

TEAM

TOPOLOGIES

ORGANIZING

BUSINESS AND

TECHNOLOGY

TEAMS FOR FAST

FLOW

MATTHEW SKELTON
and MANUEL PAIS

Foreword by

RUTH

MALAN

TEAM
TOPOLOGIES

ORGANIZING BUSINESS AND

TECHNOLOGY TEAMS

FOR FAST FLOW

MATTHEW SKELTON
and MANUEL PAIS

Foreword by Ruth Malan

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2019 by Matthew Skelton and Manuel Pais

All rights reserved. For information about permission to reproduce selections from this book,

write to Permissions, IT Revolution Press, LLC,

25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition

Printed in the United States of America

24 23 22 21 20 19 1 2 3 4 5 6 7 8 9 10

Cover and book design by Devon Smith

Author Photographs by Gary Landsman

Library of Congress Catalog-in-Publication Data

Names: Matthew Skelton (tk) and Manuel Pais (tk), authors.

Title: Team Topologies : organizing business and technology teams

for fast flow / by Matthew Skelton and Manuel Pais.

Description: Portland, OR : IT Revolution Press, [2019] |

Includes bibliographical references.

Identifiers: LCCN 2018047857| ISBN 9781942788-812 (trade pbk.) |

ISBN 9781942788829 (ePub) | ISBN 9781942788836 (kindle) |

ISBN 9781942788843 (pdf)

Subjects: LCSH: Information technology—Management. |

Technological innovations—Management. | Leadership.

Classification: LCC HD30.2 .S3878 2019 | DDC 004.068—dc23

LC record available at https://lccn.loc.gov/2018047857

For information about special discounts for bulk purchases or for information

on booking authors for an event, please visit our website at ITRevolution.com.

Team Topologies

Contents | 4

CONTENTS

Figures & Tables x

Case Studies & Industry Examples xi

Foreword by Ruth Malan xv

Preface xvii

PART I TEAMS AS THE MEANS OF DELIVERY

Chapter 1: The Problem with Org Charts 3

Communication Structures of an Organization 4

Team Topologies: A New Way of Thinking about Teams 9

The Revival of Conway’s Law 9

Cognitive Load and Bottlenecks 11

Summary: Rethink Team Structures, Purpose, and Interactions 13

Chapter 2: Conway’s Law and Why It Matters 15

Understanding and Using Conway’s Law 15

The Reverse Conway Maneuver 18

Software Architectures that Encourage Team-Scoped Flow 21

Organization Design Requires Technical Expertise 23

Restrict Unnecessary Communication 24

Beware: Naive Uses of Conway’s Law 26

Summary: Conway’s Law Is Critical for Efficient Team Design in Tech 29

Chapter 3: Team-First Thinking 31

Use Small, Long-Lived Teams as the Standard 32

Good Boundaries Minimize Cognitive Load 39

Design “Team APIs” and Facilitate Team Interactions 46

Warning: Engineering Practices Are Foundational 55

Summary: Limit Teams’ Cognitive Load and Facilitate

Team Interactions to Go Faster 56

PART II TEAM TOPOLOGIES THAT WORK FOR FLOW

Chapter 4: Static Team Topologies 61

Team Anti-Patterns 62

Design for Flow of Change 63

DevOps and the DevOps Topologies 65

Contents | 5

Successful Team Patterns 67

Considerations When Choosing a Topology 72

Use DevOps Topologies to Evolve the Organization 75

Summary: Adopt and Evolve Team Topologies that

Match Your Current Context 77

Chapter 5: The Four Fundamental Team Topologies 79

Stream-Aligned Teams 81

Enabling Teams 86

Complicated-Subsystem Teams 91

Platform Teams 92

Avoid Team Silos in the Flow of Change 99

A Good Platform Is “Just Big Enough” 100

Convert Common Team Types to the Fundamental

Team Topologies 104

Summary: Use Loosely Coupled, Modular Groups

of Four Specific Team Types 109

Chapter 6: Choose Team-First Boundaries 111

A Team-First Approach to Software Responsibilities

and Boundaries 112

Hidden Monoliths and Coupling 112

Software Boundaries or “Fracture Planes” 115

Real-World Example: Manufacturing 121

Summary: Choose Software Boundaries to Match Team

Cognitive Load 123

PART III EVOLVING TEAM INTERACTIONS FOR INNOVATION

AND RAPID DELIVERY

Chapter 7: Team Interaction Modes 131

Well-Defined Interactions Are Key to Effective Teams 132

The Three Essential Team Interaction Modes 133

Team Behaviors for Each Interaction Mode 137

Choosing Suitable Team Interaction Modes 144

Choosing Basic Team Organization 146

Choose Team Interaction Modes to Reduce Uncertainty

and Enhance Flow 149

Summary: Three Well-Defined Team Interaction Modes 151

Contents | 6

Chapter 8: Evolve Team Structures with Organizational Sensing 153

How Much Collaboration Is Right for Each Team Interaction? 153

Accelerate Learning and Adoption of New Practices 155

Constant Evolution of Team Topologies 159

Combining Teams Topologies for Greater Effectiveness 164

Triggers for Evolution of Team Topologies 165

Self Steer Design and Development 170

Summary: Evolving Team Topologies 175

Conclusion: The Next-Generation Digital Operating Model 177

Four Team Types and Three Interaction Modes 178

Team-First Thinking: Cognitive Load, Team API,

Team-Sized Architecture 179

Strategic Application of Conway’s Law 180

Evolve Organization Design for Adaptability and Sensing 181

Team Topologies Alone Are Not Sufficient for IT Effectiveness 181

Next Steps: How to Get Started with Team Topologies 183

Glossary 187

Recommended Reading 189

References 191

Notes 203

Index 207

Acknowledgments 215

About the Authors 216

Figures & Tables | 7

FIGURES & TABLES

FIGURES

0.1: The Four Team Types and Three Interaction Modes xx

1.1: Org Chart with Actual Lines of Communication 6

1.2: Obstacles to Fast Flow 12

2.1: Four Teams Working on a Software System 19

2.2: Software Architecture from Four-Team Organization 20

2.3: Microservices Architecture with Independent Services

and Data Stores 21

2.4: Team Design for Microservices Architecture with Independent

Services and Data Stores 22

2.5: Inter-Team Communication 25

3.1: Scaling Teams Using Dunbar’s Number 34

3.2: No More than One Complicated or Complex Domain per Team 44

3.3: Typical vs. Team-First Software Subsystem Boundaries 45

3.4: Office Layout at CDL 52

4.1: Organization not Optimized for Flow of Change 64

4.2: Organization Optimized for Flow of Change 65

4.3: Relationship between SRE Team and Application Team 71

4.4: Influence of Size and Engineering Discipline on Team

Interaction Patterns 73

5.1: The Four Fundamental Team Topologies 80

5.2: Platform Composed of Several Fundamental Team Topologies 96

5.3: Traditional Infrastructure Team Organization 105

5.4: Support Teams Aligned to Stream of Change 107

6.1: Mobile, Cloud, and IoT Technology Fracture Plane Scenario 124

7.1: Collaboration vs. X-as-a-Service 133

7.2: The Three Essential Team Interaction Modes 134

7.3: Team Interaction Modes Scenario 135

7.4: X-as-a-Service Team Interaction Mode 138

7.5: Primary Interaction Modes for the Four Fundamental

Team Topologies 145

7.6: Team Interaction Modes at IBM around 2014 146

8.1: Collaboration between Cloud and Embedded Teams 156

8.2: System Build and Platform Build Team at TransUnion 158

Figures & Tables • Case Studies & Industry Examples | 8

8.3: System Build and Platform Build Team Collaboration

at TransUnion 158

8.4: System Build and Platform Build Teams Merged at TransUnion 158

8.5: System Build and Platform Build Teams Merged Back Into

Dev and Ops at TransUnion 159

8.6: Evolution of Team Topologies 160

8.7: Evolution of Team Topologies in an Enterprise 160

8.8: Example of a “Platform Wrapper” 168

8.9: New-Service and “Business as Usual” (BAU) Teams 173

8.10: Side-by-Side New Service and BAU Teams 174

9.1: Core Ideas of Team Topologies 178

TABLES

Table 7.1: Advantages and Disadvantages of Collaboration Mode 137

Table 7.2: Advantages and Disadvantages of X-as-a-Service Mode 140

Table 7.3: Advantages and Disadvantages of Facilitating Mode 141

Table 7.4: Team Interaction Modes of the Fundamental Team Topologies 144

CASE STUDIES &

INDUSTRY EXAMPLES

Chapter 1

Industry Example: OutSystems (Part 1)—Miguel Antunes,

R&D Principal Software Engineer, OutSystems 11

Chapter 2

Industry Example: Adidas—Fernando Cornago,

Senior Director Platform Engineering, and Markus Rautert,

Vice President Platform Engineering and Architecture, Adidas 16

Chapter 3

Industry Example: OutSystems (Part 2)—Miguel Antunes,

R&D Principal Software Engineer, OutSystems 42

Industry Example: IKEA—Albert Bertilsson, Solution Team Lead,

and Gustaf Nilsson Kotte, Web Developer, IKEA 46

Case Studies & Industry Examples | 9

Case Study: Team-Focused Office Space at CDL—

Michael Lambert, Head of Development, and Andy Rubio,

Development Team Leader, CDL 50

Case Study: Stream-Aligned Office Layout for

Flow-Based Collaboration at Auto Trader—

Dave Whyte, Operations Engineering Lead, and

Andy Humphrey, Head of Customer Operations, Auto Trader 53

Chapter 4

Industry Example: Spotify—Henrik Kniberg, Agile/Lean Coach,

and Anders Ivarsson, Organizational Coach, Spotify 63

Industry Example: Feature Teams Supported by Cross-

Subsystem Functions at Ericsson—Wolfgang John,

Research Leader, Ericsson 68

Industry Example: DevOps Team Topologies at a Healthcare

Organization—Pulak Agrawal, DevOps Manager and

Technology Architect, Accenture 75

Case Study: Evolution of Team Topologies at TransUnion (Part 1)—

Ian Watson, Head of DevOps, TransUnion 76

Chapter 5

Case Study: Strictly Independent Service Teams at Amazon 82

Case Study: Engineering Enablement Team within a Large

Legal Organization—Robin Weston, Engineering Leader,

BCG Digital Ventures 88

Case Study: Sky Betting & Gaming—Platform Feature Teams (Part 1)—

Michael Maibaum, Chief Architect, Sky Betting & Gaming 94

Case Study: Evolving Highly Responsive IT Operations at

Auto Trader—Dave Whyte, Operations Engineering Lead, and

Andy Humphrey, Head of Customer Operations, Auto Trader 97

Chapter 6

Case Study: Finding Good Software Boundaries at Poppulo—

Stephanie Sheehan, VP of Operations, and Damien Daly,

Director of Engineering, Poppulo 121

Chapter 7

Case Study: Team Interaction Diversity at IBM around 2014—

Eric Minick, Program Director for Continuous Delivery, IBM 146

Case Studies & Industry Examples | 10

Chapter 8

Case Study: Adoption of Kubernetes to Drive Organizational Change

at uSwitch—Paul Ingles, Head of Engineering, uSwitch 155

Case Study: Evolution of Team Topologies at TransUnion (Part 2)—

Dave Hotchkiss, Platform Build Manager, TransUnion 157

Case Study: Sky Betting and Gaming—Platform Feature Teams

(Part 2)—Michael Maibaum, Chief Architect, Sky Betting

& Gaming 162

Stream-aligned
team

Complicated-
subsystem team

Platform team

Collaboration

Four Team Types Three Interaction Modes

Facilitating

X-as-a-Service

Enabling team

Figure 0.1: The Four Team Types and Three Interaction Modes

Team Topologies | 11

Team Topologies | 12

Actual Comms

Isolated

Figure 1.1: Org Chart with Actual Lines of Communication

In practice, people communicate laterally or “horizontally” with people from

other reporting lines in order to get work done. This creativity and problem solving

needs to be nurtured for the benefit of the organization, not restricted to optimize

for top-down/bottom-up communication and reporting.

Team Topologies | 13

Figure 1.2: Obstacles to Fast Flow

Obstacles to

Fast Flow

Disengaged Teams

Pushing Against
Conway’s Law

Painful Re-Org
Every Few Years

Flow Is Blocked

Software Too
Big for Teams

Too Many
Surprises

Confusing Org
Design Options

Team Pulled
in Many

Directions

Team Topologies | 14

Team

A

Front-End

Dev

Back-End

Dev

DBA Ops

Team

B

Team

C

Team

D

Figure 2.1: Four Teams Working on a Software System

Four separate teams consisting of front-end and back-end developers work on a

software system. Front-end devs communicate only with back-end devs, who

communicate with a single DBA for the database changes.

Team Topologies | 15

Figure 2.2: Software Architecture from Four-Team Organization

Four separate applications, each with a separate user interface (UI) and a back-

end application tier that communicate with a single shared database. This reflects

and matches the team communication architecture from Figure 2.1;

 the diagram has simply been rotated ninety degrees.

