, and to win in the marketplace. To disrupt, instead of being

disrupted. The upcoming Deployment Period Age of Software may bring

the equivalent of an economic extinction event, so these capabilities are

no longer optional for survival.

Every decade, there are a couple of books that genuinely change

my worldview. You can tell which books they are, because more than

one-third of the pages are bookmarked, indicating something I felt was

truly an important a-ha moment or a reminder to myself to study fur-

ther later. This is one such book.

I hope you find it as rewarding and life-changing as I did.

Gene Kim

Portland, OR

September 4, 2018C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

INTRODUCTION xiii

The Turning Point

F
or the majority of our careers, those of us involved with enterprise

IT have been dealing with change at a frenzied pace. Technology

platforms, software development methodologies, and the ven-

dor landscape have been shifting at a rate that few organizations have

been able to match. Those that manage to keep up, such as Amazon,

and Alibaba, are further driving change by redefining the technology

landscape around their software platforms, causing the rest to fall even

further behind.

This daunting and unrelenting pace of change has been seen as

a hallmark of the digital disruption. But if we step back and look at

the patterns of progress that came before, we begin to see ripples of

the great surges of change and development of previous industrial and

technological revolutions.

Over the course of three centuries, a pattern emerges. Starting

with the Industrial Revolution, every fifty years or so a new techno-

logical wave combines with ecosystems of innovation and financing to

transform the world economy.1 Each of these technological waves has

redefined the means of production so fundamentally that it triggered

an explosion of new businesses followed by the mass extinction of those

businesses that thrived in the culmination of the previous surge. Each

wave has been triggered by the critical factor of production becoming

cheap. New infrastructure is then built while financial capital drives the

ecosystem of entrepreneurs and innovators who leverage the new techo-

nological systems to disrupt and displace the incumbants of the last age.

Each of these technological revolutions has required existing busi-

nesses to master a new means for production, such as steam or the

INTRODUCTION

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

xiv INTRODUCTION

assembly line. For the digital revolution, the new means of production

is software. If your organization has already mastered software deliv-

ery at scale, this book is not for you. The goal of this book is to provide

everyone else with a new managerial framework that catalyzes the

transition to the Age of Software.

Theories that explain the cycles of the last four technological

 revolutions and the first half of this one are proposed by Carlota

Perez in Technological Revolutions and Financial Capital: The Dynamics

of Bubbles and Golden Ages and by Chris Freeman and Francisco Louçã

in As Time Goes By: From the Industrial Revolutions to the Information

Revolution. Perez expands on the “long wave” or Kondratiev economic

model by specifying two distinct periods within each cycle (Figure

0.1). The first half is the Installation Period, when a new technology

and financial capital combine to create a “Cambrian explosion” of

startups, disrupting entire industries of the previous age. At the end

of the Installation Period is the Deployment Period of technological

diffusion, when the production capital of new industrial giants starts

taking over. Between these two periods is what Perez termed the

Turning Point, historically marked by financial crashes and recoveries.

This is when businesses either master the new means of production

or decline and become relics of the last age.2

Figure 0.1: Technological Revolutions and the Age of Software.3

Industrial

Turning Point

Revolution

Age of Steam

& Railways

Age of Oil & Mass

Production

Age of Software

& Digital

1771 1793–1801

1848–50

1890–95

1929–43

2000–?

Canal Mania (UK) Great British Leap

1829

 The Victorian Boom

1875

London funded global market

infrastructure build-up

Belle Epoque (Europe)

Progressive Era (USA)

1908

The Roaring

Twenties
Post-War

Golden Age

1971

?

Deployment Period Installation Period

Railway Mania (UK)

Dotcom and Internet Mania;

Global finance and housing bubbles

Age of Steel &

Heavy Engineering

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

INTRODUCTION xv

Fifty years have passed since NATO held the first conference on

software engineering in 1968 and the Age of Software officially began.

Today, the pace of change feels relentless because we are passing through

the Turning Point. At the current rate of disruption and decline, half of

S&P 500 companies will be replaced in the next ten years.4

These businesses, many of which were founded prior to the Age

of Software, are starting to see a growing portion of their spending

shift to technology as their market success is increasingly determined

by software. However, the productivity of software delivery at enter-

prise organizations falls woefully behind that of the tech giants, and

the digital transformations that should be turning the tide are failing

to deliver business results.

The problem is not with our organizations realizing that they need

to transform; the problem is that organizations are using manage-

rial frameworks and infrastructure models from past revolutions to

manage their businesses in this one. Managerial accounting, organiza-

tional hierarchies, and Lean manufacturing were critical to success in

previous revolutions. But these managerial frameworks are no longer

sufficient to successfully direct and protect a business in the Age of

Software.

I had a chance to witness the pitfalls of this trap firsthand. Working

with Nokia, I noticed that management was measuring the success of its

digital transformation by how many people were trained on Agile soft-

ware development methodologies and were onboarded onto Agile tools.

These activity-based proxy metrics had nothing to do with business

outcomes. As I will summarize in Part I, Nokia’s transformation efforts

failed to address the core platform problems that made it so difficult

for the company to adapt to the changing market. In spite of what

appeared to be a well-planned transformation, management was not

able to realize this until too late. I watched with frustration as Nokia

lost the mobile market it had created, in spite of the heroic efforts of my

colleagues, who were doing everything they could to save the company.

A few years later, I was invited to speak with IT leaders at a global

bank. The bank was six months into its third attempt at a digital

transformation, and this time, DevOps tools were added to the mix

and expected to save the day. The budget for the transformation was

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

xvi INTRODUCTION

approximately $1 billion, but shockingly, I realized their transforma-

tion plan was even more flawed in its approach than the one at Nokia.

Every aspect of the transformation was being project managed to

cost reduction alone and not to project overall business outcome with

reduced cost as a key metric. As I learned more, I started getting a

visceral image that a billion dollars of the world’s wealth was going

to go up in flames without producing any value. There were still eigh-

teen months left to right the ship, but I knew that with cost alone as

the foundation of the transformation, it was too late to alter course.

Nokia had left me with an image of a burning mobile platform that

destroyed a tremendous amount of wealth and prosperity. I now had a

vivid image of the bank’s digital transformation lighting fires of waste

across its ranks.

That was the day I started this book. There was something so funda-

mentally wrong with the way business people and technologists worked

and communicated that even leaders with the best of intentions could

still lead their companies into predictable decline.

How is this possible when we now have five decades of software

practice behind us? The Agile and DevOps movements have made great

strides in adapting key production techniques from the Age of Mass

Production to the technical practice of building software. For example,

continuous delivery pipelines allow organizations to leverage the best

practices of automated production lines. Agile techniques capture some

of the best technical management practices of Lean manufacturing and

adapt them to software delivery.

The problem is, with the exception of some tech giants run by former

software engineers, these techniques are completely disconnected from

the way that the business is managed, budgeted, and planned. Software

delivery concepts near and dear to technologists, such as technical debt

and story points, are meaningless to most business leaders who manage

IT initiatives as projects and measure them by whether they are on time

and on budget. Project-oriented management frameworks work well for

creating bridges and data centers, but they are woefully inadequate

for surviving the Turning Point of the Age of Software.

In this book, we will examine several digital transformation fail-

ures that caused organizations to lose their place in the market. We

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

INTRODUCTION xvii

will then dig further into understanding the current state of enter-

prise software delivery by looking at a study I conducted with Tasktop,

“Mining the Ground Truth of Enterprise Toolchains,” that analyzed

the Agile and DevOps toolchains of 308 organizations to uncover the

causes of this disconnect between business and technology.5 Project to

Product will then provide you with a new management framework and

infrastructure model, called the Flow Framework, for bridging this

gap between business and technology.

The Flow Framework is a new way of seeing and measuring delivery

and aligning all of your IT investments according to value streams that

define the set of activities for bringing business value to the market,

via software products or software as a service (SaaS). The Flow Frame-

work displaces project-oriented management, cost center budgeting,

and organizational charts as the primary methods of measuring soft-

ware initiatives. These are replaced with flow metrics for connecting

technology investment to business results. The Flow Framework allows

you to scale the Three Ways of DevOps—flow, feedback, and continual

learning (as outlined in The DevOps Handbook: How to Create World-Class

Agility, Reliability, and Security in Technology Organizations6)—beyond

your technology organization and to your entire business.

With each technological revolution, a new kind of infrastructure

has been established in order to support the new means of produc-

tion. Canals, railways, electrical grids, and assembly lines were key

infrastructure components that underpinned the technological eco-

systems of previous cycles. Many digital transformations have gone

wrong by over applying infrastructure concepts of the last revolution

to this one. Production and assembly lines are great at reducing vari-

ability and reliably producing similar widgets, but software delivery is

an inherently variable and creative endeavor that spans a complex net-

work of people, processes, and tools. Unlike manufacturing, in modern

software delivery the product development and design process are

completely intertwined with the manufacturing process of software

releases. Attempting to manage software delivery the way we manage

production lines is another instance where frameworks from previous

technological revolution are failing us in this one. The Flow Frame-

work points to a new and better way.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

xviii INTRODUCTION

What if we could see the flow of business value within our orga-

nizations in real time, all the way from strategic initiative to running

software, the way the masters of the last age ensured they could see and

collect telemetry for every step of the assembly line? Would we see a lin-

ear flow or a complex network of dependencies and feedback loops? As

the data set of 308 enterprise IT toolchains we will examine in Chapter

8 demonstrates, we see the latter. This flow of business value within

and across organizations is the Value Stream Network. In the Age of

Software, Value Stream Networks are the new infrastructure for inno-

vation. A connected Value Stream Network will allow you to measure,

in real time, all software delivery investments and activities, and it will

allow you to connect those flow metrics to business outcomes. It will

empower your teams to do what they love doing, which is to deliver

value for their particular specialty in the value stream.

A developer’s primary function and expertise is coding, yet studies

summarized in this book have shown that developers spend more than

half their time on manual processes due to disconnects in the Value

Stream Network. These disconnects are the result of relics that go back

two technological revolutions: Taylorism, which resulted in the treat-

ment of workers as cogs in a machine,7 and the silos that have formed

in functionally structured organizations.

Successful businesses in the Age of Mass Production aligned their

organizations to the value streams that delivered products to their cus-

tomers instead of constraining themselves to rigid functional silos that

disconnected specialists from each other and from the business. For

example, Boeing, a master of the Age of Mass Production, could never

have brought the highly innovative 787 Dreamliner to market and

scaled its production to meet the growth in demand if the company had

been structured like today’s enterprise IT organizations. Organizations

that manage IT delivery as projects instead of products are using mana-

gerial principles from two ages ago and cannot expect those approaches

to be adequate for succeeding in this one. Visionary organizations are

creating and managing their Value Stream Networks and product port-

folios in order to leapfrog their competition in the Age of Software.

The future of software delivery is already here; it’s just not evenly

distributed yet. Software startups and digital natives have already

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

INTRODUCTION xix

created fully connected Value Stream Networks that are aligned to

their product delivery, are focused on flow over siloed specialization,

and connect all of their software delivery activities to measurable

business results. Their leaders speak the language of developers,

often because they were developers, which enables them to effectively

direct their software strategies. What does that mean for the fate of

every other company? How can we bridge the gap between technology

and business leadership to create a common language that allows the

rest of the world’s organizations to thrive in the Age of Software?

While organizations ponder these questions, the tech giants that

have mastered software at scale are expanding into traditional busi-

ness, such as finance and the automotive industry. The tech giants

are mastering traditional businesses more quickly than the world’s

established companies are mastering software delivery. In doing so,

they’re amassing a growing portion of the world’s wealth and technol-

ogy infrastructure.

The product offerings they have created are delivering fundamen-

tal value to businesses and consumers, and the market pull for that

value will only grow. Trying to slow progress or demand is foolhardy;

but leaving the economy to a handful of digital monopolies will be

problematic for our companies, our staff, and our social systems. If we

do not turn this tide—the increasing amount of wealth in the hands

of tech giants, and the network effects of technologies making effec-

tive government regulation difficult at best—the consequences could

be more dire than the mass company extinctions that we witnessed in

the four previous ages.

We can create another future. We can make our organizations com-

petitive. We can leverage the lessons of the tech giants and startups

and adapt them to the complexity of our existing businesses. We can

turn the black box of IT into a transparent network of value streams

and manage those the way the digital natives of the Age of Software

do. To achieve this, we need to shift our focus from transformation

activities to measurable business results. We need a new framework

to shift our organizations from project to product, thus securing our

place in the digital future. C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

PART I

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

Copyright © Tasktop Technologies, Inc. 2017–2018. All rights reserved.

Flow Framework™

V
a

lu
e

 S
tre

a
m

 M
e

tric
s

A
li

g
n

m
e
n

t
In

d
e

x

T
ra

c
e

a
b

il
it

y
 I

n
d

e
x

Flow Distribution

Business ResultsFlow Metrics

Value

Cost

Quality

Happiness

Features Defects Risks Debts

Flow Efficiency

Flow Velocity

Flow Time

Flow Load

Integration Model

Activity Model

Ideate Create Release Operate

C
on

ne
cti

vi
ty

 I
n

d
e

x

Product Model

A
rti

fa
c
t N

e
tw

o
rk

T
o

o
l N

e
tw

o
rk

V
a

lu
e

 S
tre

a
m

 N
e

tw
o

rk

Value Stream

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

PART I: THE FLOW FRAMEWORK 3

THE FLOW
FRAMEWORK

I
n the spring of 2017, Rene Te-Strote invited me to visit the BMW

Group plant in Leipzig, Germany. My work with Rene started several

years earlier, when we met at an industry conference on applica-

tion life cycle management. Rene was the E/E-IT-Responsible for the

electronic control units in the cars, and the BMW Group was looking

for infrastructure tools to integrate and scale its software delivery

toolchain. The tools were needed to support the increasing pace of

software-component innovation demanded by the new i3 and i8 elec-

tric car programs.

Like others at the conference, Rene was looking to bring Agile and

DevOps tools and methodologies into an enterprise IT environment.

But what fascinated me was the scope of the problem that Rene was

trying to solve. He not only needed to connect thousands of internal

specialists—including developers, testers, and operations staff—he

also needed to integrate dozens of software suppliers into that same

toolchain. Each of the suppliers contributed to the over one hundred

million lines of code that were run in a modern premium-class car.1

PART I

Flow ork

V
a

lu
e

 S
tre

a
m

 M
e

tric
s

n
d

e

Flow Distribution

Business ResultsFlow Metrics

Value

Cost

Quality

Happiness

Features Defects Risks Debts

Flow Efficiency

Flow Velocity

Flow Time

Flow Load

Integration Model

Activity Model

Ideate Create Release Operate

on
ne

cti
vi

t

Product Model

A
rti

fa
c
t N

e
tw

o
rk

T
o

o
l N

e
tw

o
rk

V
a

lu
e

 S
tre

a
m

 N
e

tw
o

rk

Value Stream

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

4 PART I

All that software, as well as the various internal software-delivery

teams, had to be connected. For example, if the BMW Group’s con-

tinuous integration environment identified a defect in a supplier’s

software, that defect needed to flow to the supplier’s value stream,

and then the fix needed to flow back to the BMW Group. Iterating on

something as new as the i Series at the rate that the BMW Group was

bringing them to market could not happen over transferring spread-

sheets and reports.

Throughout our journey to solve this problem, I occasionally joked

with Rene that if we succeeded, he ought to take me to the i Series plant

and let me drive a car off the production line. As it turned out, Rene

took me seriously.

Rene spent the first part of his career working in mass production

at the Leipzig plant. The plant is one of the world’s ultimate examples

of how advanced mass production and manufacturing have become.

The resulting visit to the BMW Group Leipzig plant turned out to be

one of the most educational and inspirational experiences of my career.

What I saw and learned in two full days of walking the plant floor and

seeing the ground truth of the most advanced value streams from the

Age of Mass Production gave me a new perspective on where we are in

the maturity curve of the Age of Software.

In this book, I will walk you through the realizations I had on the

factory floor, as they illustrate the errors of our approach to enterprise

software delivery. I have, to the best of my memory, attempted to rec-

reate the experience of visiting the Leipzig plant for you in the BMW

stories that begin each chapter of this book.

Imagine Rene, who had been thrown from a world where a flawless

car leaves the production line every seventy seconds to the world of

enterprise IT that we know. The contrast could not have been starker,

and I realized at that moment that this massive gap was what Rene

wanted to show me. The gap went far beyond what we hear from Agile

thought leaders who attempt to teach IT professionals Lean methods,

such as those pioneered by the Toyota Production System (TPS). The

gap demonstrated how disconnected enterprise IT organizations can

be from the means of production. At the Leipzig plant, what amazed

me most was the way that the business and manufacturing lines were

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

THE FLOW FRAMEWORK 5

seamlessly interconnected, all the way from the production lines to the

business needs that were reflected in the architecture of the building

complex itself.

