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Figure 0.1: The Four Team Types and Three Interaction Modes 

Team Topologies | 11



Team Topologies | 12

Actual Comms

Isolated

Figure 1.1: Org Chart with Actual Lines of Communication 

In practice, people communicate laterally or “horizontally” with people from 

other reporting lines in order to get work done. This creativity and problem solving 

needs to be nurtured for the benefit of the organization, not restricted to optimize 

for top-down/bottom-up communication and reporting.
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Figure 1.2: Obstacles to Fast Flow
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Dev

DBA Ops

Team

B

Team

C

Team

D

Figure 2.1: Four Teams Working on a Software System

Four separate teams consisting of front-end and back-end developers work on a  

software system. Front-end devs communicate only with back-end devs, who 

communicate with a single DBA for the database changes.
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Figure 2.2: Software Architecture from Four-Team Organization

Four separate applications, each with a separate user interface (UI) and a back-

end application tier that communicate with a single shared database. This reflects 

and matches the team communication architecture from Figure 2.1; 

 the diagram has simply been rotated ninety degrees.

Application 1 Application 2 Application 3 Application 4

UI

App
Tier

Core DB

Ops
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Client

API
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Microservice
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B

Microservice
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D

Figure 2.3: Microservices Architecture with Independent Services and Data Stores

A microservices-based architecture with four separate services, each with its 

own data store, API layer, and front-end client.
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Team

A

Team

B

Team

C

Team

D

App Dev API Dev DB Dev

App Dev API Dev DB Dev

App Dev API Dev DB Dev

App Dev API Dev DB Dev

Microservice
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Microservice

B

Microservice

C

Microservice

D

Figure 2.4: Team Design for Microservices Architecture with  

Independent Services and Data Stores

An organization design that anticipates the homomorphic force behind Conway’s 

law to help produce a software architecture with four independent microservices. 

(Again, this is basically the diagram in Figure 2.3 rotated ninety degrees.)
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High bandwidth: in team

Mid bandwidth: between
“paired” teams

Low bandwidth: between
most teams

Figure 2.5: Inter-Team Communication

Communication within teams is high bandwidth. Communication between two 

“paired” teams can be mid bandwidth. Communication between most teams  

should be low bandwidth. 
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5 15 50 150 500

Figure 3.1: Scaling Teams Using Dunbar’s Number

Organizational groupings should follow Dunbar’s number, beginning with around 

five people (or eight for software teams), then increasing to around fifteen people, 

then fifty, then 150, then 500, and so on.
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(complex)
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(complicated)

Domain 1
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Domain 3
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Domain 3
(complicated)

Team 3

Team 1

Team 4

Team 2

Figure 3.2: No More than One Complicated or Complex Domain per Team

Before: a larger team is spread thin across four domains (two complicated and two complex) 

and struggles to perform well. Intra-team morale is negatively affected, with frequent context 

switches and individual disengagement. After: with multiple smaller teams each focusing on a 

single domain, motivation rises and the team delivers faster and more predictably. 

Low bandwidth inter-team collaboration allows solving occasional issues affecting two 

or more domains.
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Figure 3.3: Typical vs. Team-First Software Subsystem Boundaries



Team Topologies | 22

Closed-off
meeting room(s)

Squad areas offset to provide squad
standup or whiteboarding space

Partition

Figure 3.4: Office Layout at CDL
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Figure 4.1: Organization not Optimized for Flow of Change 

Traditional flow of change in an organization not optimized for flow, with a 

series of groups owning different activities and handing over the work to the next team. 

No information flows back from the live systems into teams building the software.

Dev Test Transition

HANDOVER

BAU
LIVE
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Stream-Aligned Team

Rapid
Feedback

LIVE

Figure 4.2: Organization Optimized for Flow of Change

Organizations set up for fast flow avoid hand-offs by keeping work within the 

stream-aligned team, and they ensure that the rich set of operational information 

flows back into the team.
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SRE

Team

Figure 4.3: Relationship between SRE Team and Application Team
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Figure 4.4: Influence of Size and Engineering Maturity on Choice of Topologies

Organization size (or software scale) and engineering discipline influence the 

effectiveness of team interaction patterns.
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Complicated-subsystem team

Enabling team

Platform team

Stream-aligned team

Figure 5.1: The Four Fundamental Team Topologies
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Logical Platform

Flow

Figure 5.2: Platform Composed of Several Fundamental Team Topologies

In a large organization, the platform is composed of several other fundamental 

team topologies: stream-aligned Dev teams, complicated-subsystem teams, 

and a lower-level platform.
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Figure 5.3: Traditional Infrastructure Team Organization

Many traditional infrastructure teams (on the right) blocked flow by being responsible 

for all changes to production infrastructure, including application changes, frequently gated 

by ITIL change processes. Work from Dev teams (on the left) was handed over to infrastructure 

or Ops teams for deployment, preventing flow.