Application 1 Application 2 Application 3 Application 4

UI

App
Tier

Core DB

Ops

Team Topologies | 16

Client

API

Data

Store

Client

API

Data

Store

Client

API

Data

Store

Client

API

Data

Store

Microservice

A

Microservice

B

Microservice

C

Microservice

D

Figure 2.3: Microservices Architecture with Independent Services and Data Stores

A microservices-based architecture with four separate services, each with its

own data store, API layer, and front-end client.

Team Topologies | 17

Team

A

Team

B

Team

C

Team

D

App Dev API Dev DB Dev

App Dev API Dev DB Dev

App Dev API Dev DB Dev

App Dev API Dev DB Dev

Microservice

A

Microservice

B

Microservice

C

Microservice

D

Figure 2.4: Team Design for Microservices Architecture with

Independent Services and Data Stores

An organization design that anticipates the homomorphic force behind Conway’s

law to help produce a software architecture with four independent microservices.

(Again, this is basically the diagram in Figure 2.3 rotated ninety degrees.)

Team Topologies | 18

High bandwidth: in team

Mid bandwidth: between
“paired” teams

Low bandwidth: between
most teams

Figure 2.5: Inter-Team Communication

Communication within teams is high bandwidth. Communication between two

“paired” teams can be mid bandwidth. Communication between most teams

should be low bandwidth.

Team Topologies | 19

5 15 50 150 500

Figure 3.1: Scaling Teams Using Dunbar’s Number

Organizational groupings should follow Dunbar’s number, beginning with around

five people (or eight for software teams), then increasing to around fifteen people,

then fifty, then 150, then 500, and so on.

Team Topologies | 20

BEFORE

Team A

AFTER

Domain 2
(complex)

Domain 2
(complex)

Domain 4
(complex)

Domain 4
(complex)

Domain 1
(complicated)

Domain 1
(complicated)

Domain 3
(complicated)

Domain 3
(complicated)

Team 3

Team 1

Team 4

Team 2

Figure 3.2: No More than One Complicated or Complex Domain per Team

Before: a larger team is spread thin across four domains (two complicated and two complex)

and struggles to perform well. Intra-team morale is negatively affected, with frequent context

switches and individual disengagement. After: with multiple smaller teams each focusing on a

single domain, motivation rises and the team delivers faster and more predictably.

Low bandwidth inter-team collaboration allows solving occasional issues affecting two

or more domains.

Team Topologies | 21

A B

Teams

Team 1

Individuals

Typical Software

Subsystem

Boundaries

Team 3

C

D E

F

Team-First

Software Subsystem

Boundaries

Figure 3.3: Typical vs. Team-First Software Subsystem Boundaries

Team Topologies | 22

Closed-off
meeting room(s)

Squad areas offset to provide squad
standup or whiteboarding space

Partition

Figure 3.4: Office Layout at CDL

Team Topologies | 23

Figure 4.1: Organization not Optimized for Flow of Change

Traditional flow of change in an organization not optimized for flow, with a

series of groups owning different activities and handing over the work to the next team.

No information flows back from the live systems into teams building the software.

Dev Test Transition

HANDOVER

BAU
LIVE

Team Topologies | 24

Stream-Aligned Team

Rapid
Feedback

LIVE

Figure 4.2: Organization Optimized for Flow of Change

Organizations set up for fast flow avoid hand-offs by keeping work within the

stream-aligned team, and they ensure that the rich set of operational information

flows back into the team.

Team Topologies | 25

SRE

Team

Figure 4.3: Relationship between SRE Team and Application Team

Team Topologies | 26

E
n
gi
n
ee
ri
n
g
M
at
ur
it
y

Org Size or Software Scale

End-to-end
ownership
teams with
regular

collaboration

Both end-to-end
and specialized
teams focused
on reliability

Specialized
teams with
strong

collaboration

Specialized
teams relying
on a Platform-
as-a-Service

Low High

Low High

H
ig
h

Lo
w

H
ig
h

Lo
w

Figure 4.4: Influence of Size and Engineering Maturity on Choice of Topologies

Organization size (or software scale) and engineering discipline influence the

effectiveness of team interaction patterns.

Team Topologies | 27

Complicated-subsystem team

Enabling team

Platform team

Stream-aligned team

Figure 5.1: The Four Fundamental Team Topologies

Team Topologies | 28

Logical Platform

Flow

Figure 5.2: Platform Composed of Several Fundamental Team Topologies

In a large organization, the platform is composed of several other fundamental

team topologies: stream-aligned Dev teams, complicated-subsystem teams,

and a lower-level platform.

Team Topologies | 29

Figure 5.3: Traditional Infrastructure Team Organization

Many traditional infrastructure teams (on the right) blocked flow by being responsible

for all changes to production infrastructure, including application changes, frequently gated

by ITIL change processes. Work from Dev teams (on the left) was handed over to infrastructure

or Ops teams for deployment, preventing flow.

Flow

Handover

Dev Teams Infrastructure

Team Topologies | 30

Call Center/Service Desk

Swarm for
Incident Resolution

Stream-Aligned Dev Team

Service Experience Team

Stream Area

Figure 5.4: Support Teams Aligned to Stream of Change

The new model for support teams: aligned to the flow of change,

usually paired with one or more stream-aligned Dev teams.

Incidents are handled with dynamic “swarming.”

Team Topologies | 31

Figure 6.1: Mobile, Cloud, and IoT Technology Fracture Plane Scenario

With three very disparate technologies (mobile, cloud, and IoT), an organization

must decide on an approach to fracture planes that makes sense based on

the cognitive load and the change cadence in each area.

Cloud as Platform

Embedded IoT Device as Platform

Team Topologies | 32

Collaboration X-as-a-Service

Figure 7.1: Collaboration vs. X-as-a-Service

Collaboration means explicitly working together on defined areas. X-as-a-Service

means one team consumes something “as a service” from another team.

Figure 7.2: The Three Team Interaction Modes

Collaboration mode is shown with diagonal cross-hatching, X-as-a-Service

mode is shown with brackets, and facilitating is shown with dots.

FacilitatingX-as-a-ServiceCollaboration

Figure 7.3: Team Interaction Modes Scenario

Stream-aligned Team A collaborates with complicated-subsystem Team B

(shown with cross-hatching) while also consuming the platform provided by Team

C, using the X-as-a-Service mode (shown with brackets).

X-as-a-Service

Collaboration

A B

C

Stream-Aligned Team

Platform Team

Complicated-
Subsystem Team

Team Topologies | 33

Advantages Disadvantages

• Rapid innovation and discovery

• Fewer hand-offs

• Wide, shared responsibility for

each team

• More detail/context needed

between teams, leading to higher

cognitive load

• Possible reduced output during

collaboration compared to before

Constraint: A team should use collaboration mode with, at most, one other team

at a time. A team should not use collaboration with more than one team at the

same time.

Typical Uses: Stream-aligned teams working with complicated-subsystem teams;

stream-aligned teams working with platform teams; complicated-subsystem

teams working with platform teams

Table 7.1: Advantages and Disadvantages of Collaboration Mode

Team Topologies | 34

X-as-a-Service

Figure 7.4: X-as-a-Service Team Interaction Mode

In this case, the team on the right is providing something “as a service” to the team on the left

(perhaps an API, some developer tooling, or even an entire platform).

Table 7.2: Advantages and Disadvantages of X-as-a-Service Mode

Advantages Disadvantages

• Clarity of ownership with clear

responsibility boundaries

• Reduced detail/context needed

between teams, so cognitive load

is limited

• Slower innovation of the boundary

or API

• Danger of reduced flow if the

boundary or API is not effective

Constraint: A team should expect to use the X-as-a-Service interaction with

many other teams simultaneously, whether consuming or providing a service.

Typical Uses: Stream-aligned teams and complicated-subsystem teams con-

suming Platform-as-a-Service from a platform team; stream-aligned teams and

complicated-subsystem teams consuming a component or library as a service

from a complicated-subsystem team.

Team Topologies | 35

Table 7.3: Advantages and Disadvantages of Facilitation Mode

Advantages Disadvantages

• Unblocking of stream-aligned

teams to increase flow

• Detection of gaps and misaligned

capabilities or features in compo-

nents and platforms

• Requires experienced staff to not

work on “building” or “running”

things

• The interaction may be unfamiliar

or strange to one or both teams

involved in facilitation

Constraint: A team should expect to use the facilitating interaction mode with

a small number of other teams simultaneously, whether consuming or providing

the facilitation.

Typical Uses: An enabling team helping a stream-aligned, complicated-subsys-

tem, or platform team; or a stream-aligned, complicated- subsystem, or platform

team helping a stream-aligned team.

Table 7.4: Team interaction modes of the fundamental team topologies

Collaboration X-as-a-Service Facilitating

Stream-aligned Typical Typical Occasional

Enabling Occasional Typical

Complicated-subsystem Occasional Typical

Platform Occasional Typical

Team Topologies | 36

Figure 7.5: Primary Interaction Modes for the Four Fundamental Team Topologies

Stream-aligned teams use X-as-a-Service or collaboration; enabling teams

use facilitation; complicated-subsystem teams use X-as-a-Service; platform

teams use X-as-a-Service for teams that consume the platform.

Enabling
Team

Complicated-
Subsystem Team

Stream-Aligned Team

Stream-Aligned Team

Platform Team

Team Topologies | 37

Figure 7.6: Team Interaction Modes at IBM around 2014

Team interaction modes at IBM around 2014, with a team of “DevOps advocates”

coordinating and facilitating learning and team changes.

DevOps
Advocates

Team Topologies | 38

Cloud Embedded

• Test Environments

• Hardware Limitations

Embedded
Stream-Aligned

Team

Cloud Platform Embedded Platform

Cloud
Stream-Aligned

Team

Continual Close
Collaboration

2

?

31

Figure 8.1: Collaboration between Cloud and Embedded Teams

Two teams (“cloud” and “embedded”) collaborate to share practices and increase

awareness. The results will include heightened awareness of the options for future

team interactions: (1) treat the cloud software as a platform for the embedded team

to use, (2) treat the embedded devices as a platform for the cloud team to use, or (3)

continue with close collaboration.

Team Topologies | 39

Figure 8.2: System-Build and Platform-Build Team at TransUnion

A team from Dev (SB) and a team from Ops (PB) exploring close interactions.

Figure 8.3: System-Build and Platform-Build Team Collaboration at TransUnion

The two teams, SB and PB, collaborating closely.

SB PB

Expected in 6+ months; Actual realization 2 years

Integrate toward
Dev and SB

Figure 8.4: System-Build and Platform-Build Teams Merged at TransUnion

The SB and PB teams merged, helping to bring Dev and Ops together.

����v PB Ops

�xpected E�������� 	
��)

DevOps
(SB + PB)

�xpected in 12+ months; Actual realization 4 years

SB + PB fully integrated
but still recognized as
a separate team

Team Topologies | 40

Figure 8.5: System-Build and Platform-Build Teams Merged Back into

Dev and Ops at TransUnion

The SB and PB teams merged back into Dev and Ops, providing Platform-as-a-Service.

2018

SB + PB merged into
product teams

Team Topologies | 41

Discover

Use

Use

Establish

Team 3

Establish

Discover

Team 2

Team 1

Team N

Figure 8.7: Evolution of Team Topologies in an Enterprise

Team 1 continues to collaborate with a platform team, discovering new patterns and

ways of using new technologies. This discovery activity eventually enables Team 2

to adopt an X-as-a-Service relationship with the platform team. Later, Teams 3 and

beyond adopt a later version of the platform, using it as a service without having to

collaborate closely with the platform team.

Discover Establish

Figure 8.6: Evolution of Team Topologies

The evolution of Team Topologies from close collaboration to limited collaboration

(discovery) through to X-as-a-Service for established, predictable delivery.

Team Topologies | 42

Flow

Outer Platform

Flow

Platformize + Telemetry

Stream

1

2

3

Stream-
Aligned
Team

Stream-
Aligned
Team

Stream-
Aligned
Team

Stream-Aligned Team

Stream-Aligned Team

Inner Platform

Figure 8.8: Example of a “Platform Wrapper”

Increase flow predictability in higher-level business services (streams) through

the use of a “platform wrapper” to “platformize” the lower-level services and APIs,

allowing the streams to treat all their dependencies as a single platform with a

holistic roadmap and consistent DevEx. The streams also have rich telemetry

 to track flow and resource usage of the platform.

Team Topologies | 43

Sensing

Blind!

New Service

Old System

Team Z

Team A

???“Maintenance (BAU)”

Dev Ops

Figure 8.9: New-Service and “Business as Usual” (BAU) Teams

Having separate teams for “new stuff” and BAU tends to prevent learning,

improvements and ability to self-steer. It is a non-cybernetic approach.

Figure 8.10: Side-by-Side New Service and BAU Teams

A cybernetic approach to maintaining older systems has a single stream-aligned

team (or pair of teams) developing and running the new service and the older

systems, enabling the team to retro-fit newer telemetry to the older system and

increase the fidelity of the sensing from both systems.