Consider today’s world of enterprise IT. Businesses measure

IT with organizational charts and cost centers. The vast majority

of enterprise IT organizations have no formalized notion of value

streams or measurement of how business value is delivered. Perhaps

most shockingly, they do not even agree on what the units of produc-

tion are. Agile transformations keep failing to scale, with knee-jerk

reactions of “culture” being to blame. Efforts that start out trying to

deliver the end-to-end benefits of DevOps get pigeonholed into trans-

formations that only involve “code commit to production”—such a

narrow slice of the value stream that the business rarely sees the ben-

efits or takes notice.

The bottom line is that enterprise IT organizations and the busi-

nesses in which they live have not yet caught up to the infrastructure

and management techniques of the last technological revolution that

have been mastered by companies like the BMW Group. Leadership

clings to a Taylorist view, established in the Age of Steel, where IT

organizations are siloed from the business, functionally specialized,

and disconnected from each other. Yet those specialists are expected

to deliver more and more as the threats of digital disruption grow.

Many IT specialists know that this is a recipe for disaster, but the

gap between technical language and business language has not been

spanned. The result is that the software delivery efficiency of these

companies is abysmal when compared to that of digital startups or

the tech giants.

This mind-set has grave implications. If the current trajectory does

not change, the incumbent companies that form the backbone of the

world economy are at an inherent and significant disadvantage. Does

this mean that large and established organizations in every industry

are doomed to fail in an age where almost every enterprise is turning

into a software company? A disconcerting trend is already visible across

multiple markets. For example, at the start of the Age of Software, the

average time in the Financial Times Stock Exchange was seventy-five

years; today, it is less than twenty years and falling.2

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

6 PART I

The research and data summarized in this book offer a kernel of

hope. Organizations can and must change in order to create the soft-

ware innovation engines that will ensure their competitiveness and

survival. To do that, we need to learn from the history of previous tech-

nological revolutions instead of assuming that we are in a completely

unique moment in time. History may not repeat, but Perez’s model sug-

gests that it does have a rhythm.

The differences between manufacturing physical goods, which

countless organizations mastered in the last age, and producing digital

experiences are vast. The historical context differs as well. Attempts to

blindly replicate what worked in the Age of Mass Production for the Age

of Software can be catastrophically misleading, as we will see. We need

a new way to think about and manage large-scale software delivery.

This book proposes that new way.

The most important part of my trip to the Leipzig plant was an

uneasy realization that blindly following in the footsteps of manu-

facturing is fraught with as much peril as not following them at all.

Software production is vastly different—as the size of a software sys-

tem grows, our ability to improve and manage it declines. Even so, we

have learned to scale electrical distribution, car production, and other

complex manufacturing processes, and we will learn to scale software

production too. The problem is that, aside from a handful of exceptions,

such as the tech giants, the vast majority of organizations have not yet

learned how to effectively scale software delivery systems.

The market demands of large-scale software delivery present prob-

lems that most organizations are not equipped to handle. We need a

new set of business concepts to understand software delivery at scale

and a new kind of framework to manage it so that our businesses have

the plasticity to evolve. Part I of this book examines the reach and the

urgency of the problem and introduces the framework to overcome it.

In Part I, we will cover:

• The reasons why your business will be affected by digital dis-

ruption, and how your thinking needs to change to survive the

next ten yearsC
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

THE FLOW FRAMEWORK 7

• The three types of disruption and which one applies to your

business

• An overview of the “Deployment Period” of the Age of

Software and why understanding that matters for how you

approach your digital transformation

• An introduction to the Flow Framework and the concept of soft-

ware value streams

• An overview of the four flow items that define the delivery of

business value

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 9

E
ach technological revolution has resulted in the disruption ofex-

isting businesses by those who have mastered the new means

of production. For example, in a matter of a few years, Uber

demonstrated that a single, well-designed screen that is deployed at

internet scale can disrupt an entire industry. An explosion of startups

is threatening every aspect of every business as venture capital fuels

the disruptions. In parallel, the tech giants continue to grow into new

markets. Google and Facebook dominate nearly 90% of global spend-

ing on digital advertising,1 while Amazon is on track to own a majority

of the retail business and to use that leverage to expand into adjacent

markets.2 Every business leader needs to figure out when and how this

affects them or risk their organization not surviving the next decade.

Each year, the stories and statistics look more dire. In 2017, the CEO

of Equifax lost his job due to a security breach. Then, in a congressional

hearing, he blamed the problem on a single software developer.3 No

CEO from a company that mastered the Age of Mass Production could

blame such a cataclysmic business failure on something so seemingly

trivial and manageable in their production system. (We will decon-

struct the Equifax scenario further in Chapter 6.)

What’s become clear is that no sector of the economy is safe, that

the disruptions are accelerating, and that the very talented and highly

trained business leaders responsible for the majority of the world’s

economy do not have the right set of tools and models to properly assess

risk and capitalize on opportunity in the Age of Software.

The topic of digital disruption is not new and has been well

 documented. However, the significance of Carlota Perez’s work is that

CHAPTER 1

The Age of Software

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

10 PART I: THE FLOW FRAMEWORK

disruption is a predictable outcome for companies that do not adapt to

the new means of production. Companies that master the new means

of production, even in slower moving parts of the market, will displace

those that take more time to adapt. For example, an insurance company

that provides a first-rate digital experience will displace the one that

does not. And if the insurance sector itself does not move fast enough

on the digital front, one of the tech giants could move into that market

in search of a new vehicle for growth, turning displacement of specific

companies into the disruption of an entire market. The examples in

this chapter will highlight that no business is safe—no matter which

industry sector or market it is in—because we are heading through the

Turning Point of the Age of Software.

This book is not about business strategies for dealing with disrup-

tion. Books such as Geoffrey Moore’s Zone to Win: Organizing to Compete

in an Age of Disruption discuss how to adapt your business strategies

to play disruption offense or defense. However, the problem is no lon-

ger that companies are unaware of their vulnerability to disruption. In

2017, for the first time, non-tech Fortune 500 companies made more

investments in technology companies than technology companies did.4

This is a sign that company leaders are starting to see the scope of the

disruption and are using that to drive their digital transformations.

However, as we will learn in this chapter, the problem is that those

transformations are failing. The main reasons for failure, accord-

ing to Altimeter’s report “The 2017 State of Digital Transformation,”

are a shortage of digital talent and expertise (31.4%), general culture

issues (31%), and the treatment of digital transformation as a cost cen-

ter instead of an investment (31%).5 None of these are root causes of

transformation failure; rather, they are symptoms of a fundamental

disconnect between business leaders and technologists that we will

review throughout this book. This is not to say that talent is not crit-

ical; it is. But a project-oriented approach creates the conditions that

push talent out of the organization instead of attracting talent to it.

The bottom line is that even with the best strategies and inten-

tions, software delivery capacity and capabilities are a bottleneck in the

digital transformation. Too little happens too slowly, and the business

side does not understand why or what to do about it.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 11

This chapter will start by reviewing how digital disruption is affect-

ing the different sectors of the economy. It will address three types of

disruption and discuss how software delivery capabilities are critical to

navigating each. A summary of past technological revolutions will iden-

tify what we need to navigate this one. The chapter will conclude by

introducing the “three epiphanies” that led to the Flow Framework—the

mechanism for breaking the transformation failure cycle and ensuring

that your company can survive the next ten years.

BMW TRIP Toward the Production Line

Entering the BMW Group Leipzig plant in Germany is an awe-

inspiring experience. My hosts are Rene Te-Strote and Frank

Schäfer. Frank is a plant manager responsible for overall vehi-

cle integration. The enormous Central Building was designed by

architect Zaha Hadid, who designed some of the most unique

buildings of our time. The unapologetically sci-fi architecture

invokes the feeling of walking into the future. The most prom-

inent sight upon entering is an elevated and exposed section of

the production line that towers high above eye level (Figure 1.1).

Car bodies move across a suspended conveyor and then slowly

disappear out of view as they glide over a sea of desks. The pro-

duction line is visible to anyone who enters the building and to all

the staff, and the entire building is designed around it. Every part

of the building has some practical aspect related to manufacturing

and value delivery. Everything embodies the maturity and scale of

one of the masters of the Age of Mass Production.

Gene Kim, a mentor and coauthor of The Phoenix Project: A Novel about

IT, DevOps, and Helping Your Business Win and The DevOps Handbook,

once told me that we may only be 2% of the way there in the maturity of

DevOps adoption.6 This statement shocked me, but it also explained so

much in terms of the glacial pace with which many traditional businesses

move through the Age of Software. It’s the slow rate of progress across

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

12 PART I: THE FLOW FRAMEWORK

the industry that is even more disconcerting than the 2% number itself.

I became motivated to see firsthand what the culmination of the Age of

Mass Production looked like so that I could extract every ounce of learn-

ing from it and apply those concepts to the Age of Software.

Figure 1.1: The BMW Group Leipzig Plant Central Building

(with permission of the BMW Group)

A year prior to my visit to the Leipzig plant, the BMW Group cele-

brated its hundred-year anniversary with the “Next 100 Years” event,

which recognized the past century of manufacturing excellence and

presented the BMW Group’s vision for the future of mobility. The

event began with a quote from Alan Kay, of Xerox PARC fame, stating

that “the best way to predict the future is to invent it.”7 What struck

me most was just how different the next hundred years would be from

the last.

The automotive industry is currently at an inflection point, where

software-based innovation is starting to overtake the incremental gains

in engine performance and other physical aspects of the car experience.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 13

In 2017, the market cap of Tesla overtook Ford. Investors were betting

big on the yet-unrealized potential for change embodied by Tesla, given

that in 2016 Tesla produced 76 thousand cars versus Ford’s 6.7 million

and saw revenues of $7 billion versus Ford’s $152 billion.8

In the Next 100 Years presentation, the BMW Group made it clear

they were staying well ahead of the curve, building on their accomplish-

ment of how quickly they brought the electric i3 and i8 cars to market.

But that was not the most interesting part of the Next 100 Years vision,

which projected a future of intelligent assistants, augmented and

autonomous driving, and novel solutions to mobility that reframe the

notion of car ownership.9 The most interesting part of the Next 100

Years vision was that the innovations the BMW Group forecast were

all powered by software, as underscored by an announcement from the

BMW Group’s CEO that said in the future the BMW Group expected

more than half its staff to be software developers.10

I have witnessed similar inflection points at most of the Fortune

500 companies that I visit, regardless of the market segment they are

in. Is every industry going to be disrupted in this way, where more than

half the staff in years ahead are going to be IT professionals? Given

Gene’s “2% of the way there” comment, are all of these enterprise orga-

nizations prepared for that shift, from a company organization and

management point of view? Did the BMW Group have some fundamen-

tal advantage, having mastered the last great technological revolution?

What could we learn from the way this plant operated, and could we

apply it to the way large-scale software is built?

No Sector Is Safe

Over the past two decades, the first companies exposed to the shift

to digital communication and collaboration, such as Kodak and Block-

buster, were some of the first victims of disruption. The difference now

is that the entire economy is exposed to disruption.

Consider the four economic sectors as laid out by Zoltan Kenessey.

The primary sector involves resource extraction from the planet,

the secondary involves processing and manufacturing, the tertiary

involves services, and the quaternary involves knowledge work.11

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

14 PART I: THE FLOW FRAMEWORK

The ability to improve discovery, extraction, and logistics through

software gives some companies in the primary sector fundamental

advantages over those who have not mastered these software-based

solutions. While advances in extraction and technologies yield only

incremental gains, software and IT systems can drive more trans-

formational discoveries and efficiencies. For example, natural

resource and energy companies are increasingly competing with soft-

ware and data-driven approaches to discovery and extraction. The

bottom line is that no business or sector is safe from digital disrup-

tion, even though the pace of the disruption will vary across sectors

and businesses.

As we move out of the primary sector into the secondary, the shifts

resulting from the Age of Software become more dramatic. Mass-

manufactured goods, such as cars, have become commodities whose

differentiation increasingly comes from a digital experience. Cars are

now computers on wheels. Whereas your laptop’s Microsoft Windows

operating system may have sixty million lines of code,12 in 2010 cars

already contained around one hundred million.13 For many automo-

tive manufacturers, that makes the unit cost of the software in the car

more expensive than the engine (Figure 1.2). This is only the start of

the disruption. Autonomous drive systems will multiply the amount of

software in the car and electrification of the engine is turning the rest

of its core components into software systems as well.

Figure 1.2: Software as Approximate Proportion of Car Cost

Years

P
e

rc
e

n
ta

g
e

 o
f

C
o

st

1980s 1990s 2000s 2010s 2020s

20%

40%

60%

80%

100%

Software

Electronics

15%

40%

50%

?

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 15

Bosch, one of the companies that embody the Age of Mass

 Production, announced in 2017 that it was hiring 20,000 specialists

for its digital transformation, with nearly half of the jobs related to

software.14 Our physical products increasingly rely on a connected

experience, and, as we’ll learn in Chapter 7, factories, manufacturers,

and assembly processes themselves are being transformed by software.

The digital disruptions and displacements we are witnessing in the

tertiary sector (services) are spectacular. The software side of this story

begins in 1997 with the transformation Netflix brought to the movie

rental business. In those days, internet bandwidth was too scarce to

deliver digital movies to the home. Inspired by computer scientist

Andrew S. Tanenbaum’s famous math problem, which asked students to

figure out the bandwidth of a station wagon carrying tapes across the

US, Reed Hastings (co-founder and CEO of Netflix) determined that

software could be applied to the selection and logistical distribution of

DVDs.15 Not long after, venture capitalist Marc Andreessen described

FedEx as “a software network that happens to have trucks, planes, and

distribution hubs attached” in his seminal essay “Why Software is Eat-

ing the World.”16 What Netflix and FedEx realized is that software can

yield exponential gains in logistics.

Even so, we are still at the early stages of disruption in retail and

logistics. Amazon is now able to combine supply-chain data with

both logistics and consumer spending habits, which could disrupt

storefronts themselves. Just as Walmart disrupted other retailers by

mastering the methods of the Age of Mass Production, Amazon is now

doing the same to Walmart and other retailers by disrupting the sup-

ply chain and seeing a nearly identical market-share growth profile.17

What’s clear from these trends is that the companies that achieved

even a small and early edge on applying software to consumer expe-

riences and logistics have won a seemingly insurmountable edge over

the rest of the industry.

Finally, the quaternary sector—composed of knowledge-work

industries such as technology, media, education, and government—

moves at an even faster rate of digital change by virtue of being the

newest and most malleable sector, in terms of how software can affect

distribution and infrastructure. For example, we have already seen

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

16 PART I: THE FLOW FRAMEWORK

multiple waves of collaboration technology within the Age of Software,

ranging from email to instant messaging to teleconferencing and dig-

ital assistants. Whatever the sector, we now have enough data points

from the disruptions to make the trend clear. It’s happening in every

sector, and the pace appears to be increasing. Companies that have

harnessed software innovation are the winners, leaving those who fall

behind to decline or get “Blockbustered.”

Types of Disruption

While examples of disruptions abound, not all disruptions are equal. In

order to understand how the impact of software delivery will affect your

business, we need a model of the different kinds of digital disruptions.

In Zone to Win, Geoffrey Moore provides a model that I will build on in

this book. Moore’s three types of disruption are the Infrastructure Model,

Operating Model, and Business Model disruptions.18 For most companies in

the Age of Software, addressing disruptions will require mastering soft-

ware delivery. However, the type of disruption that your business needs

in order to play offense or defense will determine how you shape your IT

investments and value streams.

Infrastructure Model disruptions are the easiest to address. They

involve changes in how customers access a given product or offering;

for example, requiring your products to be marketed via social media

but not changing how you sell. The Infrastructure Model disruptions

that we are seeing are competition-differentiated digital marketing

and communication. Digital services are blending with the social net-

works that underpin the trust economy.

Operating Model disruptions rely on using software to change the

relationship of the consumer with the business. For example, airlines

must now provide a first-rate mobile phone experience or risk losing

passenger bookings. The Operating Model here changes fundamen-

tally, as agents and call centers play a diminishing role. Competing

with startups on this front requires a first-rate digital experience. For

example, a consumer bank can expect to be disrupted by new financial

services startups that delight their users with better personal-finance

management features.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 17

Business Model disruptions involve a more fundamental appli-

cation of software and technology to a business. This might mean a

software and logistics innovation that cuts out a major manual step of

consumers getting goods, such as a store visit. Moore states that estab-

lished enterprises are not capable of disrupting themselves and, as

such, must establish an innovation engine that will allow them to catch

the next wave of disruption emerging in another market category.19

Whatever the examples are for your business, in order to win in

the Age of Software you must precisely define which type or types of

disruption put your business at risk. Wherever you land, the next step

involves a significant investment in software delivery. The success of

that initiative and your ability to win your market will be determined

by your ability to define, connect, and manage your software value

streams.

Unbundling of Every Industry

Consider your next car. Dozens of startups are competing to win a por-

tion of your experience with automotive mobility. This ranges from

connected car technology and autonomous driving to management of

tire inflation and car repair. Each of these startups is competing with

each other and with the incumbent automotive vendors who have

traditionally owned all aspects of the car users experience. In Zone

Management terms, these are only Infrastructure Model disruptions.

Companies like Lyft, Uber, and Car2Go are in the midst of both Oper-

ating Model and Business Model disruptions by changing consumers’

relationships with cars at the ownership level.