Flow

Handover

Dev Teams Infrastructure
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Call Center/Service Desk

Swarm for
Incident Resolution

Stream-Aligned Dev Team

Service Experience Team

Stream Area

Figure 5.4: Support Teams Aligned to Stream of Change

The new model for support teams: aligned to the flow of change, 

usually paired with one or more stream-aligned Dev teams.  

Incidents are handled with dynamic “swarming.”
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Figure 6.1: Mobile, Cloud, and IoT Technology Fracture Plane Scenario

With three very disparate technologies (mobile, cloud, and IoT), an organization 

must decide on an approach to fracture planes that makes sense based on  

the cognitive load and the change cadence in each area. 

Cloud as Platform

Embedded IoT Device as Platform
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Collaboration X-as-a-Service

Figure 7.1: Collaboration vs. X-as-a-Service

Collaboration means explicitly working together on defined areas. X-as-a-Service 

means one team consumes something “as a service” from another team.

Figure 7.2: The Three Team Interaction Modes

Collaboration mode is shown with diagonal cross-hatching, X-as-a-Service 

mode is shown with brackets, and facilitating is shown with dots.

FacilitatingX-as-a-ServiceCollaboration

Figure 7.3: Team Interaction Modes Scenario

Stream-aligned Team A collaborates with complicated-subsystem Team B

(shown with cross-hatching) while also consuming the platform provided by Team 

C, using the X-as-a-Service mode (shown with brackets).

X-as-a-Service

Collaboration

A B

C

Stream-Aligned Team

Platform Team

Complicated-
Subsystem Team
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Advantages                                Disadvantages

• Rapid innovation and discovery

• Fewer hand-offs

• Wide, shared responsibility for 

each team

• More detail/context needed 

between teams, leading to higher 

cognitive load

• Possible reduced output during 

collaboration compared to before

Constraint: A team should use collaboration mode with, at most, one other team 

at a time. A team should not use collaboration with more than one team at the 

same time. 

Typical Uses: Stream-aligned teams working with complicated-subsystem teams; 

stream-aligned teams working with platform teams; complicated-subsystem 

teams working with platform teams

Table 7.1: Advantages and Disadvantages of Collaboration Mode
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X-as-a-Service

Figure 7.4: X-as-a-Service Team Interaction Mode

In this case, the team on the right is providing something “as a service” to the team on the left 

(perhaps an API, some developer tooling, or even an entire platform).

Table 7.2: Advantages and Disadvantages of X-as-a-Service Mode

Advantages                                Disadvantages

• Clarity of ownership with clear 

responsibility boundaries

• Reduced detail/context needed 

between teams, so cognitive load 

is limited

• Slower innovation of the boundary 

or API

• Danger of reduced flow if the 

boundary or API is not effective

Constraint: A team should expect to use the X-as-a-Service interaction with 

many other teams simultaneously, whether consuming or providing a service. 

Typical Uses: Stream-aligned teams and complicated-subsystem teams con-

suming Platform-as-a-Service from a platform team; stream-aligned teams and 

complicated-subsystem teams consuming a component or library as a service 

from a complicated-subsystem team.
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Table 7.3: Advantages and Disadvantages of Facilitation Mode

Advantages                                Disadvantages

• Unblocking of stream-aligned 

teams to increase flow

• Detection of gaps and misaligned 

capabilities or features in compo-

nents and platforms

• Requires experienced staff to not 

work on “building” or “running” 

things

• The interaction may be unfamiliar 

or strange to one or both teams 

involved in facilitation

Constraint: A team should expect to use the facilitating interaction mode with 

a small number of other teams simultaneously, whether consuming or providing 

the facilitation. 

Typical Uses: An enabling team helping a stream-aligned, complicated-subsys-

tem, or platform team; or a stream-aligned, complicated- subsystem, or platform 

team helping a stream-aligned team.

Table 7.4: Team interaction modes of the fundamental team topologies

Collaboration X-as-a-Service Facilitating

Stream-aligned Typical Typical Occasional

Enabling Occasional Typical

Complicated-subsystem Occasional Typical

Platform Occasional Typical
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Figure 7.5: Primary Interaction Modes for the Four Fundamental Team Topologies

Stream-aligned teams use X-as-a-Service or collaboration; enabling teams 

use facilitation; complicated-subsystem teams use X-as-a-Service; platform 

teams use X-as-a-Service for teams that consume the platform.

Enabling
Team

Complicated-
Subsystem Team

Stream-Aligned Team

Stream-Aligned Team

Platform Team
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Figure 7.6: Team Interaction Modes at IBM around 2014

Team interaction modes at IBM around 2014, with a team of “DevOps advocates” 

coordinating and facilitating learning and team changes.