SensingTeam A

�ew Service

Old Service (BAU)

Dev Ops

Dev Ops

Team Topologies | 44

Figure 9.1: Core Ideas of Team Topologies

Team
Topologies

Conway’s Law

4 Fundamental
Topologies Team

Interaction
Modes

Team APITeam First

Organizational Sensing

Topology
Evolution

Glossary | 45

GLOSSARY

API (application programming
interface): a description and
specification for how to interact pro-
grammatically with software.

application monolith: a single, large
application with many dependencies
and responsibilities that possibly
exposes many services and/or different
user journeys.

bounded context: a unit for parti-
tioning a larger domain (or system)
model into smaller parts, each of which
represents an internally consistent
business domain area.

Brooks’s law: law coined by Fred
Brooks which states that adding new
people to a team doesn’t immediately
increase the capacity of a team.

cognitive load: the amount of working
memory being used.

collaboration mode: team(s) working
closely together with another team.

complicated-subsystem team:
responsible for building and maintain-
ing a part of the system that depends
heavily on specialist knowledge.

Conway’s law: law coined by Mel
Conway that states that system design
will copy the communication structures
of the organization which designs it.

domain complexity: how complex
the problem is that is being solved via
software.

Dunbar’s number: coined by anthro-
pologist Robin Dunbar, which states
that fifteen is the limit of people one
person can trust; of those, only around
five can be known and trusted closely.

enabling team: team(s) composed
of specialists in a given technical (or
product) domain; they help bridge the
capability gap.

extraneous cognitive load: relates to
the environment in which the task is
being done (e.g., “How do I deploy this
component, again?” “How do I config-
ure this service?”).

facilitating mode: team(s) helping (or
being helped by) another team to clear
impediments.

flow of change: a stream of related
updates or alterations to a software
service or system, usually aligned to
user goals or other core focus of the
business.

Glossary | 46

fracture plane: a natural “seam” in
the software system that allows it to be
easily split into two or more parts.

germane cognitive load: relates to
aspects of the task that need special
attention for learning or high perfor-
mance (e.g., “How should this service
interact with the ABC service?”).

intrinsic cognitive load: relates to
aspects of the task fundamental to the
problem space (e.g., “What is the struc-
ture of a Java class?” “How do I create a
new method?”).

joined-at-the-database monolith:
composed of several applications or
services all coupled to the same data-
base schema, making them difficult to
change, test, and deploy separately.

monolithic build: uses one gigantic
continuous integration (CI) build to get
a new version of a component.

monolithic model: software that
attempts to force a single domain
language and representation (format)
across many different contexts.

monolithic release: a set of smaller
components bundled together into a
“release.”

monolithic thinking: “one-size-fits-
all” thinking for teams that leads to
unnecessary restrictions on technol-
ogy and implementation approaches
between teams.

monolithic workplace: a single office
layout pattern for all teams and individ-
uals in the same geographic location.

organizational sensing: teams and
their internal and external communica-
tion are the “senses” of the organization
(sight, sound, touch, smell, taste).

platform team: enables stream-
aligned teams to deliver work with
substantial autonomy.

reverse Conway maneuver: organi-
zations should evolve their team and
organizational structure to achieve the
desired architecture.

stream-aligned team: a team aligned
to a single, valuable stream of work.

team API: an API surrounding each
team.

Team Topologies: model for orga-
nizational design that provides a key
technology-agnostic mechanism for
modern software-intensive enterprises
to sense when a change in strategy
is required (either from a business or
technology point of view).

thinnest viable platform: a careful
balance between keeping the platform
small and ensuring that the platform
is helping to accelerate and simplify
software delivery for teams building on
the platform.

X-as-a-Service mode: consuming or
providing something with minimal
collaboration.

Recommended Reading | 47

RECOMMENDED READING

Key Management Concepts and Practices for
Reliable, Fast Flow

• Accelerate: The Science of Lean Software and DevOps: Building and Scaling

High Performing Technology Organizations by Nicole Forsgren, PhD,

Jez Humble, and Gene Kim (Portland, Oregon: IT Revolution, 2018).

• Designing Delivery: Rethinking IT in the Digital Service Economy by Jeff

Sussna (Beijing: O’Reilly Media, 2015).

• Fearless Change: Patterns for Introducing New Ideas by Mary Lynn

Manns and Linda Rising (Boston: Addison Wesley, 2004).

Key Practices and Approaches for Organizations,
Software, and Systems

• Team Genius: The New Science of High-Performing Organizations by

Rich Karlgaard and Michael S. Malone (New York, NY: HarperBusi-

ness, 2015).

• Agile Development in the Large: Diving into the Deep by Jutta Eckstein

(New York: Dorset House Publishing Co Inc.,US, 2004).

• Domain-Driven Design: Tackling Complexity in the Heart of Software by

Eric Evans (Boston: Addison-Wesley, 2003).

• Thinking in Promises by Mark Burgess (Sebastopol, California: O’Reilly

Media, 2015).

Key Engineering Practices that Enable Fast Flow

• Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation by Jez Humble and David Farley (Upper Sad-

dle River, NJ: Addison Wesley, 2010).

Recommended Reading | 48

• Release It! Design and Deploy Production-Ready Software by Michael T.

Nygard (Raleigh, North Carolina: O’Reilly, 2018).

• Team Guide to Software Operability, Team Guide Series 1, by Matthew

Skelton and Rob Thatcher (Leeds, UK: Conflux Books, 2016).

• Team Guide to Software Testability, Team Guide Series 3, by Ash Win-

ter and Rob Meaney (Leeds, UK: Conflux Books, 2018).

• Team Guide to Software Releasability, Team Guide Series 4, by Manuel

Pais and Chris O’Dell (Leeds, UK: Conflux Books, 2018).

References | 49

REFERENCES

Ackoff, Russell L. Re-Creating the Corporation: A Design of Organizations for the 21st Century.
Oxford: Oxford University Press, 1999.

Ackoff, Russell L., Herbert J. Addison, and Sally Bibb. Management F-Laws: How Organizations

Really Work. United Kindgom, Triarchy Press, 2007.

Adams, Paul. “Scaling Product Teams: How to Build and Structure for Hypergrowth.” Inside Inter-

com (blog). January 28, 2015. https://www.intercom.com/blog/how-we-build-software/.

Adkins, Lyssa. Coaching Agile Teams: A Companion for ScrumMasters, Agile Coaches, and Project

Managers in Transition. Upper Saddle River, NJ: Addison-Wesley Professional, 2010.

Allen, Thomas J. Managing the Flow of Technology. Cambridge, MA: MIT Press, 1984.

Allspaw, John. “Blameless PostMortems and a Just Culture.” Code as Craft (blog), May 22, 2012.
https://codeascraft.com/2012/05/22/blameless-postmortems/.

Almeida, Thiago. “DevOps Lessons Learned at Microsoft Engineering.” InfoQ, May 22, 2016.
https://www.infoq.com/articles/devops-lessons-microsoft.

Ancona, Deborah Gladstein, and David F. Caldwell. “Demography and Design: Predictors of
New Product Team Performance.” Organization Science 3 no. 3 (1992): 321–341. https://doi
.org/10.1287/orsc.3.3.321.

Axelrod, Robert A. Complexity of Cooperation: Agent-Based Models of Competition and Collabora-

tion. Princeton, NJ: Princeton University Press, 1997.

Bauernberger, Joachim. “DevOps in Telecoms—Is It Possible?” Telecom Tech News, October 1, 2014.
http://www.telecomstechnews.com/news/2014/oct/01/devops-telecoms-it-possible/.

Beal, Helen. “The Industry Just Can’t Decide about DevOps Teams.” InfoQ, October 26, 2017.
https://www.infoq.com/news/2017/10/devops-teams-good-or-bad.

Beer, Stafford. Brain of the Firm, 2nd edition. Chichester, UK: John Wiley & Sons, 1995.

Bennett, Drake. “The Dunbar Number, From the Guru of Social Networks.” Bloomberg.com,
January 11, 2013. http://www.bloomberg.com/news/articles/2013-01-10/the-dunbar
-number-from-the-guru-of-social-networks.

Bernstein, Ethan, John Bunch, Niko Canner, and Michael Lee. “Beyond the Holacracy Hype.”
Harvard Business Review, July 1, 2016. https://hbr.org/2016/07/beyond-the-holacracy-hype.

Bernstein, Ethan, Jesse Shore, and David Lazer. “How Intermittent Breaks in Interaction
Improve Collective Intelligence.” Proceedings of the National Academy of Sciences 115 no. 35
(August, 2018): 8734–8739. https://doi.org/10.1073/pnas.1802407115.

References | 50

Bernstein, Ethan S., and Stephen Turban. “The Impact of the ‘Open’ Workspace on Human
Collaboration.” Philosophical Transactions of the Royal Society B 373 no. 1753 (2018). https://
doi.org/10.1098/rstb.2017.0239.

Betz, Charles. Managing Digital: Concepts and Practices. The Open Group, 2018.

Beyer, Betsy, Jennifer Petoff, Chris Jones, and Niall Richard Murphy (eds). Site Reliability Engineer-

ing: How Google Runs Production Systems. Sebastopol, CA: O’Reilly, 2016.

Blalock, Micah. “Of Mustard Seeds and Microservices.” Credera (blog), May 6, 2015. https://www
.credera.com/blog/technology-insights/java/mustard-seeds-microservices/.

Bosch, Jan. “On the Development of Software Product-Family Components.” In Software Product

Lines, edited by Robert L. Nord, 146–164. Berlin: Springer, 2004.

Bottcher, Evan. “What I Talk About When I Talk About Platforms.” MartinFowler.com (blog),
March 5, 2018. https://martinfowler.com/articles/talk-about-platforms.html.

Brandolini, Alberto. “Strategic Domain Driven Design with Context Mapping.” InfoQ, November
25, 2009. https://www.infoq.com/articles/ddd-contextmapping.

Bright, Peter. “How Microsoft Dragged Its Development Practices into the 21st Century.” Ars

Technica, August 6, 2014. https://arstechnica.com/information-technology/2014/08/how
-microsoft-dragged-its-development-practices-into-the-21st-century/.

Brooks, Fred. The Mythical Man-Month: Essays on Software Engineering. Boston, MA: Addison-
Wesley, 1995.

Brown, Simon. “Are You a Software Architect?” InfoQ, February 9, 2010. https://www.infoq.com
/articles/brown-are-you-a-software-architect.

Bryson, Brandon. “Architects Should Code: The Architect’s Misconception.” InfoQ, August 6,
2015. https://www.infoq.com/articles/architects-should-code-bryson.

Burgess, Mark. Thinking in Promises: Designing Systems for Cooperation. Sebastopol, CA: O’Reilly
Media, 2015.

Carayon, Pascale. “Human Factors of Complex Sociotechnical Systems.” Applied Ergonomics, Spe-

cial Issue: Meeting Diversity in Ergonomics 37 no. 4 (2006): 525–535. https://doi.org/10.1016/j
.apergo.2006.04.011.

Casella, Karen. “Improving Team Productivity by Reducing Context Switching | LinkedIn.”
LinkedIn Pulse, October 26, 2016. https://www.linkedin.com/pulse/improving-team
-productivity-reducing-context-karen-casella/.

Chaudhary, Mukesh. “Working with Component Teams: How to Navigate the Complexity-
Scrum Alliance.” ScrumAlliance.org, September 5, 2012. https://www.scrumalliance.org
/community/member-articles/301.

Cherns, Albert. “The Principles of Sociotechnical Design.” Human Relations 29 no. 8 (1976):
783–792. https://doi.org/10.1177/001872677602900806.

Clegg, Chris W. “Sociotechnical Principles for System Design.” Applied Ergonomics 31 no. 5
(2000): 463–477. https://doi.org/10.1016/S0003-6870(00)00009-0.

Cockcroft, Adrian. “Goto Berlin—Migrating to Microservices (Fast Delivery).” Presented at
the GOTO Berlin conference, Berlin, November 15, 2014. http://www.slideshare.net
/adriancockcroft/goto-berlin.

Cohn, Mike. “Nine Questions To Assess Scrum Team Structure.” Mountain Goat Software

(blog), March 9, 2010. https://www.mountaingoatsoftware.com/blog/nine-questions-to
-assess-team-structure.

References | 51

Conway, Melvin E. “How Do Committees Invent? Design Organization Criteria.” Datamation,
1968.

Conway, Mel. “Toward Simplifying Application Development, in a Dozen Lessons,” MelConway
.com, January 3, 2017. http://melconway.com/Home/pdf/simplify.pdf.

Cooley, Faith. “Organizational Design for Effective Software Development.” SlideShare, posted
by Dev9Com, November 12, 2014. http://www.slideshare.net/Dev9Com/organizational
-design-for-effective-software-development.