Shifting to finance, banks have been one of the leaders in tech-

nology adoption. Their business is fundamentally a knowledge-work

business, and any technological advantage they can derive can quickly

lead to a market advantage. For this reason, banks have been early

adopters of new technologies; for example, many were running open-

source software years before other enterprises had even considered

using unsupported software produced by a collective of individuals

who are not paid for their efforts. For the past decade, banks have

been staffing ahead of digital disruption by hiring tens of thousands of

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

18 PART I: THE FLOW FRAMEWORK

IT workers into their organizations. As an example of scale, Catherine

Bessant, the head of Global Technology and Operations at Bank of

America, has 95,000 employees and contractors reporting to her.20

There are hundreds of startups with venture funding who are tar-

geting key aspects of a bank’s business. Each offers a different product

or service that exists because it stands to compete with those offered by

the incumbents. Given the amount of financing we’re seeing in finance

technology, a report in 2016 found that over 1,000 fintech (finance

technology) companies raised $105 billion in funding that’s valued at

$867 billion.21

A fundamental shift is happening. Even when staffed with tens

of thousands of workers, the incumbents create and deliver software

at a rate that appears to be leaving large and numerous doors open to

disruption. And it’s not for lack of discussion or investment to stay

ahead of the startups or lack of finding creative ways to play offense or

defense to the disruptors. Thanks to their ability to build and iterate

on software quickly, and because they are unencumbered by existing

customers or legacy systems, startups are innovating how customers

interact with their products in services ranging from health insurance

to cryptocurrencies.

The examples above illustrate how startups, financed by venture

capital, are disrupting entrenched businesses and industries. The other

vector of disruption is the tech giants that have mastered software

production. Whatever the vector of disruption, before setting a plan of

action we must examine where we sit in this technological revolution

and what the upcoming wave of change and disruption will look like.

We Are Entering the Deployment Period

Will this pace of disruption continue indefinitely at its current pace? Will

the amount of venture capital fueling the growth of startups continue to

rise to the point where it is futile for entrenched companies to compete?

Will the majority of the economy soon be owned by the tech giants?

Answers to these questions are consequential for our organizations,

as they can help guide what and how we invest in our digital strategies

in order to survive the Turning Point, the period between the Installa-

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 19

tion and Deployment Periods that is marked by a financial crash and

recovery. Without understanding these questions, our efforts could be

as misguided as investing in teams of horses to compete in the Age of

Steam & Railways. And as we will see in the next chapter, that is pre-

cisely what the majority of enterprise IT organizations are doing.

Several theories exist to explain technological innovation cycles

and their impact on the economy. Kondratiev waves (described as fifty-

year cycles of expansion, stagnation, and recession that result from

technological innovation and entrepreneurship) and cycles of Creative

Destruction (the process of industrial mutation that incessantly rev-

olutionizes the economic structure from within, destroying the old

one and incessantly creating a new one) are concepts introduced by

Joseph Schumpeter in the 1930s in his book Capitalism, Socialism,

and Democracy.22 The economist Carlota Perez has expanded on these

concepts in her profound book Technological Revolutions and Financial

Capital.23

There is disagreement among economists as to the Kondratiev

waves’ cause and duration. For example, while some predict that the

current wave will be longer, others propose that the waves have been

shortening consecutively.24

Though the exact length of the current wave cannot yet be deter-

mined, Perez’s work provides us with a model for distinguishing

between the technological systems of the last age from this one, and

for using that to better understand how to master the means of produc-

tion in the Age of Software. (A summary of Perez’s work is available in

the blog post “The Deployment Age” by Jerry Neumann, a prominent

venture capitalist.)25

For the purpose of understanding where we are within the Age of

Software, the most important aspect of Perez’s theory is the concept

of the Installation Period and the Deployment Period of new techno-

logical systems (Figure 1.3). In the Installation Period, large amounts

of financial capital, such as venture capital, are deployed to leverage

the new technological system that has formed a critical mass of tech-

nology, companies, and access to capital in order to disrupt the age that

came before it. This is exactly what we have been witnessing with the

Cambrian explosion of startups.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

20 PART I: THE FLOW FRAMEWORK

Following the Installation Period is a Deployment Period, where

companies that master the means of production earn increasingly

larger portions of the economy and the new infrastructure. This creates

a period where production capital, a good portion of it controlled by the

new technology giants of that age, starts displacing startups and finan-

cial capital. Production capital is different from financial capital in that

it is controlled by company managers who are seeking innovations to

make production more efficient by working within established com-

panies (versus the radical and risky innovations with high multiples

favored by financial capital). During the Deployment Period, financial

capital and startups begin looking for a new home by placing bets on

what the next technological revolution could be.

Figure 1.3: From Installation Period to Deployment Period26

This pattern has repeated itself four times over, as is visible in

Table 1.1. In her book, Perez provides evidence that we are in the midst

of the fifth iteration.27 The Age of Software began around 1970, with

the introduction of the microprocessor. In 2002, Perez predicted that

around the Turning Point, the point between the Installation Period

and Deployment Period, the new masters of production would amass

enough wealth and control that governments would start imposing reg-

ulations, and we are seeing evidence of that today.28

Installation Period Deployment Period

Age of Oil & Mass

Production Production Capital
at the Helm

Age of Software
& Digital Financial Capital

at the helm

?

Turning
 Point

Frenzy

Interruption

Synergy

2001–?

Maturity

Time

D
eg

re
e

of
 Te

ch
no

lo
gi

ca
l D

iff
us

io
n

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 21

We cannot conclusively determine where exactly we are with

respect to the Turning Point or how long it will last. We do not know

whether age will be materially different from others. In an interview,

Perez told me that this particular Turning Point appears to keep draw-

ing itself out longer and longer.29 However, by the time we know the

precise shape of this age, it will be too late to do anything about it, as

those who were early to mastering the new means of production will

have displaced those who were too late.

Installation–

Deployment
Age

New

Technological

Systems

New

Infrastructure

Triggering

Innovations

Managerial

Innovations

1771–1829
Industrial

Revolution

Water-powered

mechanization

Canals, turnpike

roads, sailing

ships

Arkwright’s

Cromford Mill

(1771)

Factory

Systems,

entrepre-

neurship,

partnerships

1829–1873
Age of Steam &

Railways

Steam-

powered mech-

anization and

transport

Railways,

telegraph, steam

ships

Liverpool-

Manchester

Railway (1831)

Joint stock

companies,

subcontracting

1875–1918

Age of

Steel and Heavy

 Engineering

Electrification of
equipment and

transport

Steel railways,

steel ships,

global telegraph
Carnegie’s steel

plant (1875)

Professional

management

systems, giant

firms Taylorism

1908–1974

Age of

Oil & Mass

Production

Motorization of

transport and

economy

Radio, motor-

ways, airports

Ford’s Highland

Park assembly

line (1913)

Mass

production and

consumption,

Fordism, Lean

1971–?
Age of

Software & Digital

Digitization of the

economy

Internet, software,

cloud computing

Intel

microprocessor

(1971)

Networks,

platforms,

venture capital

Table 1.1: Technological Revolutions30

From today’s vantage point, we see ongoing examples of finan-

cial capital at play, such as the stories of the “unbundlings” of various

industries caused by the number of new startups funded by venture

capital. However, we are also starting to see the effects of production

capital as well.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

22 PART I: THE FLOW FRAMEWORK

Consider Jawbone, a nimble digital native funded by top-tier

venture capitalists with no lack of access to capital. Jawbone created

multiple category-defining products, ranging from Bluetooth headsets

to wireless speakers to wearable fitness trackers. In total, Jawbone

raised $930 million of financial capital between 2006 and 2016 from

top-tier firms, but ultimately it ended up in an asset sale, making it the

second-costliest venture-capital-backed startup of all time.31

Even with the combination of innovation and great products,

Jawbone lost out to production-capital companies like Apple. The

smartwatch innovator Pebble closed its doors in December 2016 for

similar reasons.32 In addition to this growing graveyard of consumer

hardware startups, it is becoming increasingly difficult to launch a new

social media company that gets to scale before Facebook either acquires

or destroys it.33 These growing effects of production capital are signals

of our passing through the Turning Point.

While we do not know how long this Turning Point will last, if it

follows Perez’s model of a five-decade cycle and we know we have been

seeing the signs of the Installation Period since the 1970s, then we can

assume that with each year we are getting closer to the Deployment

Period. Once we reach the Deployment Period, companies that have not

adapted to the new means of production will decline in relevance and

market share. In the next decade, a significant number will lose their

place in the market. We have seen other companies try and fail to scale

their IT, then Agile, and now DevOps transformations in a meaningful

time frame. For many of these companies, this is the last call if they

want to have a fighting chance at surviving the latest technological age,

let alone the next.

Three Epiphanies

My career has been dedicated to understanding and improving how

large-scale software is built. I spent nearly two decades working on

new programming languages and software development tools, and

have had a chance to work with some of the best technologists in

the world. But I have come to realize that, due to where we are in the

Turning Point, technology improvements are no longer the bottleneck.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 23

Technology improvements will be relevant but incremental, yielding

productivity gains of less than ten percent to organizations via new

programming languages, tools, frameworks, and runtimes.

In contrast, the disconnect between the business and IT is massive,

as are the disconnects within IT organizations. The common approach

to enterprise architecture is wrong, as it tends to focus on the needs of

the technologists and not on the flow of business value. Contrast this

with the BMW Group’s Leipzig plant, where the entire plant is designed

around the changing needs of the business, from the extensibility of

the buildings to the modularity of the production lines themselves.

For me, the realization that technologists’ pursuits were bringing

diminishing returns did not come as a single eureka moment. Rather,

I had separate realizations, each of which caused me to make a major

pivot in my career. Each of these “epiphanies” involved a collection of

experiences that reframed my view of software delivery and kept me

awake through the night as I slowly digested how many of my previous

assumptions were flawed.

The first epiphany came from my first job as a developer working

on a new programming language. During that time, I realized the prob-

lem we were solving spanned well beyond the source code. The second

epiphany came from a culmination of hundreds of meetings with enter-

prise IT leaders that made it clear to me that the approach to managing

software delivery and transformations was fundamentally broken. The

third epiphany came during my visit to the BMW plant and revealed that

the entire model that we have for scaling software delivery is wrong. (I

will expand on these epiphanies in Part III.) Each epiphany is connected

by our trying—and failing—to apply concepts from previous technolog-

ical revolutions to this one. To summarize, my three epiphanies were:

• Epiphany 1: Productivity declines and waste increases as soft-

ware scales due to disconnects between the architecture and

the value stream.

• Epiphany 2: Disconnected software value streams are the bot-

tleneck to software productivity at scale. These value stream

disconnects are caused by the misapplication of the project

management model.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

24 PART I: THE FLOW FRAMEWORK

• Epiphany 3: Software value streams are not linear manufac-

turing processes but complex collaboration networks that need

to be aligned to products.

The first epiphany—that software productivity declines and waste

increases when developers are disconnected from the value stream—

came as the result of a personal crisis. While on the research staff at

Xerox PARC, I was an open-source software developer and consistently

worked seventy to eighty hours per week. Most of that time was spent

coding, plus regularly sleeping under my office desk to complete the

cliché. The number of hours at the mouse and keyboard resulted in a

seemingly insurmountable case of repetitive strain injury (RSI). It grew

progressively worse, along with the heroics and coding required to get

release after release out, and my boss repeatedly cautioned me that he’d

seen several PARC careers end in this way. With the staff nurse offering

little help beyond advising caution and providing ibuprofen, I realized

that every single mouse click counted.

This led me to do PhD research by joining Gail Murphy and the

Software Practices Lab that she created at the University of British

Columbia. As mouse clicks became my limiting factor, I started track-

ing the events for each click by instrumenting my operating system,

and I came to realize that the majority of my RSI-causing activity was

not producing value; it was just clicking between windows and appli-

cations to find and refind the information I needed to get work done.

I then expanded my research to six professional developers work-

ing at IBM, and I extended the monitoring and added an experimental

developer interface for aligning coding activity around the value stream.

The results were surprising to both Gail and I, so we decided to extend

the study to “the wild” by recruiting ninety-nine professional developers

working within their organizations and having them send before-and-

after traces of all of their development activity. (The full findings are

detailed in Chapter 7 and were published at the International Sympo-

sium on Foundations of Software Engineering.)34

The conclusion was clear: as the size of our software systems grew,

so did the distance between the architecture and the effort it took to

add one of the hundreds of features being requested by our end users.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 25

The number of collaboration and tracking systems we used grew as

well, causing yet more waste and duplicate entry. These findings were

the inspiration for Gail and I to found Tasktop, a software company

dedicated to better understanding this problem.

Several years later, while getting an overview of a large financial

institution’s toolchain, I had the second epiphany. This problem of

thrashing was not unique to developers; it was a key source of waste

for any professional involved in software delivery, from business ana-

lysts to designers, testers, and operations and support staff. The more

software delivery specialists involved, the more disconnects formed

between them and the more time was spent on thrashing, duplicate

data entry, or the endless status updates and reports.

The challenges I was personally facing from my declining produc-

tivity and increased thrashing were being mirrored, at scale, across

thousands of IT staff. The more staff, the more tools, and the more

software scale and complexity, the worse this problem became. For

example, after conducting an internal study on one bank’s software

delivery practices, we determined that, on average, every developer and

test practitioner was wasting a minimum of twenty minutes per day

on duplicate data entry between two different Agile and issue-tracking

tools. In some cases, that grew to two hours per day, and the overhead

for first-line managers was even higher. When we dug deeper into how

developers spent their time, we found that only 34% of a developer’s

active working time at the keyboard went to reading and writing code.35

Yet this is what developers are paid to do and what they love to do. This

was a deep and systemic problem.

As Gail and I started working more with enterprise IT organiza-

tions, we realized just how different this world was from the much

simpler and more developer-centric world of open source, startups, and

tech companies, but we lacked empirical data on enterprise IT delivery.

At the BMW Group plant, I was simply able to look down at the line

to see the flow of work. Unfortunately, no data was available on how

work flows across the tools that form a value stream across enterprise

IT organizations. But we now had a broad enterprise IT customer base,

including close to half of the Fortune 100, and realized that we had a

very unique data set, as the majority of those organizations had shared

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

26 PART I: THE FLOW FRAMEWORK

with us all the tools involved in their value stream and the artifacts that

flow across those tools. We collected and analyzed 308 Agile, Applica-

tion Lifecycle Management (ALM), and DevOps toolchains from these

organizations. We started calling these tool networks once we saw how

the tools were interconnected. (See Chapter 8 for more.) In the process,

I personally met with the IT leaders of over two hundred of those orga-

nizations to better understand what we were seeing in the data.

With those 308 value stream diagrams in mind, while walking over

ten kilometers (about six miles) of the Leipzig plant production line, I

felt the kernel of the third epiphany form. The entire model for how we

think about a software value stream is wrong. It is not a pipeline or a

linear manufacturing process that resembles an automotive production

line; it is a complex collaboration network that needs to be connected

and aligned to the internal and external products created by an IT orga-

nization, and to business objectives.

This is what the data was telling us, yet this approach is completely

at odds with the project- and cost-oriented mentality with which enter-

prise organizations are managing IT investment. The ground truth

(that is, the truth learned through direct observation) of these enter-

prise tool networks is telling us that all the specialists in IT are already

starting to work in this new way by adopting Agile teams and DevOps

automation, but these specialists lack the infrastructure and business

buy-in to do so effectively.

On the flip side, the business is further losing the ability to see or

manage the work that the technologists are doing. Leadership seems

to be using managerial tools and frameworks from one or two tech-

nological ages ago, while the technologists are feeling the pressure to

produce software at a rate and feedback cycle that can never be met

with these antiquated approaches. The gap between the business and

technologists is widening through transformation initiatives that were

supposed to narrow it. We need to find a better way.

Conclusion

An amazing effect of the BMW Group Leipzig plant is that it places

visitors and employees at the juxtaposition of the last phase of the

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 1: THE AGE OF SOFTWARE 27

Deployment Period of the Age of Mass Production and the Installa-

tion Period of the Age of Software. You can watch the culmination of

advanced manufacturing and factory automation producing cars that

are increasingly powered by software. In contrast, the world’s top

enterprise IT organizations are more like the nearly three hundred car

manufacturers that were trying to master production in Detroit in the

1900s but went extinct while the likes of Ford pulled ahead.36

In this chapter, we saw the scale of the change that is happening due

to the maturation of the Age of Software. The biggest problem is that, at

a managerial level, established businesses are using the managerial and

production methods of previous ages, and thus, are failing in this one.

In the next chapter, we will dive into the evidence collected from enter-

prise IT organizations that shows the symptoms of this problem, and

we’ll highlight the cause of organizations’ failure to transform. After

that, we’ll explore the solution.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 29

From Project to Product

T
ransformation may be the most overused term in IT. However,

when looked at through the historical lens of technological

revolutions, the overuse is less surprising, as it is rooted in an

existential problem for companies faced with the need to embrace

change in order to survive the Turning Point.