DevOps
Advocates
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Cloud Embedded

• Test Environments

• Hardware Limitations

Embedded
Stream-Aligned

Team

Cloud Platform Embedded Platform

Cloud
Stream-Aligned

Team

Continual Close
Collaboration

2

?

31

Figure 8.1: Collaboration between Cloud and Embedded Teams 

Two teams (“cloud” and “embedded”) collaborate to share practices and increase 

awareness. The results will include heightened awareness of the options for future 

team interactions: (1) treat the cloud software as a platform for the embedded team 

to use, (2) treat the embedded devices as a platform for the cloud team to use, or (3) 

continue with close collaboration. 
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Figure 8.2: System-Build and Platform-Build Team at TransUnion 

A team from Dev (SB) and a team from Ops (PB) exploring close interactions.

Figure 8.3: System-Build and Platform-Build Team Collaboration at TransUnion 

The two teams, SB and PB, collaborating closely.

SB PB

Expected in 6+ months; Actual realization 2 years

Integrate toward
Dev and SB

Figure 8.4: System-Build and Platform-Build Teams Merged at TransUnion 

The SB and PB teams merged, helping to bring Dev and Ops together.

����v PB Ops

�xpected E�������� 	
��)

DevOps
(SB + PB)

�xpected in 12+ months; Actual realization 4 years

SB + PB fully integrated
but still recognized as
a separate team
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Figure 8.5: System-Build and Platform-Build Teams Merged Back into 

Dev and Ops at TransUnion

The SB and PB teams merged back into Dev and Ops, providing Platform-as-a-Service.

2018

SB + PB merged into
product teams
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Discover

Use

Use

Establish

Team 3

Establish

Discover

Team 2

Team 1

Team N

Figure 8.7: Evolution of Team Topologies in an Enterprise

Team 1 continues to collaborate with a platform team, discovering new patterns and 

ways of using new technologies. This discovery activity eventually enables Team 2 

to adopt an X-as-a-Service relationship with the platform team. Later, Teams 3 and 

beyond adopt a later version of the platform, using it as a service without having to 

collaborate closely with the platform team.

Discover Establish

Figure 8.6: Evolution of Team Topologies

The evolution of Team Topologies from close collaboration to limited collaboration 

(discovery) through to X-as-a-Service for established, predictable delivery.
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Flow

Outer Platform

Flow

Platformize + Telemetry

Stream

1

2

3

Stream-
Aligned
Team

Stream-
Aligned
Team

Stream-
Aligned
Team

Stream-Aligned Team

Stream-Aligned Team

Inner Platform

Figure 8.8: Example of a “Platform Wrapper” 

Increase flow predictability in higher-level business services (streams) through 

the use of a “platform wrapper” to “platformize” the lower-level services and APIs, 

allowing the streams to treat all their dependencies as a single platform with a  

holistic roadmap and consistent DevEx. The streams also have rich telemetry 

 to track flow and resource usage of the platform.
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Sensing

Blind!

New Service

Old System

Team Z

Team A

???“Maintenance (BAU)”

Dev Ops

Figure 8.9: New-Service and “Business as Usual” (BAU) Teams  

Having separate teams for “new stuff” and BAU tends to prevent learning, 

improvements and ability to self-steer. It is a non-cybernetic approach.

Figure 8.10: Side-by-Side New Service and BAU Teams 

A cybernetic approach to maintaining older systems has a single stream-aligned 

team (or pair of teams) developing and running the new service and the older 

systems, enabling the team to retro-fit newer telemetry to the older system and 

increase the fidelity of the sensing from both systems.

SensingTeam A

�ew Service

Old Service (BAU)

Dev Ops

Dev Ops
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Figure 9.1: Core Ideas of Team Topologies

Team
Topologies

Conway’s Law

4 Fundamental
Topologies Team

Interaction
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Team APITeam First
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GLOSSARY

API (application programming 
interface): a description and 
specification for how to interact pro-
grammatically with software.

application monolith: a single, large 
application with many dependencies 
and responsibilities that possibly 
exposes many services and/or different 
user journeys.

bounded context: a unit for parti-
tioning a larger domain (or system) 
model into smaller parts, each of which 
represents an internally consistent 
business domain area.

Brooks’s law: law coined by Fred 
Brooks which states that adding new 
people to a team doesn’t immediately 
increase the capacity of a team.

cognitive load: the amount of working 
memory being used.

collaboration mode: team(s) working 
closely together with another team.

complicated-subsystem team: 
responsible for building and maintain-
ing a part of the system that depends 
heavily on specialist knowledge.

Conway’s law: law coined by Mel 
Conway that states that system design 
will copy the communication structures 
of the organization which designs it.

domain complexity: how complex 
the problem is that is being solved via 
software.