Coplien, James O., and Neil Harrison. Organizational Patterns of Agile Software Development.
Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

Cottmeyer, Mike. “Things to Consider When Structuring Your Agile Enterprise.” Lead-

ingAgile (blog), February 5, 2014. https://www.leadingagile.com/2014/02/
structure-agile-enterprise/.

Coutu, Diane. “Why Teams Don’t Work.” Harvard Business Review, May 1, 2009. https://hbr
.org/2009/05/why-teams-dont-work.

Crawford, Jason. “Amazon’s ‘Two-Pizza Teams’: The Ultimate Divisional Organization.”
JasonCrawford.org (blog), July 30, 2013. http://blog.jasoncrawford.org/two-pizza-teams.

Cunningham, Ward. “Understand the High Cost of Technical Debt by Ward Cunningham—
DZone Agile.” Dzone.com, August 24, 2013. https://dzone.com/articles/understand-high
-cost-technical.

Cusumano, Michael A. Microsoft Secrets: How the World’s Most Powerful Software Company Creates

Technology, Shapes Markets and Manages People, 1st Touchstone edition. New York: Simon
and Schuster, 1988.

Cutler, John. “12 Signs You’re Working in a Feature Factory.” Hacker Noon, November 17, 2016.
https://hackernoon.com/12-signs-youre-working-in-a-feature-factory-44a5b938d6a2.

Davies, Rachel, and Liz Sedley. Agile Coaching. Raleigh, NC: Pragmatic Bookshelf, 2009.

DeGrandis, Dominica. Making Work Visible: Exposing Time Theft to Optimize Workflow. Portland,
OR: IT Revolution Press, 2017.

DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and Teams, 2nd revised edi-
tion. New York, NY: Dorset, 1999.

Deming, W. Edwards. Out of the Crisis. Cambridge, MA: MIT Press, 1986.

DeSanctis, Gerardine, and Marshall Scott Poole. “Capturing the Complexity in Advnaced Technol-
ogy Use: Adaptive Structuration Theory.” Organization Science 5 no. 2 (May 1994): 121–147.

Dogan, Jaana B. “The SRE Model.” Medium, July 31, 2017. https://medium.com/@rakyll/the
-sre-model-6e19376ef986.

Doorley, Scott, and Scott Witthoft. Make Space: How to Set the Stage for Create Collaboration.
Hoboken, NJ: John Wiley & Sons, 2012.

Driskell, James E., and Eduardo Salas. “Collective Behavior and Team Performance.” Human Fac-

tors 34 no. 3 (1992): 277–288. https://doi.org/10.1177/001872089203400303.

Driskell, James E., Eduardo Salas, and Joan Johnston. “Does Stress Lead to a Loss of Team Per-
spective?” Group Dynamics: Theory, Research, and Practice 3, no. 4 (1999): 291–302.

Drucker, Peter. The Daily Drucker: 366 Days of Insight and Motivation for Getting the Right Things

Done. New York: HarperCollins, 2018.

Dunbar, R. I. M. “Neocortex Size as a Constraint on Group Size in Primates.” Journal of Human

Evolution 22, no. 6 (1992): 469–493. https://doi.org/10.1016/0047-2484(92)90081-J.

References | 52

Dunbar, Professor Robin. How Many Friends Does One Person Need?: Dunbar’s Number and Other

Evolutionary Quirks. London: Faber & Faber, 2010.

Eckstein, Jutta. Agile Development in the Large: Diving into the Deep. New York: Dorset, 2004.

Eckstein, Jutta. “Architecture in Large Scale Agile Development.” In Agile Methods. Large-Scale

Development, Refactoring, Testing, and Estimation, edited by Torgeir Dingsøyr, Nils Brede
Moe, Roberto Tonelli, Steve Counsell, Cigdem Gencel, and Kai Petersen. Switzerland,
Springer International Publishing, 2014.

Edmondson, Amy. “Psychological Safety and Learning Behavior in Work Teams.” Administrative

Science Quarterly 44 no. 2 (1999): 350–383. https://doi.org/10.2307/2666999.

Edmondson, Amy C. Managing the Risk of Learning: Psychological Safety in Work Teams. In Inter-

national Handbook of Organization Teamwork and Cooperative Working, edited by Michael A.
West, Dean Tjosvold, and Ken G. Smith. Hoboken, NJ: Wiley & Sons, 2003.

Edwards, Damon. “What is DevOps?” Dev2Ops.org, February 23, 2010. http://dev2ops.org
g/2010/02/what-is-devops.

The Essential Elements of Enterprise PaaS. Palo Alto, CA: Pivotal, 2015. https://content.pivotal.io
/white-papers/the-essential-elements-of-enterprise-paas.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston, MA:
Addison Wesley, 2003.

Evans, William. “The Need for Speed: Enabling DevOps through Enterprise Architecture |
#DOES16.” SlideShare, posted by William Evans, November 2, 2016. https://www.slideshare.
net/willevans/the-need-for-speed-enabling-devops-through-enterprise-architecture.

Fan, Xiaocong, Po-Chun Chen, and John Yen. “Learning HMM-Based Cognitive Load Models
for Supporting Human-Agent Teamwork.” Cognitive Systems Research 11, no. 1 (2010):
108–119.

Feathers, Michael. Working Effectively with Legacy Code. Upper Saddle River, NJ: Prentice Hall,
2004.

Forrester, Russ, and Allan B. Drexler. “A Model for Team-Based Organization Performance.” The

Academy of Management Executive 13 no. 3 (1999), 36–49.

Forsgren, PhD, Nicole, Jez Humble, and Gene Kim. Accelerate: The Science of Lean Software and

Devops: Building and Scaling High Performing Technology Organizations. Portland, Oregon: IT
Revolution Press, 2018.

Fowler, Martin. “Bliki: BoundedContext.” MartinFowler.com (blog), January 15, 2014. https://
martinfowler.com/bliki/BoundedContext.html.

Fowler, Martin. “Bliki: MicroservicePrerequisites.” MartinFowler.com (blog), August 28, 2014.
https://martinfowler.com/bliki/MicroservicePrerequisites.html.

Fried, Jason, and David Heinemeir Hansson. Remote: Office Not Required. NY: Crown Business,
2013.

Gothelf, Jeff, and Josh Seiden. Sense and Respond: How Successful Organizations Listen to Custom-

ers and Create New Products Continuously. Boston, Massachusetts: Harvard Business Review
Press, 2017.

Greenleaf, Robert K. The Servant as Leader, Revised Edition. Atlanta, GA: The Greenleaf Center
for Servant Leadership, 2015.

“Guide: Understand Team Effectiveness.” re:Work website, https://rework.withgoogle.com/guides
/understanding-team-effectiveness/steps/define-team/.

References | 53

Hall, Jon. “ITSM, DevOps, and Why Three-Tier Support Should Be Replaced with Swarming.”
Medium, December 17, 2016. https://medium.com/@JonHall_/itsm-devops-and-why-the
-three-tier-structure-must-be-replaced-with-swarming-91e76ba22304.

Hastie, Shane. “An Interview with Sam Guckenheimer on Microsoft’s Journey to Cloud Cadence.”
InfoQ, October 17, 2014. https://www.infoq.com/articles/agile2014-guckenheimer.

HBS Communications. “Collaborate on Complex Problems, but Only Intermittently.” Har-

vard Gazette (blog), August 15, 2018. https://news.harvard.edu/gazette/story/2018/08
/collaborate-on-complex-problems-but-only-intermittently/.

Helfand, Heidi Shetzer. Dynamic Reteaming: The Art and Wisdom of Changing Teams. Heidi
 Helfand, 2018.

Hoff, Todd. “Amazon Architecture.” High Scalability (blog), September 18, 2007. http://highscal
ability.com/blog/2007/9/18/amazon-architecture.html.

Holliday, Ben. “A ‘Service-Oriented’ Approach to Organisation Design.” FutureGov (blog),
September 25, 2018. https://blog.wearefuturegov.com/a-service-oriented-approach-to
-organisation-design-1e075be7f578.

Hoskins, Drew. “What Is It like to Be Part of the Infrastructure Team at Facebook?” Quora, last
updated February 15, 2015. https://www.quora.com/What-is-it-like-to-be-part-of-the
-Infrastructure-team-at-Facebook.

Humble, Jez. “There’s No Such Thing as a ‘Devops Team’.” Continuous Delivery (blog), October 19,
2012. https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/.

Humble, Jez, and David Farley. Continuous Delivery: Reliable Software Releases through Build, Test,

and Deployment Automation. Upper Saddle River, NJ: Addison Wesley, 2010.

Humble, Jez, Joanne Molesky, and Barry O’Reilly. Lean Enterprise: How High Performance Orga-

nizations Innovate at Scale. Sebastopol, CA: O’Reilly Media, 2015.

Ilgen, Daniel R., and John R. Hollenbeck. ‘Effective Team Performance under Stress and Normal
Conditions: An Experimental Paradigm, Theory and Data for Studying Team Decision Mak-
ing in Hierarchical Teams with Distributed Expertise’. DTIC Document, 1993. http://oai.dtic
.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA284683.

Ingles, Paul. “Convergence to Kubernetes.” Paul Ingles (blog), June 18, 2018. https://medium.com
/@pingles/convergence-to-kubernetes-137ffa7ea2bc.

innolution. n.d. “Feature Team Definition | Innolution.” Accessed October 14, 2018. https://
innolution.com/resources/glossary/feature-team

“DevOps Over Coffee—Adidas.” YouTube video, 32:03, posted by IT Revolution, July 3, 2018.
https://www.youtube.com/watch?v=oOjdXeGp44E&feature=youtu.be&t=1071.

Jang, Sujin. “Cultural Brokerage and Creative Performance in Multicultural Teams.” Organiza-

tion Science 28 no. 6 (2017): 993–1009. https://doi.org/10.1287/orsc.2017.1162.

Jay, Graylin, Joanne Hale, Randy Smith, David Hale, Nicholas Kraft, and Charles Ward. “Cyclo-
matic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship.”
Journal of Software Engineering & Applications 2 (January): 137–143. https://doi.org/10.4236
/jsea.2009.23020.

John, Wolfgang. “DevOps for Service Providers—Next Generation Tools.” Ericsson Research

Blog. December 7, 2015. https://www.ericsson.com/research-blog/cloud/devops-for-service
-providers-next-generation-tools/.

References | 54

Johnston, Joan H., Stephen M. Fiore, Carol Paris, and C. A. P. Smith. “Application of Cognitive
Load Theory to Developing a Measure of Team Decision Efficiency.” Military Psychology 3
(2003). https://www.tandfonline.com/doi/abs/10.1037/h0094967.

Karlgaard, Rich, and Michael S. Malone. Team Genius: The New Science of High-Performing Organi-

zations. New York, NY: HarperBusiness, 2015.

Kelly, Allan. Business Patterns for Software Developers. Chichester, UK: John Wiley & Sons, 2012.

Kelly, Allan. “Conway’s Law v. Software Architecture.” Dzone.com (blog), March 14, 2013.
https://dzone.com/articles/conways-law-v-software.

Kelly, Allan. “Conway’s Law & Continuous Delivery.” SlideShare, posted by Allen Kelly, April 9,
2014, https://www.slideshare.net/allankellynet/conways-law-continuous-delivery.

Kelly, Allan. “No Projects—Beyond Projects.” InfoQ, December 5, 2014. https://www.infoq.com
/articles/kelly-beyond-projects.

Kelly, Allan. Project Myopia: Why Projects Damage Software #NoProjects. Allan Kelly: 2018.

Kelly, Allan. “Return to Conway’s Law.” Allan Kelly Associates (blog), January 17, 2006. https://
www.allankellyassociates.co.uk/archives/1169/return-to-conways-law/.

Kersten, Mik. Project to Product: How to Survive and Thrive in the Age of Digital Disruption with the

Flow Framework. Portland, OR: IT Revolution Press, 2018.

Kim, Gene, Jez Humble, Patrick Debois, and John Willis. The DevOps Handbook: How to Create

World-Class Agility, Reliability, and Security in Technology Organizations. Portland, OR: IT
Revolution Press, 2016.

Kim, Dr. Kyung Hee, and Robert A. Pierce. “Convergent Versus Divergent Thinking.” In Encyclo-

pedia of Creativity, Invention, Innovation and Entrepreneurship, edited by Elias G. Carayannis,
245–250. New York: Springer, 2013.

Kitagawa, Justin. “Platforms at Twilio: Unlocking Developer Effectiveness.” InfoQ, October 18,
2018. https://www.infoq.com/presentations/twilio-devops

Kitson, Jon. “Squad Health Checks.” Sky Betting & Gaming Technology (blog), February 1, 2017.
https://technology.skybettingandgaming.com/2017/02/01/squad-health-checks/.

Kniberg, Henrik, and Anders Ivarsson. “Scaling Agile @ Spotify with Tribes, Squads, Chapters
& Guilds.” Crisp’s Blog. October 2012. https://blog.crisp.se/wp-content/uploads/2012/11
/SpotifyScaling.pdf.