In this age, survival is dependent on an organization’s ability to

deliver software products and digital experience. Underscoring the scale

and urgency, IDC, a market research firm, has estimated digital trans-

formation as an $18.5 trillion opportunity by 2020, which represents

25% of the global GDP.1 Those that succeed will reap the rewards and

displace those that do not. Many large organizations have already kicked

off their transformation initiatives; others are noticing their software

investment creeping up on them, with CFOs often the first to realize

how much of next year’s budget and headcount is related to IT.

In the Age of Mass Production, IT was a separate silo that played a

supporting function, enabling the productivity of other means of pro-

duction, such as facilitating communication or sales force automation.

IT will continue to play a key supporting function in that regard; for

example, the kinds of factory automation envisioned by Industry 4.0

will yield significant productivity results in mass production through

the “cyber physical systems” proposed in Industry 4.0 initiatives.2 How-

ever, these are extensions of the last Installation Period, and they are

less disruptive than the change in markets and business models that

are now happening. But in the Age of Software, digital technology has

become the core of the organization and cannot be compartmentalized

to an isolated department.

CHAPTER 2

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

30 PART I: THE FLOW FRAMEWORK

So, how do our organizations and managerial techniques need to

adapt? In this chapter, we will examine two transformations that failed

even though they were formed with the best of intentions for surviving

the Age of Software. The first was an Agile transformation failure that

contributed to Nokia losing the mobile market. The second involves a

large financial institution we’ll call LargeBank that spent $1 billion on

an Agile and DevOps transformation without delivering any measur-

able increase in the delivery of business value. Both of these failures

share a common thread of how paradigms that worked in previous ages

can fail us in this one.

Next, we’ll discuss the project management paradigm and why it

creates a chasm between the business and IT. We’ll look at the creation

of the Boeing 787 Dreamliner and contemplate how it exemplifies

product thinking. Then we’ll review why moving from project-oriented

management to product-oriented management is critical for connect-

ing software delivery to the business, and how shifting our managerial

perspective from project to product paves the path for success in the

Age of Software.

Before we dive into the Flow Framework and its inception, it’s

important to look at how operations at the BMW Group Leipzig plant

illustrate the success of a different way of measuring flow and of defin-

ing software value streams along product lines.

BMW TRIP Discovering the Plant Architecture

The Central Building opens into an enormous open space. To

the left is the exposed production line, with car bodies moving

steadily past as large, orange robotic arms swivel and dip to put

the cars together piece by piece. Combined with the futuristic

architecture, the entire space has the feeling of entering a build-

ing where the next version of the starship Enterprise could be

manufactured.

“Is it possible that a certain kind of architecture can posi-

tively influence teamwork and productivity within a plant?” the

plant brochure asks. “The Central Building of the BMW Group

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 31

Leipzig plant, designed by the famous architect Zaha Hadid, is

the implementation of this idea. This unique building is the cen-

ter of communication, and it connects all production areas.”

All of IT sits to the right of the exposed production line.

“The plant CIO’s desk is right over there.” Rene points to a

sea of several hundred desks and dual-monitor workstations to

the right of the exposed production line.

It hadn’t occurred to me that the plant would have its own

CIO with a sizeable IT infrastructure and staff, but given the

scale of operations that is visible, there must be countless inter-

nal applications managing everything from supply chains to

final assembly.

Each of the people is wearing a blue vest, blue jacket, or

entirely blue jumpsuit. Some of the blue apparel hangs on chairs

and desks. Rene hands me a vest with my name embroidered on

it, which gives me the feeling of belonging in the building the

moment I put it on.

“These vests are antistatic,” Frank says. “You must wear them

at all times around the production line. We will also attach special

static dischargers to your shoes.” He hands me discharge stickers

from his vest pocket.

“All plant staff wear these, including the IT staff, the CIO,

and the CEO,” says Rene.

Most of the startups I have visited have branded clothing to

communicate their identity and culture, with T-shirts and hood-

ies being the most common. But there is something more to the

form and function of these vests.

We watch the 1- and 2-Series cars moving along the production

line. Rene explains, “In 2017, we produced 980 cars each day, with

a new car being completed every seventy seconds. Everything that

you are about to see ensures we can achieve these production rates

and flow. Later in the day, we will also see one of the newest inno-

vations of the plant, the production of the i3 and i8.”

I recall from the brochure that the plant was a two-billion-euro

investment representing the “peak of production, automation, and

sustainability.”3 That cost is in the ballpark of a semiconductor

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

32 PART I: THE FLOW FRAMEWORK

 fabrication plant. But whereas modern chip “fabs” are built around

creating the same cutting-edge processor over and over, something

different is happening here.

Each vehicle is made specifically to a customer’s order. This

exemplifies the idea of “ just in time.” Just-in-time approaches

delay processing and other work until the last moment the

work can be done economically, thus optimizing workflow and

resource use.

“Not only does the plant implement just-in-time inventory,”

Rene continues, “the cars are manufactured just-in-sequence.”

“The cars come off the production line in the same sequence

that customer orders are placed. Each car is tailor-made to the

customer’s specifications and preferences,” Frank adds.

“The cars remain in the same order on their entire journey

on the production line?” I am having trouble grasping how they

could implement this.

“Interesting question,” Frank continues. “No, there is one

part of the production line where the car bodies need to be taken

out of sequence. Then they need to be temporarily inventoried,

and after that, put back into sequence. It is a very complex pro-

cess and is the bottleneck of our plant.”

“So, where is the bottleneck?” I ask, in what must have regis-

tered with Frank as a combination of overeagerness and naiveté.

“This entire building is designed around the bottleneck. But

before we look at that, let’s go to the Assembly Building,” Frank

says.

As Frank leads us along the exposed production line, I take

out my phone and open up maps in satellite mode. I see dozens

of large and interconnected buildings (Figure 2.1). The arrange-

ment of buildings looks strikingly similar to the computer

motherboards that I used back in the days when I would assem-

ble my own PCs—so much so that I do a double take and stop

walking for a moment. The Central Building looks like a CPU and

its interconnects.

“Ah, yes, there we are,” Frank says as he uses the satellite map

to explain the plant’s layout. “Here you see the Central Building,

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 33

and you can see that we are nearing the Assembly Building. The

structure of the Assembly Building is very interesting,” Frank

continues. “We call this the ‘five fingers’ structure.”

The massive building did indeed have the shape of rectangu-

lar fingers and a hand.

Figure 2.1: The BMW Group Leipzig Plant

(with permission of the BMW Group)

“In software architecture, you have extensibility,” says Rene.

“Maybe it is hard to see, but this plant is also architected for

extensibility along its main production lines.”

“Yes,” adds Frank. “When additional production steps are

added to the line, we are able to extend the length of the ‘fingers.’

The buildings have been extended over time as we have expanded

and added more automation and more production steps. You see

that the ‘fingers’ are different lengths.”

1. Central Building

2. Body shop

3. Paint shop

4. Assembly

5. Supply centers

1
3

2

5

4

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

34 PART I: THE FLOW FRAMEWORK

Frank then points at a building that stands out from the rest.

It is white in color but also attached to the “hand.”

“The ‘hand’ houses the 1- and 2-Series production lines,”

Frank says. “That building is a newer one. It is where we make the

i3 and i8 electric cars.”

I want to get a better look at this building and instinctively

clicked the “3-D” button on the map. It goes into a “flyover” mode

and starts navigating around the building.

“Look there,” says Frank. “You see those trucks?”

He points at large trucks that are connected right to the “fin-

gers” of the assembly building.

“As Rene mentioned earlier, the plant functions with just-in-

time inventory. Any stockpiled inventory would be waste. So, the

parts are delivered ‘ just in time,’ right to the part of the assembly

line where they are used. The BMW Group has around 12,000

suppliers worldwide, so this is quite an operation,” says Frank.

“Let’s skip the bottleneck for now, as we have to go to that area at

lunch anyway. Let me take you right to the 1- and 2-Series pro-

duction line.”

We walk into the Assembly Building and onto a catwalk

suspended three stories in the air and looking along the length

of the “hand.” It is an extraordinarily vast space, and processing

the scale takes a few moments. The scene is so visually com-

plex that it is difficult to grasp. But this complexity is nothing

like the chaos and clamor of Times Square on a busy summer

day. Instead, perfect order and coordination of hundreds of

machines and moving parts were orchestrated at what seemed a

mind-boggling scale.

This massive mechanical ballet produces some of the most

complex objects made by humanity. Over 12,000 suppliers, over

30,000 parts in each car, and immense functional specialization

along the line, producing a new car every seventy seconds in the

sequence that customer orders are made.

“By the way, Mik, you cannot take out your phone again,”

Frank says in a friendly but unmistakably serious way.C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 35

Agile Transformation Failure at Nokia

The idea of drawing on automotive manufacturing lessons and apply-

ing them to software is not new. Countless books on Agile methods

draw on Lean manufacturing and the Toyota Production System in par-

ticular. While I was already familiar with that literature when I visited

the BMW Group plant, the difference between what I thought I under-

stood about advanced manufacturing and what I learned at the plant

was enormous.

My journey using Agile methods for day-to-day software delivery

started in 1999, in the relatively small scale of a single team working on

an open-source project and using Kent Beck’s Extreme Programming

(XP) methodology. Ten years later, at the Agile 2009 conference, I pre-

sented what I learned from adapting Agile methods to an open-source

project that I was leading. It was my first time at the conference, and

the most interesting thread I noticed was that of scaling Agile.

Numerous consultants were using Nokia as proof that Agile devel-

opment methodologies scaled to large enterprises. The “Nokia Test”

was cited frequently.4 It was a simple method of determining whether

an organization was following Scrum. The test was developed by Nokia

Siemens Networks, and it further cemented Nokia as the namesake and

poster child of scaling Agile.

I saw the potential for scaling Agile and was thrilled when my com-

pany got the opportunity to start working with Symbian, the mobile

operating system (OS) Nokia had acquired in 2008. My first meeting

with a CIO was with Symbian’s, later in 2009. That led to Nokia becom-

ing Tasktop’s first enterprise customer, when we supported a project

on connecting Agile tools to developer workflow. Nokia and Symbian

had some tremendous visionaries internally, in addition to hiring

the best external contractors and thought leaders to help guide their

transformation.

The problem was that the entire effort was set up for failure in spite

of the leadership’s best intentions and the organization’s willingness

to transform. A lot of energy fueled the transformation. Everyone was

saying and appeared to be doing the right things, and the various con-

sultants and vendors were indicating that they were on track.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

36 PART I: THE FLOW FRAMEWORK

The “Nokia Test” offered a series of questions on whether devel-

opment was done iteratively and whether it followed the principles

of Scrum, allowing a mechanism for testing each team to determine

the state of how Agile they were. I was genuinely impressed by the

sheer scale of Nokia’s commitment to their Agile transformation and

the degree to which the company and the teams that we worked with

tracked activities to the impressive Agile model that they had created.

It was clear that the executives had realized how much Agile could

benefit the company in terms of their ability to adapt to the rapidly

changing market.

However, as I worked with more development teams, the writing

on the wall became evident. What struck me was the degree to which

the activities and adherence to the model were being measured with-

out a clear sense of the outcomes surfacing through those activities.

Given that we were providing open-source tools to Nokia’s developers,

we started interacting more and more with the developers and noticed

this disconnect became even more prominent as we worked our way

toward the leaves of the organizational chart—the development teams.

In order to figure out how we could better connect the delivery

layer and the planning layer, I realized it was time to get a sense of the

ground truth. I asked my main contact whether I could interview some

engineers across various teams to get a better sense of what was going

on. The results were eye opening.

The developers I spoke to had no issue with any of the Agile

practices and were mildly favorable of them; they had much bigger

problems. They had major issues downstream from them because of

the long build/test/deploy loop that was partly due to Nokia’s other-

wise formidable software security processes. They had even more

significant issues with the architecture of the Symbian OS, which was

making many of the changes the business wanted to bring to market

difficult or overly time consuming to implement. The Symbian OS was

not structured for the kind of extensibility that was needed; for exam-

ple, it could not support the installation of third-party applications or

what we now call an “app store.”

Finally, while the developers were positive on Scrum overall, their

daily work was disconnected from the higher-level planning that was

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 37

being done with a whole different set of tools. The enterprise-level

Agile tool that was selected was not being used by the developers, who

preferred simpler developer-centric tools. Instead, they would docu-

ment the work completed for the release at the end of the iteration (or

“sprint”), after the work was done, as user stories (a description of a

software feature from an end-user perspective). The tool, which had all

the features of a modern best-of-breed Agile tool, effectively became a

documentation tool, not the mechanism for flow and feedback that had

been intended.

After conducting those interviews, I realized that the transforma-

tion was in trouble. In hindsight, this was nothing like what I saw at the

Leipzig plant, where every production metric relevant to the business

was understood, well defined, visible, and automated. In addition, at

the plant, the business side intimately understood car production. In

contrast, at Nokia, the tie-in between business outcomes and software

production metrics was either not explicit or nonexistent.

In every way that it was being measured, the transformation was

on track—all of the right activities were happening, right down to

the adoption of the Agile tool. But the developers were suffering from

major friction, both in what it took to build code and in what it took to

deploy it. Even more consequential was how difficult adding features

had become due to the size and architecture of the Symbian OS.

If the transformation had been measured according to outcomes

or results instead of activities, the picture would have looked much

different. The fundamental bottlenecks that the developers were

encountering would have surfaced. The investment needed in Nokia’s

core platform, the Symbian OS, could have been made in a way that

would allow it to compete with new, software-savvy entrants to the

market, like Apple. But that crucial feedback was not making it back

to the business because of the way development was disconnected

from the business. And the downstream disconnects and inefficien-

cies in building and deploying the software meant that any progress in

improving this would run at too slow a pace.

At a business level and as a market leader, Nokia was well aware

that it needed to move and adjust quickly in the rapidly evolving

mobile ecosystem. This was the reason to roll out Agile in the first

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

38 PART I: THE FLOW FRAMEWORK

place: to more quickly adapt to that marketplace and the growing role

of software within it. Though the proxy metrics could deem the Nokia

Agile transformation a success, the lack of actual business results of

that transformation contributed to the business’ failure and inability

to shift from elegant handsets and buttons to a software and screen-

centric mobile experience.

This is not to say that Nokia made no strategic missteps on the

hardware front. For example, Nokia was slow to move to the capacitive

touchscreens that Apple innovated with the launch of the iPhone.5 But

Nokia’s strengths were on the hardware front; and in the end, they lost

to two vendors with hardened software expertise when Apple’s iOS and

Google’s Android OS took over as the mobile platforms of choice.

Nokia had an engine and infrastructure for innovating on the

hardware front that was a pinnacle of the Age of Mass Production, but

they did not have an effective engine and infrastructure for the Age

of Software and did not have the management metrics or practices in

place to realize that until it was too late.

If we step back and imagine Nokia’s end-to-end value stream, the

Agile transformation was a local optimization of the value stream.

In other words, while a tremendous amount of investment went into

the transformation, the bottleneck to delivering an operating system

 capable of supporting a mobile ecosystem was not the Agile teams.

Was it downstream of the Agile teams, in a lack of continuous inte-

gration and delivery capability? Was it in the architecture itself, which

could not support the kinds of feature and product delivery that were

needed? Or was it upstream of development and closer to the business,

which was so disconnected from delivery and the architectural invest-

ment needed, such as technical debt reduction, that they did not realize

Agile planning would fail to drive any of the desired results?

My interviews hinted at these issues, and I got the sense that

there was no business-level understanding of what the real bottle-

neck was, as the gulf between what IT and developers knew and what

the business assumed was so vast. That, in turn, led to the Agile

 trans formation—implemented as a local optimization of the end-

to-end value stream—yielding little result and not addressing the

bottleneck.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 39

Even if the teams had attained a theoretical ideal of agility, would

Nokia have been able to adapt more quickly without upstream changes

to how the business was measuring delivery? Or adapt downstream

changes in how the software was deployed? Or the architecture changes

that were slowing developers down in the first place?

In my opinion, that narrow-minded and activity-oriented view of

Agile was the root cause of Nokia’s failed digital transformation. The

failed transformation made fast iteration and learning from the market

impossible, as the lead times for delivering new features, such as an app

store and an elegant home screen, were far too slow. This hindered the

business’s ability to learn and adapt, and that inability to adapt was a

key factor in Nokia’s downfall.

Lesson One: To avoid the pitfalls of local optimization, focus

on the end-to-end value stream.

In the context of a software value stream, the concept of “end-to-

end” includes the entire process of value delivery to the customer. It

encompasses functions ranging from business strategy and ideation all

the way to instrumentation of usage to determine which values were

most adopted by the customer base. It is this end-to-end process that

we need to understand and find bottlenecks in before considering the

optimization of any particular segment of the process, such as feature

design or deployment.

Contrast the approach that Nokia took with the BMW Group story

earlier in this chapter. The entire Leipzig plant is designed to make

the value stream visible, and the buildings are architected around the

bottleneck. The architecture of the buildings is extensible to support

the evolution of production technologies and changes in market con-

ditions. Nokia had this level of maturity for its devices, but in spite

of mastering mass production, it was not able to make the pivot into

applying these lessons to software delivery.