Dunbar’s number: coined by anthro-
pologist Robin Dunbar, which states 
that fifteen is the limit of people one 
person can trust; of those, only around 
five can be known and trusted closely.

enabling team: team(s) composed 
of specialists in a given technical (or 
product) domain; they help bridge the 
capability gap.

extraneous cognitive load: relates to 
the environment in which the task is 
being done (e.g., “How do I deploy this 
component, again?” “How do I config-
ure this service?”).

facilitating mode: team(s) helping (or 
being helped by) another team to clear 
impediments.

flow of change: a stream of related 
updates or alterations to a software 
service or system, usually aligned to 
user goals or other core focus of the 
business.
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fracture plane: a natural “seam” in 
the software system that allows it to be 
easily split into two or more parts.

germane cognitive load: relates to 
aspects of the task that need special 
attention for learning or high perfor-
mance (e.g., “How should this service 
interact with the ABC service?”).

intrinsic cognitive load: relates to 
aspects of the task fundamental to the 
problem space (e.g., “What is the struc-
ture of a Java class?” “How do I create a 
new method?”).

joined-at-the-database monolith: 
composed of several applications or 
services all coupled to the same data-
base schema, making them difficult to 
change, test, and deploy separately.

monolithic build: uses one gigantic 
continuous integration (CI) build to get 
a new version of a component.

monolithic model: software that 
attempts to force a single domain 
language and representation (format) 
across many different contexts.

monolithic release: a set of smaller 
components bundled together into a 
“release.”

monolithic thinking: “one-size-fits-
all” thinking for teams that leads to 
unnecessary restrictions on technol-
ogy and implementation approaches 
between teams.

monolithic workplace: a single office 
layout pattern for all teams and individ-
uals in the same geographic location.

organizational sensing: teams and 
their internal and external communica-
tion are the “senses” of the organization 
(sight, sound, touch, smell, taste).

platform team: enables stream-
aligned teams to deliver work with 
substantial autonomy. 

reverse Conway maneuver: organi-
zations should evolve their team and 
organizational structure to achieve the 
desired architecture.

stream-aligned team: a team aligned 
to a single, valuable stream of work.

team API: an API surrounding each 
team.

Team Topologies: model for orga-
nizational design that provides a key 
technology-agnostic mechanism for 
modern software-intensive enterprises 
to sense when a change in strategy 
is required (either from a business or 
technology point of view).

thinnest viable platform: a careful 
balance between keeping the platform 
small and ensuring that the platform 
is helping to accelerate and simplify 
software delivery for teams building on 
the platform.

X-as-a-Service mode: consuming or 
providing something with minimal 
collaboration.
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Key Management Concepts and Practices for 
Reliable, Fast Flow

• Accelerate: The Science of Lean Software and DevOps: Building and Scaling 

High Performing Technology Organizations by Nicole Forsgren, PhD, 

Jez Humble, and Gene Kim (Portland, Oregon: IT Revolution, 2018). 

• Designing Delivery: Rethinking IT in the Digital Service Economy by Jeff 

Sussna (Beijing: O’Reilly Media, 2015).

• Fearless Change: Patterns for Introducing New Ideas by Mary Lynn 

Manns and Linda Rising (Boston: Addison Wesley, 2004).

Key Practices and Approaches for Organizations, 
Software, and Systems

• Team Genius: The New Science of High-Performing Organizations by 

Rich Karlgaard and Michael S. Malone (New York, NY: HarperBusi-

ness, 2015).

• Agile Development in the Large: Diving into the Deep by Jutta Eckstein 

(New York: Dorset House Publishing Co Inc.,US, 2004).

• Domain-Driven Design: Tackling Complexity in the Heart of Software by 

Eric Evans (Boston: Addison-Wesley, 2003).

• Thinking in Promises by Mark Burgess (Sebastopol, California: O’Reilly 

Media, 2015).

Key Engineering Practices that Enable Fast Flow

• Continuous Delivery: Reliable Software Releases through Build, Test, and 

Deployment Automation by Jez Humble and David Farley (Upper Sad-

dle River, NJ: Addison Wesley, 2010).
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• Release It! Design and Deploy Production-Ready Software by Michael T. 

Nygard (Raleigh, North Carolina: O’Reilly, 2018).

• Team Guide to Software Operability, Team Guide Series 1, by Matthew 

Skelton and Rob Thatcher (Leeds, UK: Conflux Books, 2016).

• Team Guide to Software Testability, Team Guide Series 3, by Ash Win-

ter and Rob Meaney (Leeds, UK: Conflux Books, 2018).

• Team Guide to Software Releasability, Team Guide Series 4, by Manuel 

Pais and Chris O’Dell (Leeds, UK: Conflux Books, 2018).
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