Kniberg, Henrik. “Real-Life Agile Scaling.” Presented at the Agile Tour Bangkok, Thailand, November
21, 2015. http://blog.crisp.se/wp-content/uploads/2015/11/Real-life-agile-scaling.pdf.

Kniberg, Henrik. “Squad Health Check Model—Visualizing What to Improve.” Spotify Labs (blog),
September 16, 2014. https://labs.spotify.com/2014/09/16/squad-health-check-model/

Knight, Pamela. “Acquisition Community Team Dynamics: The Tuckman Model vs. the DAU
Model.” Proceedings from the 4th Annual Acquisition Research Symposium of the Naval Post-

graduate School (2007). https://apps.dtic.mil/dtic/tr/fulltext/u2/a493549.pdf.

Kotter, John P. “Accelerate!” Harvard Business Review, November 1, 2012. https://hbr.org/2012/11
/accelerate.

Kramer, Staci D. “The Biggest Thing Amazon Got Right: The Platform.” Gigaom, October 12, 2011.
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/.

Laloux, Frédéric. Reinventing Organizations: An Illustrated Invitation to Join the Conversation on

Next-Stage Organizations. Oxford, UK: Nelson Parker, 2016.

References | 55

Lane, Kim. “The Secret to Amazon’s Success—Internal APIs.” API Evangelist (blog), January 12,
2012. http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/.

Larman, Craig, and Bas Vodde. “Choose Feature Teams over Component Teams for Agility.”
InfoQ, July 15, 2008. https://www.infoq.com/articles/scaling-lean-agile-feature-teams.

Larman, Craig, and Bas Vodde. Large-Scale Scrum: More with LeSS. Upper Saddle River, NJ: Addi-
son-Wesley Professional, 2016.

Leffingwell, Dean. “Feature Teams vs. Component Teams (Continued).” Scaling Software Agility

(blog), May 2, 2011. https://scalingsoftwareagility.wordpress.com/2011/05/02/feature
-teams-vs-component-teams-continued/.

Leffingwell, Dean. “Organizing at Scale: Feature Teams vs. Component Teams – Part 3.” Scaling Soft-

ware Agility (blog), July 22, 2009. https://scalingsoftwareagility.wordpress.com/2009/07/22
/organizing-agile-at-scale-feature-teams-versus-component-teams-part-3/.

Leffingwell, Dean. Scaling Software Agility: Best Practices for Large Enterprises. Upper Saddle
River, NJ: Addison-Wesley Professional, 2007.

Lencioni, Patrick M. The Five Dysfunctions of a Team: A Leadership Fable. San Francisco, CA: John
Wiley & Sons, 2002.

Leveson, Nancy G. Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, MA:
MIT Press, 2017.

Levina, Natalia, and Emmanuelle Vaast. “The Emergence of Boundary Spanning Competence in
Practice: Implications for Information Systems’ Implementation and Use.” MIS Quarterly
29 no. 2 (June 2005): 335–363. https://papers.ssrn.com/abstract=1276022.

Lewis, James. “Microservices and the Inverse Conway Manoeuvre—James Lewis.” YouTube
video, 57:57, posted by NDC Conferences, February 16, 2017. https://www.youtube.com
/watch?v=uamh7xppO3E.

Lim, Beng-Chong, and Katherine J. Klein. “Team Mental Models and Team Performance: A Field
Study of the Effects of Team Mental Model Similarity and Accuracy.” Journal of Organiza-

tional Behavior 27, no. 4 (June 1, 2006): 403–418. https://doi.org/10.1002/job.387.

Linders, Ben. “Scaling Teams to Grow Effective Organizations.” InfoQ, August 11, 2016. https://
www.infoq.com/news/2016/08/scaling-teams.

Long, Josh. “GARY (Go Ahead, Repeat Yourself).” Tweet @starbuxman, May 25, 2016. https://
twitter.com/starbuxman/status/735550836147814400.

Lowe, Steven A. “How to Use Event Storming to Achieve Domain-Driven Design.” TechBeacon,
October 15, 2015. https://techbeacon.com/introduction-event-storming -easy-way-achieve
-domain-driven-design.

Luo, Jiao, Andrew H. Van de Ven, Runtian Jing, and Yuan Jiang. “Transitioning from a Hierar-
chical Product Organization to an Open Platform Organization: A Chinese Case Study.”
Journal of Organization Design 7 (January): 1. https://doi.org/10.1186/s41469-017-0026-x.

MacCormack, Alan, John Rusnak, and Carliss Y. Baldwin. “Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code.” Management

Science 52, no. 7 (2006): 1015–1030. https://doi.org/10.1287/mnsc.1060.0552.

MacCormack, Alan, Carliss Y. Baldwin, and John Rusnak. “Exploring the Duality Between
Product and Organizational Architectures: A Test of the ‘Mirroring’ Hypothesis.” Research

Policy 41, no. 8 (October 2012): 1309–1024. http://www.hbs.edu/faculty/Pages/item.
aspx?num=43260.

References | 56

Malan, Ruth. “Conway’s Law.” TraceintheSand.com (blog), February 13, 2008. http://traceinthe
sand.com/blog/2008/02/13/conways-law/.

Manns, Mary Lynn, and Linda Rising, Fearless Change: Patterns for Introducing New Ideas. Boston,
MA: Addison Wesley, 2004.

Marshall, Bob. “A Team Is Not a Group of People Who Work Together. A Team Is a Group of
People Who Each Put the Team before Themselves.” Tweet, @flowchainsensei, October 29,
2018. https://twitter.com/flowchainsensei/status/1056838136574152704.

McChrystal, General Stanley, David Silverman, Tantum Collins, and Chris Fussell. Team of

Teams: New Rules of Engagement for a Complex World. New York, NY: Portfolio Penguin, 2015.

Meadows, Donella. Leverage Points: Places to Intervene in a System. Hartland, VT: Sustainability
Institute, 1999. http://donellameadows.org/wp-content/userfiles/Leverage_Points.pdf.

“Microservices: Organizing Large Teams for Rapid Delivery.” SlideShare, posted by Pivotal,
August 10, 2016. https://www.slideshare.net/Pivotal/microservices-organizing-large-teams
-for-rapid-delivery.

Mihaljov, Timo. “Having a Dedicated DevOps Person Who Does All the DevOpsing Is like Hav-
ing a Dedicated Collaboration Person Who Does All the Collaborating.” Tweet. @noidi.
April 14, 2017. https://twitter.com/noidi/status/852879869998501889.

Miller, G. A. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information.” Psychological Review 63 no. 2 (1956): 81–97.

Minick, Eric. “The Goal for a ‘DevOps Team’ Should Be to Put Itself out of Business by Enabling
the Rest of the Org.” Tweet, @ericminick, October 8, 2014. https://twitter.com/ericminick
/status/517335119330172930.

Minick, Eric, and Curtis Yanko. “Creating a DevOps Team That Isn’t Evil.” SlideShare, posted
by IBM Urban Code Products, March 5, 2015. http://www.slideshare.net/Urbancode
/creating-a-devops-team-that-isnt-evil.

Mole, David. “Drive: How We Used Daniel Pink’s Work to Create a Happier, More Productive
Work Place.” InfoQ, September 10, 2015. https://www.infoq.com/articles/drive-productive
-workplace.

Morgan-Smith, Victoria, and Matthew Skelton. Internal Tech Conferences. Leeds, UK: Conflux
Digital, 2019.

Morris, Kief. Infrastructure as Code: Managing Servers in the Cloud. Sebastopol, CA: O’Reilly
Media, 2016.

Munns, Chris. “Chris Munns, DevOps @ Amazon: Microservices, 2 Pizza Teams, & 50 Million
Deploys per Year.” SlideShare.net, posted by TriNimbus, May 6, 2016. http://www.slideshare
.net/TriNimbus/chris-munns-devops-amazon-microservices-2-pizza-teams-50-million
-deploys-a-year.

Murphy, Niall. “What is ‘Site Reliability Engineering’?” Landing.Google.com, https://landing
.google.com/sre/interview/ben-treynor.html.

Murphy, Niall and Ben Treynor. “What is ‘Site Reliability Engineering’?” Landing.Google.com
(blog), accessed March 21, 2019. https://landing.google.com/sre/interview/ben-treynor
.html.

Narayan, Sriram. Agile IT Organization Design: For Digital Transformation and Continuous Delivery.
New York: Addison-Wesley Professional, 2015.

References | 57

Neumark, Peter. “DevOps & Product Teams—Win or Fail?” InfoQ, June 29, 2015. https://www
.infoq.com/articles/devops-product-teams.

Netflix Technology Blog. “Full Cycle Developers at Netflix—Operate What You Build.” Medium

.com, May 17, 2018, https://medium.com/netflix-techblog/full-cycle-developers-at-netflix
-a08c31f83249.

Netflix Technology Blog. “The Netflix Simian Army.” Netflix TechBlog, July 19, 2011. https://
medium.com/netflix-techblog/the-netflix-simian-army-16e57fbab116.

Newman, Sam. Building Microservices: Design Fine-Grained Systems. Sebastopol, CA: O’Reilly
Media, 2015.

Newman, Sam. “Demystifying Conway’s Law.” ThoughtWorks (blog) June 30, 2014. https://www
.thoughtworks.com/insights/blog/demystifying-conways-law.

Nygard, Michael. “The Perils of Semantic Coupling—Wide Awake Developers.” MichaelNygard
.com (blog), April 29, 2015. http://michaelnygard.com/blog/2015/04/the-perils-of
-semantic-coupling/.

Nygard, Michael T. Release It! Design and Deploy Production-Ready Software, 2nd edition. Raleigh,
North Carolina: O’Reilly, 2018.

O’Connor, Debra L., and Tristan E. Johnson. “Understanding Team Cognition in Performance
Improvement Teams: A Meta-Analysis of Change in Shared Mental Models.” Proceedings of

the Second International Conference on Concept Mapping (2006). https://pdfs.semanticscholar
.org/4106/3eb1567e630a35b4f33f281a6bb9d193ddf5.pdf.

O’Dell, Chris. “You Build It, You Run It (Why Developers Should Also Be on Call).” Skelton
Thatcher.com (blog), October 18, 2017. https://skeltonthatcher.com/blog/build-run
-developers-also-call/.

Overeem, Barry. “How I Used the Spotify Squad Health Check Model—Barry Overeem—The
Liberators.” BarryOvereem.com (blog), August 7, 2015. http://www.barryovereem.com
/how-i-used-the-spotify-squad-health-check-model/.

Pais, Manuel. “Damon Edwards: DevOps is an Enterprise Concern” InfoQ, May 31, 2014. https://
www.infoq.com/interviews/interview-damon-edwards-qcon-2014.

Pais, Manuel. “Prezi’s CTO on How to Remain a Lean Startup after 4 Years.” InfoQ, October 5,
2012. https://www.infoq.com/news/2012/10/Prezi-lean-startup.

Pais, Manuel, and Matthew Skelton. “The Divisive Effect of Separate Issue Tracking Tools.”
InfoQ, March 22, 2017. https://www.infoq.com/articles/issue-tracking-tools.

Pais, Manuel, and Matthew Skelton. “Why and How to Test Logging.” InfoQ, October 29, 2016.
https://www.infoq.com/articles/why-test-logging.

Pearce, Jo. “Day 3: Managing Cognitive Load for Team Learning.” 12 Devs of Xmas (blog),
December 28, 2015. http://12devsofxmas.co.uk/2015/12/day-3-managing-cognitive-load
-for-team-learning/.

Pearce, Jo. “Hacking Your Head : Managing Information Overload (Extended).” SlideShare,
posted by Jo Pearce, April 29, 2016. https://www.slideshare.net/JoPearce5/hacking-your
-head-managing-information-overload-extended.

Perri, Melissa. Escaping the Build Trap: How Effective Product Management Creates Real Value.
Sebastopol, CA: O’Reilly, 2018.

Pflaeging, Niels. Organize for Complexity: How to Get Life Back Into Work to Build the High-

Performance Organization, 1st edition. Germany: BetaCodex Publishing, 2014.

References | 58

Pflaeging, Niels. “Org Physics: The 3 Faces of Every Company.” Niels Pflaeging (blog), March
6, 2017. https://medium.com/@NielsPflaeging/org-physics-the-3-faces-of-every-company
-df16025f65f8.

Phillips, Amy. “Testing Observability.” InfoQ, April 5, 2018. https://www.infoq.com/presentations
/observability-testing.

Pink, Daniel. Drive: The Surprising Truth About What Motivates Us. New York: Riverhead Books,
2009.

Raymond, Eric. The New Hacker’s Dictionary, 3rd Edition. Boston, MA: MIT Press, 1996.

Reed, J. Paul. “Blameless Postmortems Don’t Work. Be Blame-Aware but Don’t Go Negative.”
TechBeacon, March 22, 2016. https://techbeacon.com/blameless-postmortems-dont-work
-heres-what-does.

Reinertsen, Donald. The Principles of Product Development Flow: Second Generation Lean Product

Development. Redondo Beach, CA: Celeritas Publishing, 2009.