Next, we will further analyze the reasons why this disconnect

between the business and IT created an environment in which the

business was set up for failure in its efforts to undergo a digital

transformation.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

40 PART I: THE FLOW FRAMEWORK

DevOps to the Rescue?

It is tempting to blame the failure of Nokia’s software transformation

on Agile or Scrum. But this argument is just as flawed as claiming that

Nokia was a success case for Scrum in 2009. Nokia’s problems were not

with Agile or Scrum; many organizations have had significant success

adopting the exact methods that Nokia adopted with Scrum. No matter

how effective Agile or Scrum could have been for Nokia, the organiza-

tion’s problems lay beyond the boundaries of Agile development teams.

Eliyahu M. Goldratt’s theory of constraints and its applicability to

Agile software development are discussed in Kent Beck’s book Extreme

Programming Explained.6 Goldratt famously explained how investments

made in areas other than the bottleneck are futile.7 This was the futil-

ity of Nokia’s Agile transformation. Nokia could have had the most

supportive leadership and culture on the planet, transformed twice as

fast, achieved twice the agility, and invested twice as much into the

Agile transformation and still have seen no change in the slope of

their decline due to the fact that the effort was not being applied at the

bottleneck. What’s worse, the outcomes of the effort were not being

measured.

Could adoption of DevOps practices such as continuous delivery

have turned the tide at Nokia? Possibly. Some of these practices were

already in place, like automated testing. In my interviews, the subjects

reported major inefficiencies that would have been addressed by the

other key practices summarized in The DevOps Handbook—the auto-

mation of the entire deployment pipeline and support for small batch

sizes.8 In my experience, those practices are critical to an effective value

stream, and if they are not adopted, it is only a matter of time before

they become the bottleneck.

However, it would be incorrect to assume that applying DevOps

practices to their delivery pipeline would have altered the curve of

Nokia’s decline. For example, if there was a managerial or cultural

misalignment between the business and development, that could have

been the bottleneck, and there were signs of that. Or if the architecture

was as tangled as some of the engineers were concerned it was, that

could have been the bottleneck. In hindsight, the most shocking aspect

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 41

of this was that nobody could see the whole value stream, so nobody

knew. Yet massive bets and investments on the transformation were

being placed at the leadership level.

Had Nokia adopted the Three Ways of DevOps (Figure 2.2), they

would have at least started on the path to identifying the bottleneck.

By focusing on “flow” and “feedback” from Dev to Ops, Nokia might

have seen indications of very long lead times for deployment. And “con-

tinual learning,” if elevated beyond just development leaders, might

have caused company leadership to start asking the right questions

about organizational structure or the software architecture.

Or not. Nokia could have taken a very tactical approach to DevOps

transformation, focused on continuous integration and application

release automation alone, and not noticed the architectural or orga-

nizational bottlenecks. At a managerial level, they were missing the

infrastructure and visibility that would allow them to see what was

going on in their value stream. If treated like they treated Agile, DevOps

would have been relegated to a technical practice rather than being ele-

vated to the business, and would not have altered the outcome.

Figure 2.2 : The Three Ways of DevOps

Failing to Transform: The Story of LargeBank

The Nokia failure happened at a time when both scaled Agile and

DevOps practices were less broadly understood. The story of this next

transformation started with similarly noble goals but also resulted in a

failure to deliver business results, even though it happened much more

recently. This story, as well as the need to better understand why these

failures happen instead of giving up on the organizations that seem to

Flow Feedback Continual Learning

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

42 PART I: THE FLOW FRAMEWORK

be struggling with the transition, drove me to study why the principles

of DevOps and Agile appear to break down at scale.

I vividly recall sitting on a Boeing Dreamliner in June 2016 en

route from Europe to my home and office in Vancouver, Canada, and

reflecting on a particular meeting I had had with IT leadership at a

bank. I was seated near the wings and admiring their organic- looking

beauty; their flexible carbon-composite materials allowed them to

swoop upward, reducing drag. This was long before my visit to the

BMW Group plant, but it is the first recollection I have of a profound

mental struggle to understand how, across the industry, we can be so

good at making airplanes and cars while only a small portion of com-

panies have truly mastered making software at scale. After staring at

the wing’s subtle shifts for an hour, I realized that my mind was stuck,

as if on a Zen koan that I could not unfold.

This bank, which we’ll refer to as LargeBank and of which I have

redacted all identifying details, was undergoing the most massive IT

transformation I had ever encountered. LargeBank is one of the top

twenty-five financial institutions on the planet, and the project itself

was an incredibly impressive set of Gantt charts that fit together

like puzzle pieces along a precisely defined two-year time frame and

touched on all parts of a multi-billion-dollar IT organization. Notably,

this same story has unfolded in similar ways at other large institutions.

It was my third visit to LargeBank, and I had gone approximately

every two years. Each time, the discussions were part of a large digi-

tal transformation initiative that the bank was undertaking, and this

was attempt number three in a process that never changed. Many tool

vendors, consultants, and other experts would be brought in. Since

my company’s business involves integrating various Agile and DevOps

tools, we would be walked in detail through every tool and process that

was involved in the transformation. Then, two years down the road,

we would hear that the transformation had failed to deliver results,

and the VP or SVP responsible would be fired. When the next trans-

formation started, I would meet some of the new leadership and listen

to the new approach. And thus, we would start again.

LargeBank was now six months into its third transformation. This

one was at a larger scale than the previous attempts, as it encompassed

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 43

all of IT. The time frame was again two years. The budget was in the

ballpark of $1 billion US. All the right transformational, Agile, and

DevOps terms were being summarized at the meeting, and the inter-

nal presentations looked polished. However, having witnessed Nokia

and then many other transformations that went sideways, and seeing

the same pattern here yet again, I began to see a vision of $1 billion

of the world’s wealth being wasted without delivering a measurable

improvement to value delivery.

To anyone with a Lean mind-set, that is a profoundly disturbing

image, one that we want to do whatever we can to stop. That image

got me mapping out the ideas for a framework that would make it pos-

sible for the business to understand what was going on and what was

going wrong, and hopefully not repeat the same mistakes a fourth

time. It was also that disturbing vision that got me to start writing

this book, beginning with an article titled “How to Guarantee Failure

in Your Agile DevOps Transformation” that I wrote immediately after

the meeting.9

That third transformation effort has now concluded. The execu-

tives leading it were predictably removed once it looked like it was off

track, as were the other IT and toolchain leaders who were involved.

Again, I have had the opportunity to interview and learn from those

who lasted long enough to witness how things after the transforma-

tion were worse for its key stakeholders than before the transformation

started.

While I was sure at the outset that the transformation would fail

to deliver a productivity increase, I was still shocked at hearing that it

made things worse. I had thought that, with DevOps as a central com-

ponent this third time around, there would be at least some successes,

just not the promised business results. But in this case, from a value-

delivery and talent-retention point of view, things got worse.

Wasting $1 billion of shareholder money or customer value should

feel reprehensible, but a key premise of this book is that the leader-

ship of the business and of IT would not have deliberately allowed

that to happen. There is something fundamentally broken about the

decision-making framework or organizational visibility that enables a

business to get into this state over, and over, and over again.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

44 PART I: THE FLOW FRAMEWORK

A Disconnect between the Business and IT

To understand the lessons from LargeBank’s transformation failure,

we need a clearer picture of the business environment that enabled it.

LargeBank is a successful financial-services institution, one forward-

thinking enough to allocate a multi-billion-dollar budget to IT. It’s an

organization with a portfolio of thousands of applications and a desire

to differentiate and compete on its digital assets, as evidenced by the

organizational and budgetary commitment that it had to the transfor-

mation. In other words, from a strategic point of view, this organization

positioned itself around the Age of Software much more than Nokia

did. The CEO endorsed the transformation, but what was happening

below the surface?

At LargeBank, IT is run as a cost center under the CFO. The busi-

ness outcome that was being measured and managed was how much

cost could be cut as a result of the transformation. At the outset, I did

not see this as a fundamental problem, as so many of the organizations

I work with are in a similar situation. However, after interviewing peo-

ple involved with the transformation and hearing them discuss it, many

of the unintended consequences appeared to point back to this as the

source of the problem. For example, managing the cost alone meant that

IT could run the transformation without closely involving the business

stakeholders. If the goal is cost, who knows better than IT how to reduce

infrastructure spending, staff costs, and other overheads?

On the business side, there were digital initiatives underway in par-

allel, with goals to design and create new digital experiences for mobile

and web. However, these were divorced from the IT transformation—

akin to building a great dashboard for a car without having a car or

even a line of sight to a car that could support all of those fantastic

new features. For example, other than proving a proof of concept in one

part of the application portfolio for just one country or region. Due to

this compartmentalization, it was impossible to know whether these

mobile experiences could ever run on every type of system that the

bank had across the globe.

The transformation was once again a local optimization of Large-

Bank’s value streams. On the IT side, it was focused on just the IT parts

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 45

but not on the “value” parts; that is, those parts that needed to deliver

value to the customers and to the business. On the digital side, it was

ignoring the IT parts that would make the digital vision a reality, such

as an architecture and delivery pipeline that could support the new

user experiences envisioned. And the measurement of the transforma-

tion’s success was cost reduction and adherence to the transformation

project timelines rather than delivery of more business value at lower

cost. In that sense, the outcome was predictable. Cost reduction would

be achieved but at a significant reduction of the actual delivery capac-

ity. This is a recipe for fumbling future survival through the Turning

Point, as it leaves an open door for startups and tech giants to move in

at the time of their choosing.

Lesson Two: If you manage a transformation according to

cost alone, you will reduce productivity.

Falling into the Cost Center Trap

LargeBank’s billion-dollar transformation project was functionally

composed of countless subprojects, all of which were running to this

two-year time frame. By virtue of being managed as projects, their goal

was to be on time, on budget, and to deliver the business goal of cost

reduction at the finish line. If every puzzle piece of this massive project

fit perfectly with every other, and all were delivered on time and on

budget, would that mean success? From an activity and project-oriented

view, the answer is yes. But what about the business results? How were

those measured at each step? How were bottlenecks identified across

the tens of thousands of people, hundreds of processes, and dozens of

tools? The bottom line is that they weren’t.

Here, we find the root of the disconnect. When IT is treated as

a cost center, the transformation takes on the same mentality. The

focus becomes the successful reduction of cost at the end of the project

time frame. Yet at the executive level, the very business case for the

transformation would have touted the benefits of Agile and DevOps,

such as faster time to market, more competitive product offerings, and

more efficient delivery. However, those outcomes are not what gets

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

46 PART I: THE FLOW FRAMEWORK

measured by an organization that manages according to cost alone.

While it’s true that cost reduction can be a critical component of a

transformation, that’s not the issue. The issue is that a cost-centric

framework did not deliver increased velocity, productivity, or effi-

ciency, and instead resulted in the business getting a lot less for less

instead of more for less.

Given the sophistication of LargeBank’s transformation, more

than cost metrics alone were used. The typical Agile transformation

metrics, such as the number of teams following the Agile model, were

also used, as were DevOps metrics, such as the number of deploys per

day. But these are metrics of activities, not results. An IT team could

be deploying a hundred times per day, but if their work intake is not

connected to the needs of the business, the results will not materialize

for the business. Once again, the proxy variables of “number of people

trained on the Agile process” or “deploys per day” will only be meaning-

ful if training or deployment are the bottleneck. But when the business

is disconnected from IT, the Agile teams and DevOps pipeline never get

the opportunity to become the bottleneck.

The problem is not the use of proxy metrics themselves; the

problem is that we are relying on proxy metrics for decision making

rather than finding the metrics that directly correspond to business

outcomes. Consider Jeff Bezos’s statement from his 2017 letter to

shareholders in which he spoke, among other things, about resisting

proxies:

Resist Proxies

As companies get larger and more complex, there’s a tendency to

manage to proxies. This comes in many shapes and sizes, and it’s

dangerous, subtle, and very Day 2.

A common example is process as proxy. Good process serves you

so you can serve customers. But if you’re not watchful, the pro-

cess can become the thing. This can happen very easily in large

organizations. The process becomes the proxy for the result you

want. You stop looking at outcomes and just make sure you’re

doing the process right.10

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 47

In other parts of our business, we have outcome-based metrics, like

revenue, daily active users, and Net Promoter Scores (NPS). The prob-

lem is that organizations do not have an agreed-upon set of metrics for

measuring and tracking work in IT, and as such, settle for these proxies.

And the wrong set of metrics is coming from measuring not the flow of

value delivered but the “successful” execution of IT projects. In the next

chapter, we will dive into the identification of a new outcome-based

way of tracking value streams. But first, we need to further examine

the origins and issues of the project-centric mentality as it applies to

production.

From Puzzles to Planes

How is the approach at LargeBank so different from that of the BMW

Group Leipzig plant? Is car production simpler somehow? Does it lend

itself more easily to end-to-end measurement? How was the BMW

Group able to transform how it builds cars so quickly, creating the i3

and i8 production lines without ever having mass produced electric cars

or carbon-fiber bodies before? The BMW Group is just one example of

the level of maturity, measurement, and adaptability that have been

mastered in the Age of Mass Production.

Consider another highly complex artifact that epitomizes the Age

of Mass Production. The Boeing 787 Dreamliner contains 2.3 million

parts built in 5,400 factories.11 Across all of its value streams, Boeing

manages the production of 783 million parts across the hundreds of

aircraft that it delivers each year.12 It needs its products to stay relevant

in the market for decades and bets the company on each new product

introduction.

How is it that the BMW Group and Boeing can both manage exist-

ing production lines, transform their business to support new ones,

and continually adapt to changes in technology, competition, and the

market? The bottom line is that they are not stuck in the gridlocked

puzzle pieces of project management. Instead, they have mastered a

product-centric view of delivering value to their market.

My first exposure to this was a story told to me by Gail Murphy,

then my professor in a third-year software engineering course, about

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

48 PART I: THE FLOW FRAMEWORK

the production of the Boeing 787’s predecessor, the 777. The 777 was

Boeing’s first “fly-by-wire” plane. In other words, the software had to

work, as it was purely software that was controlling the flaps and rud-

der and preventing the plane from falling out of the sky. Gail recounted

that, due to the criticality of the software, Boeing decided to put all the

heads of software engineering on the test flight. During the test flight,

the plane started shaking, and the software engineers were able to

implement a midflight fix via the turbulence control software.13 I have

yet to find a better example of an organization putting software lead-

ers’ skin in the game of high-stakes product development.

The depth of Boeing’s understanding of the business implications of

production and long-lived value streams is underscored by an event that

unfolded during the production of their next plane, the 787 Dreamliner.

The 787 Dreamliner project was Boeing’s most ambitious to date and

even more software-intensive than the 777. The Dreamliner was the first

commercial plane to run on an electrical platform for everything rang-

ing from cabin heating to wing ice protection, in comparison to previous

commercial airlines that used much less efficient engine air-bleed sys-

tems.14 In addition, Boeing decided to dramatically restructure its supply

chain in order to lower the production costs of the plane—all while shift-

ing to carbon-fiber wing and body parts. These and other complexities

resulted in further delays.

In 2008, while following the program, I read of yet another delay,

but the reason for this one seemed much more interesting. In this arti-

cle, the general manager of the Dreamliner was quoted as saying: “It’s

not that the brakes do not work; it’s the traceability of the software.”15

This was fascinating to me—and not only because I was happy to

read that the new plane would ship with functioning brakes. It was

also intriguing to me because at the exact same time I was working on

features in the Eclipse Mylyn open-source project to automate linking

software requirements and defects to the lines of source code that

had changed while developers worked on those items. For me, as well

as my open-source colleagues at the time, the need to manually enter

IDs to ensure traceability was tedious and error prone, and it was

quite easy to automate since the Mylyn developer tool always knew

what item the developer was working on.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 49

Due to the hundreds of contributors on the Mylyn project, I

required that every change to every line of code have traceability

back to its originating feature or defect; otherwise, every time new

work came in that was related to that code, we would have to manu-

ally search for why that code was there in the first place. That was far

too tedious to do on such a resource-constrained project with millions

of end users constantly submitting defects and requests, so I added a

new feature to automate it. But why on earth would Boeing care about

traceability to the extent of further risking the delivery time frames

of the plane? Surely Boeing had a model that indicated an immense

cost or risk for further delay. They could not possibly have the resource

constraints that we were experiencing, so there must have been some-

thing more fundamental about their need for traceability.

In researching this further, I learned something even more fascinat-

ing. During a visit to Boeing, I remember learning that they design planes

for approximately three decades of active production followed by another

three decades of maintenance.16 In other words, they are thinking ahead

six decades in terms of support costs for both the hardware and the

software. The brake software had been outsourced to General Electric,

who, in turn, outsourced it to Hydro-Aire.17 Hydro-Aire then delivered

the working brake software using Subversion SCM, and provided Gen-

eral Electric and Boeing with both the source code and the binaries.18

The software worked, passing the tests and meeting the requirements.19

However, the source code did not have any traceability links to those

requirements.20 Adding trace ability links after the fact is difficult and

error prone. Given a sixty-year maintenance window and the overhead of

compliance certifications, at a business level, Boeing knew that the most

economical decision was to rewrite the brake software.