Rensin, Dave. “Introducing Google Customer Reliability Engineering.” Google Cloud Blog,
October 10, 2016. https://cloud.google.com/blog/products/gcp/introducing-a-new-era-of
-customer-support-google-customer-reliability-engineering/.

Roberts, John. The Modern Firm: Organizational Design for Performance and Growth. Oxford:
Oxford University Press, 2007.

Robertson, Brian J. Holocracy: The New Management System for a Rapidly Changing World. NY:
Henry Holt, 2015.

Rock, David, and Heidi Grant. Why Diverse Teams Are Smarter. Cambridge, MA: Harvard Business
Review, 2016.

Rother, Mike. Toyota Kata: Managing People for Improvement, Adaptiveness and Superior Results.
New York: McGraw-Hill Education, 2009.

Rozovsky, Julia. “Re:Work—The Five Keys to a Successful Google Team.” re:Work (blog), Novem-
ber 17, 2015. https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/.

Rubin, Kenneth S. Essential Scrum: A Practical Guide to the Most Popular Agile Process. Upper Sad-
dle River, NJ: Addison Wesley, 2012.

Rummler, Geary, and Alan Brache. Improving Performance: How to Manage the White Space on the

Organization Chart, 3rd edition. San Francisco, CA: Jossey-Bass, 2013.

Salas, Eduardo, and Stephen M. Fiore, eds. Team Cognition: Understanding the Factors That Drive

Process and Performance. Washington, DC: American Psychological Association, 2004.

Scholtes, Ingo, Pavlin Mavrodiev, and Frank Schweitzer. “From Aristotle to Ringelmann: A
Large-Scale Analysis of Team Productivity and Coordination in Open Source Software
Projects.” Empirical Software Engineering 21 no. 2 (2016): 642–683. https://doi.org/10.1007
/s10664-015-9406-4.

Schotkamp, Tom, and Martin Danoesastro. “HR’s Pioneering Role in Agile at ING.” BCG (blog), June
1, 2018. https://www.bcg.com/en-gb/publications/2018/human-resources-pioneering
-role-agile-ing.aspx.

Schwartz, Mark, Jason Cox, Jonathan Snyder, Mark Rendell, Chivas Nambiar, and Mustafa
Kapadia. Thinking Environments: Evaluating Organization Models for DevOps to Accelerate.
Portland, OR: IT Revolution Press, 2016.

Seiter, Courtney. “We’ve Changed Our Product Team Structure 4 Times: Here’s Where We Are
Today.” Buffer (blog), October 20, 2015. https://open.buffer.com/product-team-evolution/.

References | 59

Shibata, Kenichi. “How to Build a Platform Team Now! The Secrets to Successful Engineering.” Hacker

Noon (blog), September 29, 2018. https://hackernoon.com/how-to-build-a-platform-team
-now-the-secrets-to-successful-engineering-8a9b6a4d2c8.

Simenon, Stefan, and Wiebe de Roos. “Transforming CI/CD at ABN AMRO to Accelerate
Software Delivery and Improve Security.” SlideShare, posted by DevOps.com, March
27, 2018. https://www.slideshare.net/DevOpsWebinars/transforming-cicd-at-abn-amro-to
-accelerate-software-delivery-and-improve-security.

Sinha, Harsh. “Harsh Sinha on Building Culture at TransferWise.” InfoQ, February 19, 2018.
https://www.infoq.com/podcasts/Harsh-Sinha-transferwise-building-culture.

Skelton, Matthew. “How Different Team Topologies Influence DevOps Culture.” InfoQ, Septem-
ber 2, 2015. https://www.infoq.com/articles/devops-team-topologies.

Skelton, Matthew. “How to Find the Right DevOps Tools for Your Team.” TechBeacon, 2018.
https://techbeacon.com/how-find-right-devops-tools-your-team.

Skelton, Matthew. “Icebreaker for Agile Retrospectives—Empathy Snap.” MatthewSkelton.net
(blog), November 15, 2012. http://empathysnap.com/.

Skelton, Matthew. Tech Talks for Beginners. Leeds, UK: Conflux Digital, 2018.

Skelton, Matthew. “What Team Structure Is Right for DevOps to Flourish?” Matthew
Skelton.net (blog), October 22, 2013. https://blog.matthewskelton.net/2013/10/22/what
-team-structure-is-right-for-devops-to-flourish/.

Skelton, Matthew. “Your Team’s API Includes: - Code: REST Endpoints, Libraries, Clients, UI,
Etc.—Wiki / Docs—Especially ‘How To’ Guides—Your Approach to Team Chat Tools (Slack
/Hipchat)—Anything Else Which Other Teams Need to Use to Interact with Your Team It’s
Not Just about Code. #DevEx.” Tweet, @matthewpskelton, July 25, 2018. https://twitter
.com/matthewpskelton/status/1022111880423395329.

Skelton, Matthew, and Rob Thatcher. Team Guide to Software Operability. Leeds, UK: Conflux
Books, 2016.

Skulmowski, Alexander, and Rey, Günter Daniel. “Measuring Cognitive Load in Embodied
Learning Settings.” Frontiers in Psychology 8 (August 2, 2017). https://doi.org/10.3389
/fpsyg.2017.01191.

Smith, Steve, and Matthew Skelton, eds. Build Quality In. Leeds, UK: Conflux Digital, 2015.

Snowden, Dave. “The Rule of 5, 15 & 150.” Cognitive Edge (blog), December 10, 2006. http://
cognitive-edge.com/blog/logn-0-093-3-389-logcr-1-r20-764-t3410-35-p0-001/.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. “The Misalignment of Product Archi-
tecture and Organizational Structure in Complex Product Development.” Management

Science 50 no. 12 (December 2004): 1674–1689.

Stanford, Naomi. Guide to Organisation Design: Creating High-Performing and Adaptable Enter-

prises (Economist Books), 2nd Edition. London: Economist Books, 2015.

Stompff, Guido. “Facilitating Team Cognition: How Designers Mirror What NPD Teams Do.”
ResearchGate, September 2012. https://www.researchgate.net/publication/254831689
_Facilitating_Team_Cognition_How_designers_mirror_what_NPD_teams_do.

Strode, Diane E., Sid L. Huff, Beverley Hope, and Sebastian Link. “Coordination in Co-Located
Agile Software Development Projects.” Journal of Systems and Software, Special Issue: Agile

Development 85, no. 6 (June 1, 2012): 1222–38. https://doi.org/10.1016/j.jss.2012.02.017.

References | 60

Sussna, Jeff. Designing Delivery: Rethinking IT in the Digital Service Economy. Sebastopol, CA:
O’Reilly Media, 2015.

Sweller, John. “Cognitive Load During Problem Solving: Effects on Learning.” Cognitive Science
12 no. 2 (1988): 257–285.

Sweller, John. “Cognitive Load Theory, Learning Difficulty, and Instructional Design.” Learning

and Instruction 4 (1994): 295–312.

“System Team.” Scaled Agile Framework website, last updated October 5, 2018. https://www
.scaledagileframework.com/system-team/.

Tuckman, Bruce W. “Developmental Sequence in Small Groups.” Psychological Bulletin 63 no. 6
(1965): 384–399. https://doi.org/10.1037/h0022100.

Tune, Nick. “Domain-Driven Architecture Diagrams.” Nick Tune’s Tech Strategy Blog, August
15, 2015. https://medium.com/nick-tune-tech-strategy-blog/domain-driven-architecture
-diagrams-139a75acb578.

Tune, Nick, and Scott Millett. Designing Autonomous Teams and Services. Sebastopol, CA: O’Reilly
Media, 2017.

Urquhart, James. “Communications and Conway’s Law.” Digital Anatomy (blog), September 28,
2016. https://medium.com/digital-anatomy/
communications-and-conways-law-6a1a9deae32.

Urquhart, James. “IT Operations in a Cloudy World.” CNET, September 15, 2010. https://www.
cnet.com/news/it-operations-in-a-cloudy-world/.

Wardley, Simon. “An Introduction to Wardley ‘Value Chain’ Mapping.” CIO UK, March 19, 2015.
https://www.cio.co.uk/it-strategy/introduction-wardley-value-chain-mapping-3604565/.

Wastell, Katherine. “What We Mean When We Talk about Service Design at the Co-Op.” Co-Op
Digital Blog, October 25, 2018. https://digitalblog.coop.co.uk/2018/10/25/what-we-mean
-when-we-talk-about-service-design-at-the-co-op/.

Webber, Emily. Building Successful Communities of Practice. San Francisco, CA: Blurb, 2018.

Weinberg, Gerald M. An Introduction to General Systems Thinking, 25th Silver Anniversary Edition.
New York: Dorset, 2001.

Wiener, Norbert. Cybernetics: Or Control and Communication in the Animal and the Machine, 2nd
edition. Cambridge, Mass: MIT Press, 1961.

Westrum, R. 2004. “A Typology of Organisational Cultures.” Quality & Safety in Health Care 13
Suppl. 2 (1961): ii22–27. https://doi.org/10.1136/qshc.2003.009522.

“What Team Structure is Right for DevOps to Flourish?” DevOpsTopologies.com, accessed
March 21, 2019. http://web.devopstopologies.com.

Wiley, Evan. “Scaling XP Through Self-Similarity at Pivotal Cloud Foundry.” Agile Alliance (blog),
July 28, 2018. https://www.agilealliance.org/resources/experience-reports/scaling-xp
-through-self-similarity-at-pivotal-cloud-foundry/.

Womack, James P., and Daniel T. Jones. Lean Thinking: Banish Waste and Create Wealth In Your

 Corporation. NY: Simon & Schuster/Free Press, 2003.

Zambonelli, Franco. “Toward Sociotechnical Urban Superorganisms.” Computer, 2012. http://
spartan.ac.brocku.ca/~tkennedy/COMM/Zambonelli2012.pdf.

Notes | 61

NOTES

Foreword
1. Conway, “How Do Committees Invent?.”

Preface
1. Skelton, “What Team Structure Is Right for DevOps to Flourish?”
2. Skelton, “How Different Team Topologies Influence DevOps Culture.”

Chapter 1
1. Schwartz et al., Thinking Environments, 21.
2. Pflaeging, Organize for Complexity, 34–41.
3. Pflaeging, Organize for Complexity.
4. Laloux, Reinventing Organizations; Robertson, Holocracy.
5. Stanford, Guide to Organisation Design, 14–16.
6. Conway, “How do Committees Invent?, 31.
7. Conway, “How do Committees Invent?”; Kelly, “Conway’s Law & Continuous Delivery.”
8. Kelly, “Conway’s Law v. Software Architecture.”
9. Raymond, The New Hacker’s Dictionary, 124.

10. Lewis, “Microservices and the Inverse Conway.”
11. Pink, Drive, 49.

Chapter 2
1. “DevOps Over Coffee – Adidas;” Fernando Cornago, person email communication with the

authors, March 2019.
2. MacCormack et al., “Exploring the Structure of Complex Software Designs,” 1015–1030;

MacCormack et al., “Exploring the Duality Between Product and Organizational Architec-
tures,” 1309–1024.

3. Sosa et al., “The Misalignment of Product Architecture and Organizational Structure in
Complex Product Development,” 1674–1689.

4. Malan, “Conway’s Law.”
5. Conway, “How do Committees Invent?” 28.
6. Forsgren et al., Accelerate, 63.
7. Nygard, Release It!, 4.
8. MacCormack et al., “Exploring the Structure of Complex Software Designs.”
9. Roberts, The Modern Firm, 190.

10. Reinertsen, The Principles of Product Development Flow, 257.
11. Malan, “Conway’s Law.”
12. Kelly, “Return to Conway’s Law.”

Notes | 62

3. Kniberg and Ivarsson, “Scaling Agile @ Spotify.”
4. Kniberg and Ivarsson, “Scaling Agile @ Spotify.”
5. Forsgren et al., Accelerate, 63.
6. Skelton, “What Team Structure Is Right for DevOps to Flourish?”
7. John, “DevOps for Service Providers—Next Generation Tools.”
8. Hastie, “An Interview with Sam Guckenheimer on Microsoft’s Journey to Cloud Cadence.”
9. Ben Treynor, as quoted in Niall Murphy, “What is ‘Site Reliability Engineering’?”

10. Dogan, “The SRE Model.”
11. Rensin, “Introducing Google Customer Reliability Engineering.”
12. Netflix Technology Blog, “Full Cycle Developers at Netflix—Operate What You Build.”
13. DeGrandis, Making Work Visible, 82.
14. Strode and Huff, “A Taxonomy of Dependencies in Agile Software Development.”
15. Pulak Agrawal, personal communication with the authors, March 2019.
16. Pulak Agrawal, personal communication with the authors, March 2019.

Chapter 5
1. Luo et al., “Transitioning from a Hierarchical Product Organization to an Open Platform

Organization.”
2. Reinertsen, The Principles of Product Development Flow, 265.
3. Lane, “The Secret to Amazon’s Success—Internal APIs;” Hoff, “Amazon Architecture.”
4. Crawford, “Amazon’s ‘Two-Pizza Teams;’” Munns, “Chris Munns, DevOps @ Amazon.”
5. Kramer, “The Biggest Thing Amazon Got Right.”
6. Sussna, Designing Delivery, 148.
7. Pink, Drive, 49.
8. Eckstein, “Architecture in Large Scale Agile Development,” 21–29.
9. Robert Greenleaf, The Servant as Leader.

10. DeMarco and Lister, Peopleware, 212.
11. Webber, Building Successful Communities of Practice, 11.
12. Bottcher, “What I Talk About When I Talk About Platforms.”
13. Eckstein, Agile Development in the Large, 53.
14. Neumark, “DevOps & Product Teams—Win or Fail?”
15. Reinertsen, The Principles of Product Development Flow, 292.
16. Womack and Jones, Lean Thinking.
17. Urquhart, “IT Operations in a Cloudy World.”
18. Kniberg, “Real-Life Agile Scaling.”
19. Kelly, Business Patterns for Software Developers, 88–89.
20. Conway, “Toward Simplifying Application Development, in a Dozen Lessons.”
21. Shibata, “How to Build a Platform Team Now!”
22. Shibata, “How to Build a Platform Team Now!”
23. Beer, Brain of the Firm, 238.
24. Shibata, “How to Build a Platform Team Now!”
25. Hall, “ITSM, DevOps, and Why Three-Tier Support Should Be Replaced with Swarming.”
26. Forsgren et al., Accelerate, 68.

Chapter 6
1. Forsgren et al., Accelerate, 63.
2. Forsgren et al., Accelerate, 66
3. Bernstein and Turban, “The Impact of the ‘Open’ Workspace on Human Collaboration.”
4. Evans, Domain-Driven Design.
5. Fowler, “Bliki: BoundedContext.”

Notes | 63

6. Tune and Millett, Designing Autonomous Teams and Services, 38.
7. Nygard, “The Perils of Semantic Coupling.”
8. Helfand, Dynamic Reteaming, 203.
9. Hering, DevOps for the Modern Enterprise, 45.

10. Phillips, “Testing Observability.”

Chapter 7
1. Bernstein et al., “How Intermittent Breaks in Interaction Improve Collective Intelligence,”

8734–8739.
2. Rother, Toyota Kata, 236.
3. Kim and Pierce, “Convergent Versus Divergent Thinking,” 245–250.
4. Urquhart, “Communications and Conway’s Law.”
5. Betz, Managing Digital, 253.
6. Burgess, Thinking in Promises, 105.
7. Reinertsen, The Principles of Product Development Flow, 233.
8. Malan, “Conway’s Law.”
9. Kelly, “Return to Conway’s Law.”

10. Helfand, Dynamic Reteaming, 121; Wiley, as quoted in Helfand, Dynamic Reteaming, 121.
11. Helfand, Dynamic Reteaming, 13.
12. Reinertsen, The Principles of Product Development Flow, 254.

Chapter 8
1. Forsgren et al., Accelerate, 63.
2. Ingles, “Convergence to Kubernetes.”
3. Ingles, “Convergence to Kubernetes,”
4. Sussna, Designing Delivery, 61.
5. Kotter, “Accelerate!”
6. Drucker, The Daily Drucker, 291.
7. Stanford, Guide to Organisation Design, 17.
8. Narayan, Agile IT Organization Design, 65.
9. Kim et al., The DevOps Handbook, 11.

10. Sussna, Designing Delivery, 58.
11. Narayan, Agile IT Organization Design, 31.

Conclusion
1. Conway, “How do Committees Invent?” 31.
2. Manns and Rising, Fearless Change.

Notes | 64

13. Stanford, Guide to Organisation Design, 4.
14. Sosa et al., “The Misalignment of Product Architecture.”
15. Cohn, “Nine Questions to Assess Scrum Team Structure.”
16. Kniberg, “Real-Life Agile Scaling.”

Chapter 3
1. Driskell and Salas, “Collective Behavior and Team Performance,” 277–288.
2. McChrystal et al., Team of Teams, 94.
3. Rozovsky, “Re:Work—The Five Keys to a Successful Google Team.”
4. Crawford, At opening quotes. “Amazon’s ‘Two-Pizza Teams.’”
5. Dunbar, “Neocortex Size as a Constraint on Group Size in Primates,” 469–493.
6. Snowden, “The Rule of 5, 15 & 150;” Dunbar, How Many Friends Does One Person Need?;

 Bennett, “The Dunbar Number, From the Guru of Social Networks;” Burgess, Thinking in

Promises, 87.
7. Snowden, “The Rule of 5, 15 & 150;” Karlgaard and Malone, Team Genius, 201–205.
8. Lewis, “Microservices and the Inverse Conway Manoeuvre.”
9. Munns, “Chris Munns, DevOps @ Amazon.”

10. Brooks, The Mythical Man-Month.
11. Tuckman, “Developmental Sequence in Small Groups,” 384–399.
12. Kelly, Project Myopia, 72.
13. Helfand, Dynamic Reteaming, 123.
14. Knight, “Acquisition Community Team Dynamics.”
15. Humble et al., Lean Enterprise, 37.
16. Driskell and Salas, “Collective Behavior and Team Performance;” Rock and Grant, Why

Diverse Teams Are Smarter.
17. Jang, “Cultural Brokerage and Creative Performance in Multicultural Teams,” 993–1009;

Carayon, “Human Factors of Complex Sociotechnical Systems,” 525–535.
18. DeMarco and Lister, Peopleware, 156.
19. Stanford, Guide to Organisation Design, 287.
20. Deming, Out of the Crisis, 22.
21. Roberts, The Modern Firm, 277.
22. Sweller, “Cognitive Load During Problem Solving: Effects on Learning,” 257–285.
23. Pearce, “Day 3: Managing Cognitive Load for Team Learning;” Pearce, “Hacking Your Head.”
24. Driskell et al., “Does Stress Lead to a Loss of Team Perspective,” 300.
25. Jay et al., “Cyclomatic Complexity and Lines of Code,” 137–143.
26. MacChrystal et al., Team of Teams, 94.
27. Lim and Klein, “Team Mental Models and Team Performance,” 403–418.
28. Evan Wiley, as quoted in Helfand, Dynamic Reteaming, 121.
29. Jeff Bezos, as quoted in Lane, “The Secret to Amazon’s Success.”
30. Axelrod, Complexity of Cooperation; Burgess, Thinking in Promises, 73.
31. Kniberg and Ivarsson, “Scaling Agile @ Spotify.”
32. Kniberg and Ivarsson, “Scaling Agile @ Spotify.”
33. Forsgren et al., Accelerate, 181.
34. Jeremy Brown, personal communication with the authors, March 2019.
35. Doorley and Witthoft, Make Space, 16.
36. Fried and Hansson, Remote, 91.

Chapter 4
1. Stanford, Guide to Organisation Design, 3.
2. Kniberg and Ivarsson, “Scaling Agile @ Spotify.”

Index | 65

A
Accelerate: The Science of Dev Ops (Forsgren,

Humble, & Kim), 18, 64, 86, 112, 114, 154
Accenture, 75–76
“Acquisition Community Team Dynamics:

The Tuckman Model vs. the DAU Model”
(Knight), xx

ad hoc team design, 62
adaptive structuration theory, xix
Adidas, 16
adoption of new practices, 155–159
Agile IT Organization Design (Narayan), 173
Agrawal, Pulak, 75–76
Amazon, 32, 35, 82–83, 112
anti-patterns, 62
Antunes, Miguel, 11
APIs

defined, 187
effective, 148
team, 47–56

application monolith, 113, 187
Auto Trader, 53–55, 97–99
awkward team interactions, 150–151
AWS, 49
Axelrod, Robert, 49
Azure, 69, 101

B
Balena.io, 101
basic team organization, 146–148
BCG Digital Ventures, 88–90
Beer, Stafford, 103
benched bay approach, 51
Bertilsson, Albert, 47
Bezos, Jeff, 49, 82–83
Boone, Mary, xxi
Borland Delphi, 101
Bottcher, Evan, 92
bottlenecks, 11–12
boundaries, 39–47

domain limitations, 42–45
misplaced, 150–151
relative domain complexity, 41–42
responsibility restriction, 39–41
software boundary size, 45–47
team-first, 111–126

bounded context, 115–116, 187
Brain of the Firm (Beer), 103
Brooks, Fred, 35
Brooks’s law, 40, 187
Brown, Jeremy, 53
Burgess, Mark, 49, 142
business as usual teams, 173–174
business domain bounded context, 115–116
business process management, 169

C
capabilities

missing, 150–151
self-service, 69

capability gaps, 184–185
“Capturing the Complexity in Advanced

Technology Use: Adaptive Structuration
Theory” (DeSanctis and Poole), xxi

case studies
complicated-subsystems teams, 94–95, 97–99
DevOps Topologies, 75–77
enabling teams, 88–90
fracture planes, 121–125
organizational sensing, 154–155, 157–159,

162–164
software boundaries, 121–125
static topologies, 75–77
stream-aligned teams, 82–83
team APIs, 50–52, 53–55
team interaction modes, 146–147
team types, 82–83, 88–90
team-first boundaries, 121–125
team-first thinking, 50–52, 53–55

CDL, 50–52
change cadence, 117
cloud teams, 69–70
cognitive load, 11–12, 39–47

defined, 187
domain identification, 43
domain limitations, 42–45
ecosystem tuning, 46
extraneous, 40, 187
“Eyes On, Hands Off,” 46
germane, 40, 188
heuristics for domain assignment, 43
intrinsic, 40, 188

INDEX

Index | 66

cognitive load (continued)
relative domain complexity, 41–42
responsibility restriction, 39–41
software boundary size, 45–47
types of, 39–40

Cohn, Mike, 24
collaboration mode, 9, 133, 135–137, 153–155

defined, 187
and evolution of team topologies, 159–161
and reverse Conway maneuver, 147–148
right amount of collaboration, 153–154
team behaviors for, 142–143
and viable X-as-a-service interactions, 149

commodity systems, 18
communication

focused, 24–26
inter-team, 25–26, 27
paths, 17
structures, 4–8
tool choice and, 27
unnecessary, 24–26

communities of practice vs. enabling teams, 90
compatible support systems, 69
complicated-subsystems teams, 9, 28, 91–92

case study, 94–95, 97–99
defined, 187
expected behaviors, 94
platform composition, 96–97

component teams, 28, 105–106
continuous delivery (CD), 11
continuous integration (CI), 11
converting teams

component teams to platform teams, 105–106
converting architecture and architects, 109
converting common to fundamental team

topologies, 104–109
infrastructure teams to platform teams, 105
stream-aligned teams, 104
support teams, 107–109
tooling teams to enabling teams, 106–107

Conway, Mel, 9–10
Conway maneuver, inverse, 10, 18
Conway maneuver, reverse, 10, 18–21, 147–148,

188
Conway’s law, xxii, 9–11, 15–29, 180–181

commodity systems, 18
communication paths, 17
complicated-subsystems teams, 28
component teams, 28
cross-team testing, 23
database administrator team, 18–19
defined, 187
focused communication, 24–26
high cohesion, 22
homomorphic force, 19–20
inter-team communication, 25–26, 27
inverse Conway maneuver, 10, 18
log-aggregation tools, 27–28
loose coupling, 22
modern version of, 17

monolithic shared databases, 16
naive uses of, 26–28
organization design, 16–17, 23–24
reorganizations, 28
reverse Conway maneuver, 10, 18–21,

147–148, 188
software architecture as flows of change, 23
team assignments, 22
team-scoped flow, 21–23
tool choice and communication, 27
understanding and using, 15–17
unnecessary communication, 24–26
version compatibility, 22

Cornago, Fernando, 16
coupled releases, 113
credit reference agencies, 76–77
cross-team testing, 23
Cybernetics: Or Control and Communication in the

Animal and the Machine (Wiener), xxi

D
Daly, Damien, 121–123
database administrator team, 18–19
DeMarco, Tom, 38
Deming, W. Edwards, 38
dependencies, 74–75
DeSanctis, Gerardine, xxi
Designing Autonomous Teams and Services (Tune

& Millett), 116
Designing Delivery (Sussna), 85, 172
“Developmental Sequence in Small Groups”

(Tuckman), xxii
DevOps for the Modern Enterprise (Hering), 120
The DevOps Handbook (Kim), 166, 172
DevOps Topologies, 75–77

case study, 75–77
catalog, 66
credit reference agencies, 76–77
healthcare organizations, 75–76

DevOps Topologies catalog, 66
divergent thinking, 136, 138
diversity, 38
domain assignment, heuristics for, 43
domain complexity, xxi, 187
domain identification, 43
domain limitations, 42–45
Domain-Driven Design (Evans), 115
Doorley, Scott, 53
Drexler, Allan, xxii
Drucker, Peter, 170
Dunbar, Robin, 32
Dunbar’s number, 32, 187
Dynamic Reteaming (Helfand), 48, 118, 150