In spite of the Dreamliner’s complexity and the scale of the trans-

formation required to produce it, Boeing created an amazing product

that has seen tremendous success in its market. What is it that Boeing

understands about product development that so many IT organi-

zations do not? How does Boeing think and plan beyond the typical

one- or two-year project time frame to enable it to make such funda-

mental business decisions based on technical details? How do we get

our organizations out of the fixed puzzle-piece mentality of enterprise

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

50 PART I: THE FLOW FRAMEWORK

IT projects and into the excellence of production that we see in Boe-

ing’s and BMW Group’s plants and organizations? How do we shift

from project to product?

Lesson Three: Engineering/IT and the business must be

connected.

Toward Product Development Flow

If you’ve ever worked for a software startup, a tech giant, or a modern

software vendor, you might be wondering what the fuss is all about.

Of course, there is more to software products than minimizing costs;

there are revenues, profits, active and delighted users, and all of those

other metrics that populate objectives-and-key-results (OKR) systems.

Tracking software delivery to business outcomes and treating it as a

profit center is one of the main reasons why tech companies are faring

so much better than their enterprise IT counterparts, who are stuck in

what Mary Poppendieck calls the “cost center trap.”21

Is this cost center approach endemic to large enterprise organi-

zations? Consider how a large and very cost-conscious company like

Boeing is managing the production of its Dreamliner. Costs are, of

course, a key factor. But the success of Boeing depends not only on cost

reduction but on the adoption and profitability of each plane for the

span of its life cycle in the market—this is why Boeing innately takes

a long view on the traceability of its software. Boeing knows that life

cycle profitability will be affected if the software cannot be economi-

cally maintained, or if current or future regulation changes cannot be

easily addressed in the software.

What Boeing demonstrates across its operations is that it treats its

plane development as a profit center. The business sets goals, metrics,

culture, and processes in a completely different direction than what

we saw at LargeBank. I do not believe there is any less cost conscious-

ness at Boeing, which continually works at reducing the production

and supply- chain cost of every aircraft. But by doing so with an eye to

revenue and profitability, an entirely different set of decisions can be

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 51

made, like investing in the modularity of its value streams to modern-

ize legacy offerings. A very visible example of that is the decision to

modernize the 747, which first flew in 1969, with 787-style wings and

engines to create the 747-8.22

As another example, consider what I witnessed at the BMW Group

Leipzig plant. The scale of the 1- and 2-Series cars was impressive due to

the massive automation and the seventy-second takt time (the rate at

which a product step needs to be completed to meet customer demand).

But what impressed me even more was the very different way that the

i3 and i8 lines were set up, as I will recount in an upcoming story.

The market adoption and profitability of the BMW Group’s elec-

tric cars would be hard to determine in a changing market, so the

BMW Group created a production architecture to support learning

from the market before investing further in automation of the lines.

The profitability and product/market fit drove the architecture of

the value stream, not vice versa. Again, it was a complete one-eighty

from the approach at LargeBank, where IT was transforming for IT’s

sake. The production infrastructure, architecture, and managerial

approach could not be more starkly different. That was the point that

hit home when I visited both LargeBank and the BMW Group on the

same trip, and was flying home with my head pressed against the win-

dow of a Boeing Dreamliner.

To those who have studied the concepts of Donald Reinertsen’s

Product Development Flow, none of this will be news. Reinertsen makes

a very clear and compelling case for throwing out proxy variables and

measuring for a singular economic objective: life cycle profits.23 How-

ever, depending on where in the company or product maturity curve

your focus is, this objective might change.

In Zone to Win, Moore provides a model with four distinct invest-

ment zones (Figure 2.3).24 The Productivity Zone is focused on making

the bottom line and includes systems such as HR and marketing. The

Performance Zone is about the top line and includes the main drivers

of revenue. The Incubation Zone is where new products and busi-

nesses are developed before just one or the other is moved into the

 Transformation Zone and used to play disruption offence or defense.

In defining a value metric for different product lines, the zone and

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

52 PART I: THE FLOW FRAMEWORK

its goals must be identified. For example, in the Incubation Zone, the

business objective might be monthly active users, before transition-

ing to a Transformation Zone where the focus is more on revenue

than on profit (Figure 2.3).

The mistakes many organizations are making in their digi-

tal transformations are in using the metrics from the Productivity

Zone—costs and the bottom line—for measuring their entire IT and

software delivery capabilities. Prior to the Age of Software, all of IT

could be relegated to the Productivity Zone; but the whole purpose of a

digital transformation is to allow the organization to launch and man-

age products in the other zones, which is what will determine their

future relevance in the market.

Figure 2.3: Zone Management25

Projects versus Products

Project management is a practice that has enabled some of the world’s

most visible and impressive accomplishments. It has been iconified

by the Gantt chart, created by Henry Gantt in 1917 and subsequently

used to build the Hoover Dam, the largest concrete construction of

its time. This was the tail end of the Deployment Period of the Age

of Steel, during which the practices of Taylorism were adopted in order

Revenue

Performance

Disruption
Innovation

Sustaining

Innovation

Enabling

Investments

TRANSFORMATION

ZONE

PERFORMANCE

ZONE

INCUBATION

ZONE

PRODUCTIVITY

ZONE

Make a big change Make the top line

Create options for the future Make the bottom line

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 53

to improve and scale labor efficiency. Those practices provided a way

of creating standard work processes and best practices, as well as the

specialization and division of labor at scale.

While it may not have been Taylor’s intent, when put to prac-

tice by others, Taylorism assumed that people could be treated as

interchangeable resources that could be assigned and reassigned to

projects. Such treatment of workers as machines is not only dehu-

manizing but also shortsighted, as later demonstrated by Henry Ford,

who realized the importance of decentralized decision making and

autonomy.

These problems are so fundamental that the Age of Mass Production

was, in part, catalyzed by the methods applied by Ford. Fordism put sig-

nificantly more emphasis on the actual worker, their training, and their

economic well-being.26 The companies that excelled in the Age of Mass

Production built on Fordism and extended it with approaches that fur-

ther connected production to the business, such as Toyota’s innovation

of the Andon cord.27

The effectiveness of this is exactly what the walk through the BMW

Group Leipzig plant identified. What that journey led me to conclude

is that many enterprise IT organizations are still managing to the

project-oriented world of Taylorism from the Age of Steel. This dis-

connect is what is causing the massive communication gap between

business leaders and technologists.

Software delivery is, by its nature, creative work. Software spe-

cialists are skilled at automating repetitive processes when given

the chance, leaving only the complex work and decision making that

humans continue to excel at. Applying management frameworks

from a hundred years ago to organizations that need to compete on

digital assets is futile. To make this more concrete, Table 2.1 contrasts a

project-oriented approach with a product-oriented one.

Budgeting

One of the most important aspects of structuring IT and software

investments is budgeting, as budgeting has such an influence on orga-

nizational behavior. The budgeting of projects assumes a high degree

of market and resource certainty, as it creates a fixed end goal and

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

54 PART I: THE FLOW FRAMEWORK

measures success to being on time and on budget. It also creates an

incentive for stakeholders to ask for as large a budget as possible, since

the budget has to factor in any uncertainty to the project time frames.

In addition, going back for more budget requires significant effort or

the creation of a new project.

Project-Oriented Management Product-Oriented Management

Budgeting

Funding of milestones, pre-defined at project
 scoping. New budget requires creation of

a new project.

Funding of product value streams based on

business results. New budget allocation based on

demand. Incentive to deliver incremental results.

Time Frames

Term of the project (e.g., one year). Defined end
date. Not focused on the maintenance/health after

the project ends.

Life cycle of the product (multiple years), includes

ongoing health/maintenance activities through

end of life.

Success

Cost center approach. Measured to being on time

and on budget. Capitalization of development

results in large projects. Business incentivised to
ask for everything they might need up front.

Profit center approach. Measured in business
objectives and outcomes met (e.g., revenue).

Focus on incremental value delivery and regular

checkpoint.

Risk

Delivery risks, such as product/market fit, is max-

imized by forcing all learning, specification, and
strategic decision making to occur up front.

Risk is spread across the time frame and

iterations of the project. This creates option
value, such as terminating the project if delivery

assumptions were incorrect or pivoting if strategic

 opportunities arise.

Teams

Bring people to the work: allocated up front,
people often span multiple projects, frequent

churn and re-assignment.

Bring work to the people: stable, incrementally
adjusted, cross-functional teams assigned to one

value stream.

Prioritization
PPM and project plan driven. Focus on require-

ments delivery. Projects drive waterfall orientation.
Roadmap and hypothesis testing driven.

Focus on feature and business value delivery.

Products drive Agile orientation.

Visibility
IT is a black box. PMOs create complex mapping

and obscurity.

Direct mapping to business outcomes,

enabling transparency.

Table 2.1: Project-Oriented Management vs. Product-Oriented Management

This is where the mismatch becomes immediately apparent.

DevOps and Agile are all about creating a feedback loop to address

the inherent uncertainty of software delivery and then providing the

feedback loop to the business to adjust accordingly. The more certainty

there is, the more optimal a long-term allocation of resources gets cre-

ated by a project plan. However, due to the degree of complexity in

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 55

software delivery and the inherent rate of change in the market due

to the Turning Point, baking all that uncertainty into project plans not

only creates tremendous waste but gives the business visibility into the

wrong things, providing a view into activities and proxy metrics over

visibility into the incremental delivery of business results.

In an Incubation or Transformation Zone initiative, there could

be more uncertainty than certainty. This results in project plans that

incentivize delaying releases and customer testing in order to imple-

ment everything that was needed at the start of the project. And this

multiplies the product/market-fit (PMF) risk by removing the possibil-

ity of iterative learning from the market and pivoting accordingly.

In contrast, product-oriented management focuses on measuring

the results of each unit of investment that brings value to the business.

Those units are products; they deliver value to a customer, and as such,

the measurement must be based on those business outcomes. Funding

of new value streams is based on a business case for that product, as is

ongoing investment in those value streams.

The approach need not be disruptive to the annual planning cycle.

For example, at Tasktop we create annual budgets for the product and

engineering departments that are signed off by our board; but every

quarter we review the allocation of those budgets to the products’ value

streams (e.g., staffing up a promising new Incubation Zone offering

once it has customer validation).

More aggressive Lean Budget approaches have also been proposed,

to more quickly respond to cost overruns or revenue opportunities for

a particular value stream. Whether an annual or a more frequent bud-

geting cycle is used, what’s important is that products, not projects, are

the unit of investment.

Time Frames

One of the biggest problems that project-oriented management faces

stems from the consideration of time frames. A project has a defined

time frame after which resources ramp down. This makes perfect sense

when building a skyscraper, as there is a definitive and well-understood

end to the project: after the skyscraper is erected, the project moves

into a maintenance period. However, products, be they software or

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

56 PART I: THE FLOW FRAMEWORK

hardware, have a life cycle, not a definitive end. Products can be end-

of-lifed; for example, Google has killed dozens of products, including

Google Reader and Google Wave. As long as a product is available, defect

fixes and new features are requested, as the ecosystem around software

products is constantly evolving.

Applying the project-oriented mentality of creating then launch-

ing a software product, and then assuming it can be reduced to a

fraction of its investment when in maintenance mode, has many

unintended consequences. For example, one enterprise organization

that I worked with did a survey to assess the state of project man-

agement across thousands of IT staff. They found that the number

of projects that an engineer was assigned to over the course of a

year ranged from six to twelve on average, depending on where they

worked in the organization.

I personally went through this in the early days of Tasktop, allo-

cating people and teams to multiple open-source services projects.

I noticed a dramatic productivity reduction when an engineer was

assigned to more than a single value stream. This staffing antipattern

comes from the annual allocation of people to projects and the assump-

tions that the projects will not require much work during maintenance,

leaving people with the impression that it will only take a small slice of

any given person’s time. The reality is that if the product is used, the

need to do fixes is regular, and as I witnessed, the thrashing becomes a

major drag on both happiness and productivity.

Some organizations address the post-project maintenance of

software by outsourcing it to organizations such as the global sys-

tems integrator (GSI). This additionally reduces the apparent cost of

maintaining the software, potentially removing it as a liability on the

balance sheet. This outsourcing appears to work in theory, but it can

cripple flow and feedback loops, as organizational boundaries need to

be crossed. In addition, it further disconnects that software from the

business. If the software was core to the business, this is debilitating in

terms of continuing to deliver business results, as the need for change

and updates is constant in software.

The false notion of a software project’s end is also wrong from an

economic point of view. Some of the perceived economic benefits will

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 57

be removed with the implementation of IFRS (International Finan-

cial Reporting Standards) revenue recognition rules in the US, which

may also remove the balance sheet bias toward outsourcing. But in

 product-oriented management, the focus needs to be on life cycle costs

and profitability, as exemplified by the Boeing example earlier.

It gets worse. With this “project-end fallacy,” key aspects of the

economics of software delivery are not visible to the organization.

For example, one of the core concepts that we will review in the next

chapter is technical debt. The accumulation of technical debt that

results from normal software development creates problems that are

well documented. And if this debt is not reduced regularly, the soft-

ware becomes prohibitively difficult and expensive to add features to

or to fix.

This was a key part of the failure that we saw in Nokia’s story,

where technical debt contributed to the loss of the mobile market that

it dominated. In project-oriented management, there is no incentive

to reduce technical debt; its effects do not materialize until after the

project ends. This results in application portfolios that are dead ends

for the companies that created them and in the constant accumulation

of more legacy systems and code.

Success

At a leadership level, the success metrics that we place on our orga-

nizations and on our teams will determine behavior. Project-oriented

management tends to take a cost center approach, which is still com-

mon for enterprise IT. As we witnessed with the story of LargeBank,

expecting an increase in the delivery of business value from a cost cen-

ter is pointless.

Project-oriented management also brings with it some side effects

that go against the principles of DevOps. For example, the capitaliza-

tion of software development results in an incentive to create large

projects. Stakeholders are incentivized to ask up front for everything

that might be needed during the course of the project, which goes

directly against Lean thinking and continual learning. The companies

who are navigating the Turning Point measure software investment

in terms of business outcomes, like internal adoption or revenue

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

58 PART I: THE FLOW FRAMEWORK

generation. This results in a fast-learning managerial culture of incre-

mental value delivery and regular checkpoints.

As Figure 2.4 depicts, product orientation enables an alignment of

the organization to business outcomes, not functional silos.

Figure 2.4: Functional Optimization vs. Business Outcomes

Risk

Project-oriented management is designed to identify and create contin-

gencies for all risks that could be incurred during the project. However,

that requires up-front knowledge of all the risks, which works in some

domains but not in the highly uncertain and changing world of soft-

ware delivery.

The Cynefin framework provides a taxonomy of decision-making

contexts, including obvious, complicated, complex, and chaotic.28 Due

to the rate of change in technology stacks and in the market, software

initiatives tend to fall into the complex or chaotic zone. As a result,

Business Outcome Driven

Product 1

Product 2

Product 3

Value Stream 1

Value Stream 2

Value Stream 3

F
un

cti
on

al
 O

pti
m

iza
tio

n

Reqs.

Team 1 Team 2 Team 3 Team 4 Team 6Team 5

Dev. Test Release Ops Support

Reqs. Dev. Test Release Ops Support

Project 1

Project 2

Project 3

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 59

project-oriented management, which is optimized for the obvious and

the complicated contexts, ends up padding projects for any contingen-

cies that may come up during the project’s time frame. This results in

overly conservative time frames and inflated budgets. But not even

those can stave off product market risk, where any up-front planning is

less effective than regular hypothesis testing and learning.

In contrast, Lean Startup and approaches such as minimum viable

products (MVPs), are a key part of the product-oriented mind-set. In

addition to reducing risk, the incremental product-oriented approach

creates option value by allowing the business to pivot at regular check-

points. This is not without an overhead, as the more frequent reviews

and checkpoints require expensive managerial bandwidth. But due

to the complexity of software and the rate of change in the market,

this overhead is best spread out across a product life cycle rather than

incurred at project inception and again at failure.

Teams

With project-oriented management, resources are allocated to proj-

ects. This follows the Taylorist philosophy that people are fungible

and expendable. That assumption breaks down completely in software

delivery, which is one of the most complex disciplines of knowledge

work.

Modern software value streams are built on millions or tens of mil-

lions of lines of code. At Tasktop, the most complex part of our codebase

takes a senior and highly experienced developer six months to ramp

up to full productivity. Consider the productivity impact of allocating

people to new projects every twelve months. Unfortunately, this is not

far from the norm, as most enterprise IT organizations do not model

or measure developer productivity, engagement, or ramp-up time; and

with a Taylorist mind-set, are unaware of the overheads.

Overlaid on top of the costs to the individual IT specialist’s pro-

ductivity and happiness are the costs to the team. Teams working on

complex problems go through what psychologist Bruce Tuckman coined

the forming, storming, norming, and performing life cycle.29 Reallocat-

ing people disrupts that cycle; the more people are moved, the higher

the productivity cost for the team.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

60 PART I: THE FLOW FRAMEWORK

The project-oriented management approach of “bringing people to

work” is not suited for complex knowledge work, like software delivery.

High-performing software organizations have already learned that

“bringing work to people” is more effective. Long-lived teams allow for

expertise (both individual and team) and relationships to build over

time, improving both velocity and morale. This enables other bene-

fits as well, such as problems being solved at the lowest level of the

organization instead of having the nonscalable, constant escalations

to management that result from changes to plan.

Figure 2.5: Bringing the People to the Work vs. Work to the People

In large-scale software, the optimal allocation is a one-to-one allo-

cation between teams and value streams in order to maximize team

and expertise building. The adoption of feature teams is one example

of this kind of allocation, though value streams for larger products will

often consist of multiple feature teams.

Prioritization

In project-oriented management, the project plan drives priorities.

Changes to the plan are expensive in terms of management overhead,

communication, and coordination; and as such, adjustments to the

plan tend to be minimized. In software delivery terms, this tends to

People are Brought to the Work Work is Brought to the People

Project 1

Product 1

Product 2

Product 3

Project 2

Project 3

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 2: FROM PROJECT TO PRODUCT 61

drive a “waterfall” software delivery model, as that is the model that

naturally aligns to a cascading project plan. While this is suitable to

projects with a high degree of predictability, it is counterproductive for

software delivery. Product-oriented management sets priorities based

on product road maps of features and constant hypothesis testing. At

an organizational level, this means applying the feedback and contin-

ual learning principles of DevOps at all levels of the organization, right

up to senior management.

Visibility

Last and perhaps most important is the problem of visibility. In the

Nokia and LargeBank examples we reviewed earlier in this chapter, the

common theme is the disconnect between the business and IT. What

is the source of the disconnect? Given that the leadership and business

representatives have such a broad purview, how is it possible that there

is a lack of visibility into IT? In a time when we have ubiquitous access

to big data and analytics tools, how can IT feel like a black box at so

many organizations?

The problem is not due to data access; the problem results from a

mismatch of the data models with which IT works and with which the

business is operating. IT and software delivery professionals already

work and think in product-oriented mind-sets and methodologies. That

is what the business has tasked them to do—to deliver value through

software offerings. However, if the business side is still thinking and

managing in terms of projects, constant mapping and remapping needs

to be done between the more iterative nature of software delivery and

the more static nature of techniques, such as project and portfolio man-

agement and earned-value management.

The end result is the “watermelon” phenomenon.30 When engineer-

ing leads are asked by project managers if they are on track, the answer

is yes, because the question is ambiguous. Once the release plays itself

out and business goals are not met, it is clear that the projects were

not on track. The projects were “green” on the outside and “red” on the

inside (like a watermelon). But the problem is not with the projects;

instead, it is with the management paradigm that was never designed

to handle the complexity and dynamics of software delivery.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

62 PART I: THE FLOW FRAMEWORK

Conclusion

Marked by a project-over-product mentality, an emphasis on cost over

profit, and adherence to time frames over delivery of business value,

this disconnect between the business and IT is at the core of IT and

digital transformation failures. This is what our organizations need to

learn from the last Deployment Period in order to have a shot at com-

peting against the upstarts of the current one and set the foundation to

thrive in the next decade.

The challenge is that, at enterprise IT scale, we have not had the

management framework nor the infrastructure needed to manage

large-scale software product delivery. As you will discover in the next

chapter, the Flow Framework provides a new approach to managing

software delivery to business results instead of technical activities.

The goal of the Flow Framework is to provide the missing layer

between business-driven digital transformations and the technical

transformations that underpin them. If the digital transformation

is focused on processes and activities instead of business results, it is

unlikely to succeed; and the business is unlikely to realize that until it

is too late. The concepts of organizational charts and Scrum teams will

continue to be as relevant as ever. But for an organization wanting to

become a software innovator, these are secondary to product-oriented

value streams. The Flow Framework ensures that your transforma-

tion is grounded in connecting, measuring, and managing your Value

Stream Network, which is the critical layer needed to succeed with soft-

ware delivery at scale.

Neither the shift to a product-oriented management nor the Flow

Framework are sufficient to assure success in the Age of Software. Orga-

nizations need a managerial culture and understanding of a rapidly

changing market in order to bring software-based products to market

and adapt. But before we consider how to deliver more value, we must

first define how we measure business value in software delivery. That is

where the Flow Framework comes in.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 63

Introducing the
Flow Framework

W
hat we have discovered so far is that enterprise organizations

are attempting to use managerial mechanisms from previous

ages to direct software delivery in this one. IT and software

delivery costs have been growing for decades, yet our organizations do

not have adequate visibility or understanding of what is now one of the

largest costs of doing business. Meanwhile, the tech giants and digital

startups have already mastered the managerial frameworks necessary

to succeed in the Age of Software. So have many of the technologists

working within enterprises, and these technologists are pushing hard

on their organizations to deploy the DevOps and Agile practices that

they know are critical to transformation.

The problem is that the principles of modern software-delivery

approaches are not translating to the business. For example, enter-

prises are still managing IT as a set of projects or a cost center, rather

than taking the product-oriented mentality that defined the winners

of the Age of Mass Production.

We need our businesses to adapt to this product-oriented mind-set

and to do so in a way that supports the vast differences between pro-

ducing physical widgets and infinitely malleable software components.

We need a new framework, one that elevates the best practices of Agile

and Lean frameworks to the business. We need to define business out-

come–oriented metrics instead of relying on activity-oriented proxy

metrics.

In this chapter, I introduce the Flow Framework as a new approach

for connecting the business to technology. The Flow Framework is not

intended to help you spot market shifts or strategize offerings that will

CHAPTER 3

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

64 PART I: THE FLOW FRAMEWORK

disintermediate disruptors; it is intended to provide you with a layer

that bridges the gap between business strategy and technology delivery.

The Flow Framework opens up the black box of IT so you can create an

organization-wide feedback loop, accelerating the flow of business value

to customers and the organizational learning to adapt as the market

continues through the second half of the Age of Software.

To support the deployment of the Flow Framework, this chapter

introduces Value Stream Networks as the key infrastructure concept

needed to bring about the same kind of automation and visibility for

software delivery that we see in manufacturing. The chapter concludes

with an overview of the Flow Framework and a definition of the four

flow items that are at its core. But before we learn more, let’s revisit

the plant.

BMW TRIP Walking the Lines

Looking down at the 1- and 2-Series production process in action,

it is hard not to marvel at the choreographed actions of the robots

and blue-vested production-line workers. We walk about a mile

around the Assembly Building, slowing down to examine the var-

ious workstations. Some are fully automated, with large robots

welding, assembling, and gluing. Others have workers performing

intricate assembly steps. Frank stops us at a particularly intricate

part of the line, pointing out some wiring harnesses and describ-

ing how each of these will form the electrical nervous system of

the car.

“Every single harness is different,” Frank says. “Each car is

made to order, which means countless combinations of options

for electronic components. Because of this, each wiring harness

is assembled specifically for that car prior to arrival at the line.”

Frank describes just how complex harness fitting on the pro-

duction line is. He explains that if something goes wrong with

the installation and it does not finish in the takt time of seventy

seconds, a cord is pulled; then, assistance can come from the next

workstation to complete the job. The production line is structured

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 65

to ensure this highly complex job is completed reliably, without

having to remove cars from the line for rework.

Frank explains how complicated it would be to pull a car off

the line at this point, because there are still miles of production

line downstream. Every single workstation would need to com-

pensate for the resequencing of the flow of parts. As such, many

additional steps and processes are in place to avoid removing a car

from the flow.

I’m struck by the parallel between this and what happens

when a software team breaks a build due to working out of sync

with the latest code, and just how expensive that scenario is for

a software organization. Here, everything is synchronized to

ensure continuous flow, including the slack needed if a worker

cannot complete the harness install in time.

Further along the line are the “knuckles”—the parts of the

building where the line takes a ninety-degree turn to the left,

proceeds into the “finger” building (which looks like an endless

corridor of additional assembly steps), then returns to where we

are standing before proceeding to the next finger.

“Sunroof installation is so complex that we never want

to move this workstation,” Frank says. “The robots are bolted

right into the floor, unlike the other stations, where they can be

moved. Now you see why the building has this architecture. We

can extend the fingers with new manufacturing steps, but the

knuckles themselves are the fixed points in the production line.”

The entire physical architecture of the plant has been opti-

mized around the current and potential future flow along the

line. The five knuckles are the most complex parts of the value

stream, which is why the buildings are built around them—to

maximize flow and future extensibility within these key con-

straints of the line’s value stream architecture.

Why could we not think with this kind of high-level clarity

about constraints and dependencies in software delivery? Why

is it that we architect around technology boundaries and not

around value stream flow?C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

66 PART I: THE FLOW FRAMEWORK

Why We Need a New Framework

The transformation challenges outlined in Part I are fundamental.

Doing something about them is not required, and many companies

will end up staying the course in their ineffective approach to manag-

ing software delivery. Today, definitive data exists to determine how

quickly the next disruptions will happen, or which approach or frame-

work is most effective at addressing them.

By the time data is available to analysts and researchers it will be

too late. The winners and losers of the Age of Software will have gained

enough market share that those applying management techniques of

previous ages will find it difficult or impossible to catch up without

regulation or other forms of government intervention. We see signs of

this already: whenever Amazon’s share price goes up, the share price

of retailers like Target, Walmart, and Nordstrom’s goes down;1 and vice

versa. This does not represent typical market dynamics. We are seeing

a zero-sum game that will keep playing itself out industry by industry

as we continue to head through the Turning Point.

Numerous methodologies and frameworks exist for transforming,

modernizing, and reengineering every aspect of your business. Some,

like the Scaled Agile Framework (SAFe), are focused on enterprise

software delivery. Recent advances in DevOps practices address bot-

tlenecks in how software is built and released. Other frameworks, like

Moore’s Zone Management, address transformation from a business

reengineering point of view.

Such practices and frameworks are as relevant as ever, and the

Flow Framework assumes that the best-suited practices for your busi-

ness are already underway. The role of the Flow Framework is to ensure

that the business-level frameworks and transformation initiatives are

connected to the technical ones. It is the isolation of these initiatives

that is causing so many transformations to stall or to fail.

To achieve the Three Ways of DevOps—flow, feedback, and con-

tinuous learning—we need to scale the ways of DevOps beyond

IT to the business. We need a new framework to plan, monitor, and

ensure the success of today’s software-centric digital transformations.

This new framework cannot be separate from the business; it must be

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 67

connected directly to the measurement of business objectives and key

results. It also cannot ignore the idiosyncrasies of software develop-

ment or assume that software can be managed like manufacturing.

And it cannot be overly focused on one aspect of software delivery, be

that development, operations, or customer success.

The new framework must encapsulate the management of large-

scale software delivery in a similar way to how value stream mapping,

enterprise-request processing, and supply-chain management provided

the managerial building blocks needed to master manufacturing. This

is the role of the Flow Framework.

At the Leipzig plant, all staff know who the customer is. All staff

can see the activity of the company’s value streams along the produc-

tion lines. All staff know what business the customer pulls from those

value streams: cars that deliver on BMW’s mantra of “Sheer Driving

Pleasure.” And all staff know what the plant’s bottleneck is. Contrast

that to today’s enterprise IT organizations, where not just the staff

but the leadership have problems answering the questions most fun-

damental to production:

• Who is the customer?

• What value is the customer pulling?

• What are the value streams?

• Where is the bottleneck?

For example, at LargeBank, the delivery efforts were not struc-

tured into products supported by value streams, so there was no clear or

consistent way of identifying the customer for each part of the project

portfolio. For many internal applications and components, the customer

was not specified; and in many cases, delivery was more closely aligned

to legacy software architecture than to internal or external customer

pull. Extracting the value streams from project-oriented management

was impossible due to all of the overlap between the projects and a lack of

alignment between the projects and the software architecture. And due

to all the disparate systems and focus on local optimization and tracking

of activities instead of results, it was impossible for anyone to reliably

know where the bottleneck was.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

68 PART I: THE FLOW FRAMEWORK

The Flow Framework provides a simple path to answering these

questions. There are key staff within your organization who already

know the answers, but their efforts and vision need to be connected to

an organizational strategy and approach. Most important, it provides

you with a way of connecting your Value Stream Network, measuring

the flow of business value and correlating that to your strategy and

business outcomes. The Flow Framework will allow you to:

• See the end-to-end flow of business value in real time

• Instantly spot bottlenecks and use them to prioritize

investment

• Test hypotheses based on real-time data from every value

stream

• Rearchitect your organization around maximizing flow

A digital organization that competes without a connected and

 visible Value Stream Network will become akin to a manufacturer try-

ing to compete in the last age without an electrical network. These

organizations will learn that managing IT without flow metrics or

something equivalent is like managing a cloud infrastructure without

a mechanism for measuring the cost of electricity and computer power.

Focus on End-to-End Results

Organizational charts and enterprise architecture are the best repre-

sentations of value creation that we have; but they are failing us, and

we know it. Software investment and staffing decisions are made anec-

dotally, using static and stale pieces of data and activity-based proxies

for business value rather than metrics that directly correlate technol-

ogy investments with business results.

At the BMW Group Leipzig plant, the flow of value was clear and

visible. Units of value—the cars—flowed along assembly to final pro-

duction. The velocity of delivery and the quality and completeness of

each unit could be inspected individually and in aggregate. In software

organizations, we do not have the benefit of tangible and visible objects

flowing through a production line.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 69

But what if we did? What if we could take a real-time, animated

MRI of the software organization? What would we see flowing from

the business to the customer? What patterns would we see in the flow?

Could we spot the bottlenecks where flow is impeded? These are the

questions the Flow Framework answers.

The Flow Framework provides a system for the end-to-end mea-

surement of the results of software delivery. The focus is on the

measurement of the ground truth of software delivery—the actual

work being done—and connecting the work to results, such as revenue

generation. The focus is entirely on result-oriented business metrics,

like revenue and cost, not proxy metrics for value creation, like lines of

code created or deploys per day.

This is not to say that proxy metrics of that sort are not important.

For example, if lack of continuous delivery automation is the bottle-

neck for a value stream, then measuring deploys per day becomes a

critical metric. However, the Flow Framework is focused on the end-to-

end metrics used to identify bottlenecks wherever they lie in the value

stream. In addition, the Flow Framework avoids measures of activity

in favor of results. There are no metrics of “how Agile” a team or orga-

nization is; there’s just a focus on how much business value flows. If

Agile development is a bottleneck, then measuring a proxy such as the

number of people trained on Scrum can result in an increase to the flow

of business value.

But the role of the Flow Framework is not to specify how to achieve

agility; that is the role of Agile frameworks and training programs. The

role of the Flow Framework is to help you track, manage, and improve

your investments in automation and agility.

Lean Thinking Required

While the Flow Framework does not require the implementation of a

specific Agile framework or working model, nor any specific approach

to DevOps or customer success, it does require a commitment to the

Lean concepts that are the foundation of those approaches. At the high-

est level, the purpose of the Flow Framework is to provide an actionable

way of implementing the concepts of Lean thinking for large-scale

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

70 PART I: THE FLOW FRAMEWORK

software delivery. Those concepts are defined by James P. Womack and

Daniel T. Jones in their Lean Thinking book as follows:

. . . lean thinking can be summarized in five principles: precisely

specify value by specific product, identify the value stream for

each product, make value flow without interruptions, let the cus-

tomer pull value from the producer, and pursue perfection.2

The Flow Framework requires a business-level commitment to

product and value stream thinking, and the principles of flow and

customer pull that underpin Lean thinking. As we move through this

book, we will identify these five principles with an emphasis on how

they relate to managing software delivery. To do that, we must first

precisely define how these concepts of flow, pull, and value streams

translate from the Age of Mass Production to the Age of Software.

What Is a Value Stream?

One of the first principles in Lean thinking is to “identify the value

stream for each product.”3 We will go into detail on how we do that in

Chapter 9; for now, consider it to include every person, process, activity,

and tool related to delivering that software product.

Value Stream: The end-to-end set of activities performed

to deliver value to a customer through a product or service.

Each product needs to be well defined as a packaging of software

features that a customer uses, either directly or embedded as part of

another physical or digital offering. That means the customer needs

to be well defined too, but the customer need not be defined strictly

as an external user. For example, an internal business user of a billing

system is also a customer, meaning that the billing system can and

should have its own value stream. Some organizations may have a team

that produces an internal platform or API (application programming

interface) that is only consumed by other developers within the orga-

nization. In that case, the customers are the consumers of that API.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 71

Each product has a customer who consumes the software produced by

that product’s value stream.

Value streams are composed of all the activities, stakeholders, pro-

cesses, and tools required to deliver business value to the customer.

While this may sound obvious, my second epiphany was all about the

fact that instead of creating abstractions around end-to-end value

streams, organizations keep creating them within functional silos. For

instance, if support teams or business stakeholders are excluded from

the process, the result is no longer a value stream but a segment of the

value stream. As such, Agile teams are segments of the value stream, as

are DevOps teams. Even cross-functional feature teams rarely consti-

tute the full value stream at a large organization. For example, as they

tend to exclude the support team.

This is not to say that value stream segments are not important,

only that managing and measuring them is not the topic of this book.

The practices we have around the various segments are mature when

compared to how organizations are approaching end-to-end value

streams. For example, many enterprise IT organizations are using

robust combinations of requirements management, project and port-

folio management, enterprise Agile, continuous delivery and DevOps,

ITIL, and customer success. Each has multiple frameworks, tools, and

metrics that are continuing to evolve. The Flow Framework states that

we need a new practice for managing end-to-end value streams in a sim-

ilar way to how value stream mapping gave the Age of Mass Production

the boost it needed to master large-scale delivery of physical products.

From Mapping to Architecture

As manufacturing matured throughout the Age of Mass Production,

best practices formed to handle the complexity and management of

the end-to-end process. A key practice in manufacturing plant oper-

ations is value stream mapping, as summarized by Mike Rother and

John Shook in Learning to See.4 This practice provides a visual nota-

tion and set of metrics for the management of production flows and

the identification of waste and bottlenecks in production systems.

An example of a value stream map can be found in Figure 3.1, where

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

72 PART I: THE FLOW FRAMEWORK

we can see how production is mapped out to support a customer pull-

ing widgets through a manufacturing flow. We need a similar way

of understanding, architecting, and optimizing the flow of business

value in large-scale software delivery.

Figure 3.1: Manufacturing Value Stream Map

Finding Flow in Software Delivery

The Flow Framework started with my attempt to visualize manufac-

turing like production flow for software delivery. The core premise of

the Flow Framework is that we need to measure the end-to-end flow

of business value. If we measure a subset of the flow, such as the time

it takes for developers to complete an Agile “user story” or the time it

takes to deploy software, we can only optimize a segment of the value

stream. The goal of the Flow Framework is an end-to-end view that

PRODUCTION CONTROL

FABRIC CUT

SUPPLIERS

5 Weekly Forecast

Weekly Orders

I

2 Weeks

Fabric Flow Racks FG Warehouse
SEWING

3

UPHOLSTRY

6

FINAL ASSY.

2

SHIPPING

I I

I

I

I

3 Days3 Days1 Day

5 Days

5 Days

4 Days

1.5 Days

I

Weekly Orders

Batch = 6 days

FRAME ASSY.

I

2 Weeks

2 Weeks

Frames

Batch = 60 s

FOAM CUT

I

Foam

C/O = 15 mins

Batch = 5 days

Total C/T = 150 s

FOAM ASSY.

I

Total C/T = 60 s

C/O = Ø C/O = Ø

Total C/T = 501 s Total C/T= 395 s

C/O = 20 mins C/O = 2 mins C/O = Ø C/O = Ø

 2–Week Schedule

To Frame + Foam Areas

Tickets

Weekly Schedule Daily Ship List

D
a

ily

O
th

e
r

 B
i-

W
e
e
k
ly

F
a

b
ri

c
W

e
e

k
ly

DISTRIBUTION

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 73

we can correlate to business results. As such, the top level of the Flow

Framework only focuses on how end-to-end flow items and metrics

are correlated to business outcomes. The definition of flow is similar

to what we know from manufacturing, but it is specific to what flows

through a software delivery process.

Software Flow: The activities involved in producing business

value along a software value stream.

The Flow Framework focuses entirely on the end-to-end value stream

flow and its correlation to business results (Figure 3.2). The measure-

ment is done via the ground truth of software delivery that is observed

by the flow of artifacts through the Value Stream Network (as detailed in

Part III). Agile and DevOps metrics and telemetry lie a layer down below

the Flow Framework. For example, if an Agile team is constantly strug-

gling with meeting its release goals, the SAFe or Scrum frameworks can

provide metrics and guidelines for better prioritization and planning. In

contrast, the Flow Framework is focused on the end-to-end metrics used

to identify where those bottlenecks might lie in the first place—if they

are upstream or downstream of development, for instance.

In addition, the Flow Framework avoids measures of activity in favor

of tracking flow metrics and correlating them to results. There are no

metrics of “how Agile” or “how DevOps” an organization is, just a focus

on how much business value flows through each value stream and what

results it produces. If responsiveness to the market is a key need, the

Flow Framework can highlight flow and feedback cycles that are too slow

for a particular value, implying that more Agile practices may be needed.

The role of the Flow Framework is to help you determine the out-

comes of your investments in Agile and DevOps practices, and to supply

you with the metrics needed to improve those practices. In summary,

the goal is to provide you with a means of scaling flow, feedback, and

continual learning to work not just for Dev and Ops but for the end-to-

end business process of software delivery.

At the top level, the Flow Framework provides two things. First, the

Value Stream Metrics allow you to track each value stream within

the organization so that you have a way of correlating production

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

74 PART I: THE FLOW FRAMEWORK

 metrics to business outcomes. Second, the Value Stream Network layer

provides the infrastructure needed to measure the results delivered by

each product.

At the highest level, the Flow Framework is a mechanism for align-

ing all delivery activities in your organization around your software

products, tracking the business results of those activities in order to

 create a results-driven feedback loop.

Copyright © Tasktop Technologies, Inc. 2017–2018. All rights reserved.

Figure 3.2: The Flow Framework

Flow Framework™

V
a

lu
e

 S
tre

a
m

 M
e

tric
s

A
li

g
n

m
e
n

t
In

d
e

x

T
ra

c
e

a
b

il
it

y
 I

n
d

e
x

Flow Distribution

Business ResultsFlow Metrics

Value

Cost

Quality

Happiness

Features Defects Risks Debts

Flow Efficiency

Flow Velocity

Flow Time

Flow Load

Integration Model

Activity Model

Ideate Create Release Operate

C
on

ne
cti

vi
ty

 I
n

d
e

x

Product Model

A
rti

fa
c
t N

e
tw

o
rk

T
o

o
l N

e
tw

o
rk

V
a

lu
e

 S
tre

a
m

 N
e

tw
o

rk

Value Stream

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 75

To do that, we must switch to first principles and define the cus-

tomer, what they are pulling, and how this pull can be implemented as

value stream flow. Once one or more value streams are defined, we need

to focus on making value(s) flow smoothly across those value streams.

But before we do that, we must define the units that flow along a soft-

ware value stream.

The Flow Framework is designed to work at the largest of organiza-

tional scales and to support stringent regulatory requirements where

needed (discussed in Part III). This means that even the most tradi-

tional, complex, or safety-critical organizations can apply the concepts

to drive software innovation at the right pace for their business. In

order to do this, we first need to understand the four main flow items

that make up the framework.

The Four Flow Items

Every time that I have asked a senior- or executive-level IT leader where

their bottleneck is, I have received either a blank stare or a vague answer.

But when set in the right context, just the thought process of explor-

ing this question makes a serious issue apparent. The vast majority of

enterprise IT organizations do not have a well-defined productivity

measure for what flows in their software production process.

It is impossible for the business to have a shared understanding of

a bottleneck without having a shared understanding of productivity.

Contrast that to the automotive industry, where the number of cars

produced is a very clear productivity measure of an automotive value

stream. Worse yet, it’s not just those organizations that are scram-

bling to align around metrics that matter; it’s the software industry

as a whole.

There is no clear consensus from academia or from industry

thought leaders on what constitutes software development productiv-

ity. Organizations know it when they see it—perhaps through products

that drive market adoption and revenue faster than others. But cor-

relating development activities to those results has been more of an

opaque art than a disciplined activity. To define productivity in a value

stream, we must first define what flows.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

76 PART I: THE FLOW FRAMEWORK

To do that, we need to go back to the first principles of Lean think-

ing summarized earlier in this chapter. Lean thinking starts not with

the product but with the value the customer pulls. If we think back

to the early days of software, with companies stamping out installer

disks packaged in shrink-wrapped boxes, we could try to draw an anal-

ogy to car production and define the widgets produced as those boxes.

But that analogy was weak then and is rendered irrelevant in this time

of continuous delivery and the cloud. If customers are not pulling

releases, what value does the customer pull?

To pull value, the customer must be able to see that value and be will-

ing to exchange some economic unit for it. For an internal product, this

could be adoption (e.g., having different business units adopt a common

authentication system). For an external product, the unit can be revenue;

or in the case of a product with indirect or ad-based monetization, such

as a social media tool, it might be time engaged with the product. For a

government or not-for-profit organization, it can be the adoption rate of

a newly-launched digital offering.

Using any of these scenarios, consider the last time you derived

new value from a product or went back to using a product that you had

previously not used. What triggered that exchange of value in terms

of spending your time or your money? Chances are that it was a new

feature that met your usage needs and perhaps delighted you in some

way. Or it was the fix for a defect that was preventing you from using

a product that you had otherwise valued. And here lies the key to

defining what flows in a software value stream: if what we are pulling

is new features and defect fixes, those are the flow items of a software

value stream.

Flow Item: A unit of business value pulled by a stakeholder

through a product’s value stream.

If these are the flow items, that means we could characterize work

across all the people and teams within a value stream as applying to one

of these items—and we can. Given full visibility into every process and

tool in the organization, you could identify exactly how many design-

ers, developers, managers, testers, and help-desk professionals were

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 77

involved with creating, deploying, and supporting a particular feature.

The same goes for a defect. But is this the only work that is being done

within the value streams?

The “Mining the Ground Truth of Enterprise Toolchains” analysis of

308 enterprise IT tool networks (the study I noted in Chapter 1) identi-

fied two other kinds of work that are invisible to the user but are pulled

through the value stream by a different kind of stakeholder.5 First, there

is work on risks. This includes the various kinds of security, regulation,

and compliance that must be defined by business analysts, scheduled

onto development backlogs, implemented, tested, deployed, and main-

tained. In other words, this is work that competes for priority over

features and defects, and as such, is one of the primary flow items. This

type of work is not pulled by the customer, as regulatory- or compli-

ance-risk work is usually not visible to the customer until it is too late

(e.g., a security incident that leads to a number of security defects being

fixed and security features being added). It is instead pulled internally by

the organization; for example, by the Chief Risk Officer and their team.

The final and fourth kind of work is technical debt reduction,

which describes the need to perform work on the software and infra-

structure codebase that, if not done, will result in the reduced ability

to modify or maintain that code in the future. For example, a focus on

feature delivery can result in a large accumulation of technical debt.

If work is not done to reduce that technical debt, then it could impede

future ability to deliver features; for example, by making the software

architecture too tangled to innovate on. Table 3.1 summarizes the four

flow items.

While the concepts of risk and technical debt are not new in the Flow

Framework, the focus on the measurement of each flow item results

in a very different set of conclusions as to how they should be man-

aged. In using the Flow Framework, the only technical debt work that

should be prioritized is work that increases future flows through the

value stream. Tech debt should never be done for the sake of software

architecture alone, like using it to improve the separation of architec-

tural layers. This means that the flow of each of the flow items should

shape the software architecture and not the other way around, which is

counter to the way many enterprise architectures have been evolving.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

78 PART I: THE FLOW FRAMEWORK

Flow Items Delivers Pulled By Description Example artifacts

Features New business value Customers

New value added to

drive a business result;

visible to the customer

Epic, user story,

requirement

Defects Quality Customers

Fixes for quality prob-

lems that affect the

customer experience
Bug, problem, incident,

change

Risks
Security, governance,

compliance

Security and risk

officers
Work to address

security, privacy, and

compliance exposures
Vulnerability,

regulatory requirement

Debts

Removal of

impediments to future

delivery

Architects

Improvement of the

software architecture

and operational

architecture

API addition,

refactoring,

infrastructure

automation

Table 3.1: Flow Items

By focusing first on flow, the other aspects of architecture such

as infrastructure cost and information security can be planned for in

relation to their business relevance. For instance, investing in archi-

tecture to reduce cost before an Incubation Zone product is validated

could be a waste when compared to rearchitecting around cost reduc-

tion once the product has demonstrated viability and is ready for the

Transformation Zone.

The need to focus on flow is similar for products in the Perfor-

mance Zone. Case in point: At the 2017 DevOps Enterprise Summit,

John Allspaw presented a case for treating production software inci-

dents as unplanned investments in a system’s architecture.6 This is

precisely the approach that the Flow Framework is intended to mea-

sure and support.

Rather than focusing on the software architecture to support

any contingency, the focus should be on predicting the future flow

of incidents through the product’s value stream and on optimizing

the architecture for that. This means architecting for resiliency that

minimizes the likelihood of those incidents and creating a software

architecture, infrastructure architecture, and value stream architec-

ture that can quickly respond to the remaining unforeseen incidents.

The result is analogous to what the BMW Group did with the “fingers”

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 79

structure of the buildings: they predicted how the architecture needs to

be adaptable to future flows rather than building in all of the support

for those flows up front.

The four flow items follow the MECE principle of being mutually

exclusive and collectively exhaustive. In other words, all work that flows

in a software value stream is characterized by one—and only one—of

the flow items. This means that activities such as prioritization of the

various flow items are a zero-sum game, as we will explore in Chapter 4.

Other characterizations of software work items exist, such as

Philippe Kruchten and colleagues’ decomposition of work into a quad-

rant of positive/negative and visible/invisible (e.g., features are positive

and visible, whereas architecture improvements are positive and invis-

ible).7 These characterizations can be useful for planning development

work. Similarly, ITIL defines the important differences between these

problems, incidents, and changes that can be useful for characterizing

IT service-desk work.8 However, these taxonomies are a layer down

from the flow items and more useful for characterizing the artifact

types being worked on in the delivery of the flow items.

Since the flow items are designed for tracking the most generic

characterization of work in a way that is most meaningful to busi-

ness stakeholders and customers, other taxonomies may crosscut

flow items. For example, in SAFe taxonomy, which provides detailed

definitions of the many kinds of work items in software delivery, the

term for architectural work is enablers.9 This kind of architectural-

enabler work can be done to reduce debts, to support the addition

of a new feature, to fix a defect, or to address a risk by providing the

infrastructure needed to support compliance. This means that archi-

tecture work items could fall under any of the flow items. The story is

similar for performance improvements, as performance work can be

done in support of feature work, such as scaling to a new market, or as

part of defect fixes, if the existing user base is experiencing a related

set of performance problems.

While the layer below the flow items is critical, the Flow Frame-

work’s primary focus is on connecting technology and architecture to

the business with the minimal number of concepts that executives and

technologists can agree on and understand. As such, each of the units

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

80 PART I: THE FLOW FRAMEWORK

or work items being done by all specialists in the value stream needs to

map into one of the four flow items.

Finally, you’ll see there is no separate flow item representing

improvements to the Value Stream Network to improve flow. In the

shift from project to product, the Value Stream Network itself needs

to be treated as a product, with its own stable delivery team, and not

as a project with a defined end. The majority of Value Stream Network

improvements, be they connecting different stakeholders or creating

dashboards for flow metrics, will fall on this team. In the cases where

teams on a particular value stream need to make changes to their

work process—for example, to remove waste by switching from man-

ual compliance checks to an automated security tool—that work falls

under the debt flow items for that team.

Conclusion

A large gap exists between what technologists have learned about effec-

tive software delivery and how businesses approach software projects.

While DevOps and Agile principles have made a significant impact on

how technologists work, they have been overly technology centric and

have not been adopted broadly by business stakeholders. To bridge the

gap, we need a new kind of framework that spans the language of

the business with the language of technology and enables the tran-

sition from project to product. We need that framework to scale the

three ways of DevOps—flow, feedback, and continuous learning—to

the entire business. This is the goal of the Flow Framework.

Conclusion to Part I

In Part I, we learned about the five technological revolutions and about

how success in the Age of Software is dependent on an organization’s

ability to shift from project to product. Carlota Perez’s work describes

how each age is separated into an Installation Period followed by a

Turning Point and then a Deployment Period. We are approximately

fifty years into the Age of Software and, according to Perez, still some-

where in the midst of the Turning Point.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

CHAPTER 3: INTRODUCING THE FLOW FRAMEWORK 81

Organizations that master the software-based means of produc-

tion and their digital transformations have a chance to both survive

and to thrive through this Turning Point. Those that continue to apply

managerial paradigms of past ages are likely to decline or die. Tech

giants have already mastered this new means of production, and dig-

ital startups have been born into this new way of working, but the

majority of the world’s organizations have not. This is not for want

of trying, but the combination of scale, complexity, legacy, and dated

managerial paradigms is making that transition impossible to achieve

in a time frame that ensures survival. We need a new approach.

Making the transition to thrive in the Age of Software requires a

switch from project to product for managing software delivery. Chap-

ter 2 summarized the pitfalls of project-oriented management, while

Chapter 3 introduced the Flow Framework as a remedy. The four flow

items—features, defects, risks, and debts—provide the simplest and

most generic way to unlock the black box of IT and software delivery.

The challenge now is for the business to learn to see what’s in that

box once opened. Technologists already see it. They are able to track

the value delivered on the software products they work on and have

had a decade of mastering Agile practices to understand, prioritize, and

communicate with each other. The problem is we have not equipped all

stakeholders with a common language that bridges the gap between

the business and technology. In Part II, the language of Value Stream

Metrics is introduced to do just that.

C
O
P
Y
R
IG

H
T
E
D
 M

A
T
E
R
IA

L