E
Eckstein, Jutta, 86, 92
ecosystem tuning, 46
enabling teams, 9, 86–90, 106–107

case study, 88–90
vs. communities of practice, 90

Index | 67

defined, 187
expected behaviors, 87–88

engineering maturity, 73–74
environment design, 50
environmental scanning, 171
Ericsson, 68
Evans, Eric, 115
evolution triggers, 162–164, 165–170

delivery cadence slowing down, 166–167
multiple business services relying on one large

set of underlying services, 167–169
software too large for one team, 165–166

expected behaviors
complicated-subsystems teams, 94
enabling teams, 87–88
stream-aligned teams, 85–86

“Eyes On, Hands Off,” 46

F
facilitating mode, 9, 134, 140–144

defined, 187
and reverse Conway maneuver, 147–148
team behaviors for, 143–144

feature teams, 67–68
The Five Dysfunctions of a Team: A Leadership

Fable (Lencioni), xx
flow, enhancing, 148–151
flow of change, 12, 63–64, 187
focused communication, 24–26
Forrester, Russ, xxii
Forsgren, Nicole, 18, 64, 86
four team types, 178–179
Fowler, Martin, 115–116
fracture planes, 115–123

business domain bounded context, 115–116
case study, 121–125
change cadence, 117
defined, 187
natural, 121
performance isolation, 119
regulatory compliance, 116–117
risk, 118–119
team location, 118
technology, 120
user personas, 120–121

Fried, Jason, 55

G
germane, 40
Google, 70
Google Cloud, 72
group chat prefixes, 55–56
Guide to Organisation Design (Stanford), 38
guilds, 49

H
Hansson, David Heinemeir, 55
Harvard Business School, 16
healthcare organizations, 75–76
Helfand, Heidi, 48, 118, 150

Hering, Mirco, 120
heuristics for domain assignment, 43
hidden monoliths, 112–114
high cohesion, 22
high-trust organizations, 32
homomorphic force, 10, 19–20
Horizons, 36
Hotchkiss, Dave, 157–159
“How Do Committees Invent?” (Conway), 9–10
Humble, Jez, 18, 36, 64, 86
Humphrey, Andy, 53–55, 97–99

I
IBM, 146–147
IBM 8086 processor, 101
Ikea, 47
influences for book, xxi–xxii
infrastructure automation, 11
infrastructure teams, 105
ING Netherlands, 53
Ingles, Paul, 155
interaction mode key, xx
interaction modes, 179, 185
intermittent collaboration, 133
Internet of Things (IoT), 84, 101, 123–125,

156–157, 171
inter-team communication, 25–26, 27
Ivarsson, Anders, 50

J
Java Virtual Machine, 101
Jay, Graylin, 41
joined-at-the-database monolith, 113, 188

K
Kelly, Allan, 10, 24, 35, 101, 148
Kim, Gene, 18, 64, 86, 172
Kim, Kyung Hee, 136, 138
Kniberg, Henrik, 25, 50, 100
Knight, Pamela, xxii, 36
Kotte, Gustaf Nilsson, 47
Kotter, John, 161

L
Lambert, Michael, 50–52
“A Leader’s Framework for Decision Making”

(Snowden and Boone), xxi
Lean Enterprise (Humble, Molesky, & O’Reilly), 36
Lencioni, Patrick, xxii
Lewis, James, xxii, 10, 34
Linux, 101
Lister, Timothy, 38
log-aggregation tools, 27–28
loose coupling, 22
Luo, Jiao, 80

M
MacCormack, Alan, 16
Maibaum, Michael, 94–95, 162–164
Make Space (Doorley & Witthoft), 53

Index | 68

Malan, Ruth, xx, 17, 23, 148
McChrystal, Stanley, 31, 46
Microsoft, 69
Millett, Scott, 116
Minick, Eric, 146–147
misplaced boundaries, 150–151
missing capabilities, 150–151
“A Model for Team-Based Organization

Performance” (Forrester and Drexler), xx
The Modern Firm (Roberts), 23
Molesky, Joanne, 36
monolithic build, 188
monolithic model, 114, 188
monolithic rebuilds, 113
monolithic release, 113, 188
monolithic shared databases, 16
monolithic thinking, 114, 188
monolithic workplace, 114, 188
monoliths, 112–114

application, 113, 187
hidden, 112–114
joined-at-the-database, 113, 188

multi-layer viable-systems model, 103
The Mythical Man-Month (Brooks), 35

N
Narayan, Sriram, 172, 173
.Net Framework, 101
Neumark, Peter, 92–93
The New Hacker’s Dictionary (Raymond), 10
new practices, adoption of, 155–159
Nokia, 38–39
non-blocking dependencies, 68–69
Nygard, Michael, 22, 116

O
onion concept, 34
open-plan office, 114
Ops team, 80–81
O’Reilly, Barry, 36
org chart thinking, 3–14

bottlenecks, 11–12
cognitive load, 11–12
collaboration mode, 9
communication structures, 4–8
complicated-subsystem teams, 9
Conway’s law, 9–11
enabling teams, 9
facilitating mode, 9
platform teams, 9
problems with, 5–7
stream-aligned teams, 9
team interaction modes, 9
Team Topologies model, 9
team types, 9
thinking beyond, 7–8
X-as-a-Service mode, 9

organization design, 16–17, 23–24
organization design evolution, 181
organization size, 73–74

organizational sensing, 64–65, 153–175
adoption of new practices, 155–159
business as usual teams, 173–174
business process management, 169
case study, 154–155, 157–159, 162–164
collaboration mode, 153–155, 159–161
environmental scanning, 171
evolution triggers, 165–170
rapid learning, 155–159
self-steering design and development, 170–174
team topologies combination, 164–165
team topologies evolution, 159–164, 165–170
X-as-a-Service mode, 153–154, 161

Out of the Crisis (Deming), 38
OutSystems, 11, 42

P
Pais, Manuel, 66
Payment Card Industry Data Security Standard

(PCI DSS), 117
Pearce, Jo, 40
Peopleware (DeMarco & Lister), 38
performance isolation, 119
The Phoenix Project, 166
Pierce, Robert A., 136, 138
Pink, Dan, 11
Pivotal, 149–150
Pivotal Cloud Foundry (PCF), 48–49, 101
platform composition, 96–99
platform teams, 9, 92–96, 105–106, 188
platforms, 100–104

cognitive load reduction, 101–102
constraints, 102
managed as a live product or service, 103–104
multi-layer viable-systems model, 103
product development acceleration, 101–102
thinnest viable, 101, 184
underlying, 102–103

Poole, Marshall Scott, xix
Poppulo, 121–123
Prezi, 92–93
principle of overlapping measurement, 143
The Principles of Product Development Flow

(Reinertsen), 23, 143
product teams, 68–69
Project Myopia (Kelly), 35
promise theory, 142

R
rapid learning, 155–159
Rautert, Markus, 16
Raymond, Eric, 10
“Real Life Agile Scaling” (Kniberg), 25
rebuild everything, 113
Red Hat Open Innovation Labs, 53
regulatory compliance, 116–117
Reinertsen, Don, 23, 143
relative domain complexity, 41–42
Remote: Office Not Required (Fried & Hansson), 55
Rensin, Dave, 72

Index | 69

reorganizations, 28
responsibilities, splitting, 74
responsibility restriction, 39–41
risk, 118–119
Roberts, John, 23
Rother, Mike, 134
Rubio, Andy, 50–52

S
Schwartz, Mark, 4
self-service capabilities, 69
self-steering design and development, 170–174
Sheehan, Stephanie, 121–123
shuffling team members, 62
silo reduction, 74
single view of the world, 114
site reliability engineering (SRE), 70–72
Skelton, Matthew, 66
Sky Betting & Gaming, 94–95, 162–164
Snowden, Dave, xix
software architecture as flows of change, 23
software boundaries, 115–123

business domain bounded context, 115–116
case study, 121–125
change cadence, 117
defined, 187
natural, 121
performance isolation, 119
regulatory compliance, 116–117
risk, 118–119
team location, 118
technology, 120
user personas, 120–121

software boundary size, 45–47
software ownership, 36–37
software scale, 73–74
Sosa, Manuel, 24
Spotify, 49, 50, 75
squads, 50, 75
standardization, 114
Stanford, Naomi, 24, 38, 171
static topologies, 61–78

ad hoc team design, 62
anti-patterns, 62
case study, 75–77
cloud teams, 69–70
compatible support systems, 69
credit reference agencies, 76–77
dependencies, 74–75
DevOps, 65–67
DevOps Topologies, 66–67, 75–77
engineering maturity, 73–74
feature teams, 67–68
flow of change, designing for, 63–64
healthcare organizations, 75–76
non-blocking dependencies, 68–69
organization size, 73–74
organizational sensing, 64–65
product teams, 68–69
self-service capabilities, 69

shuffling team members, 62
silo reduction, 74
site reliability engineering, 70–72
software scale, 73–74
splitting responsibilities, 74
team intercommunication, 64–65
team patterns, successful, 67–72
technical and cultural maturity, 72–73
topology choice considerations, 72–75
wait time between teams, 74–75

stream-aligned teams, 9, 81–86, 104, 188
capabilities within, 83–84
case study, 82–83
expected behaviors, 85–86

streams of change, suitable, 183–184
support teams, 80–81, 107–109
Sussna, Jeff, 85, 161, 172
Sweller, John, 39–40

T
team APIs, 47–56

benched bay approach, 51
case study, 50–52, 53–55
defined, 48, 188
environment design, 50
group chat prefixes, 55–56
guilds, 49
squads, 50
team interactions, 49
virtual environment design, 53–56
workspace design, 50–56

team assignments, 22
team behaviors, 141–144
team habits, 134–135
team interaction modes, 9, 131–152

awkward team interactions, 150–151
basic team organization, 146–148
case study, 146–147
choosing suitable, 143–145
collaboration mode, 133, 135–137, 142–143,

147–148, 149
effective APIs, 148
enhancing flow, 148–151
facilitating mode, 134, 140–144, 147–148
intermittent collaboration, 133
misplaced boundaries, 150–151
missing capabilities, 150–151
principle of overlapping measurement, 143
promise theory, 142
reducing uncertainty, 148–151
reverse Conway maneuver, 147–148
team behaviors for, 141–144
team habits, 134–135
temporary changes to, 149–150
well-defined team interactions, 132–133
X-as-a-Service mode, 133, 137–140, 143, 149

team interactions, 49, 132–133
team intercommunication, 64–65
team lifespans, 35–36
team location, 118

Index | 70

Team of Teams (McChrystal), 31, 46
team patterns, successful, 67–72

cloud teams, 69–70
compatible support systems, 69
feature teams, 67–68
non-blocking dependencies, 68–69
product teams, 68–69
self-service capabilities, 69
site reliability engineering, 70–72

team silos, 99–100
team size, 32
team topologies

capability gaps, 184–185
combining, 164–165
component teams to platform teams, 105–106
converting architecture and architects, 109
converting common to fundamental team

topologies, 104–109
Conway’s law, 15–29, 180–181
defined, 188
evolving, 159–170
four fundamental. See team types
four team types, 178–179
how to get started with, 183–185
infrastructure teams to platform teams, 105
interaction modes, sharing and practicing, 185
org chart thinking, 3–14
organization design evolution, 181
organizational sensing, 153–175
static, 61–78
stream-aligned teams, 104
suitable streams of change, 183–184
support teams, 107–109
team interaction modes, 131–152
team types, 79–110
team-first boundaries, 111–126
team-first thinking, 31–57, 179–180
thinnest viable platform, 184
three interaction modes, 179
tooling teams to enabling teams, 106–107

team topologies combination, 164–165
team topologies evolution, 159–170

adopting different interaction modes, 159–162
case study, 162–164
combining team topologies, 164–165
delivery cadence slowing down, 166–167
evolution triggers, 165–170
multiple business services relying on one large

set of underlying services, 167–170
software too large for one team, 165–166

Team Topologies model, 9
team types, 9, 79–110

case study, 82–83, 88–90
complicated-subsystems teams, 91–92
converting common to fundamental team

topologies, 104–109
enabling teams, 86–90
enabling teams vs. communities of practice, 90
four, 178–179
key, xx

Ops team, 80–81
platform composition, 96–99
platform teams, 92–96
platforms, 100–104
stream-aligned teams, 81–86
support team, 80–81
team silos, 99–100

team-first boundaries, 111–126
application monolith, 113
business domain bounded context, 115–116
case study, 121–125
change cadence, 117
coupled releases, 113
distributed monolith, 112
fracture planes, 115–123
hidden monoliths, 112–114
joined-at-the-database monolith, 113
in manufacturing, 123–125
monolithic model, 114
monolithic rebuilds, 113
monolithic releases, 113
monolithic thinking, 114
monolithic workplace, 114
open-plan office, 114
performance isolation, 119
rebuild everything, 113
regulatory compliance, 116–117
risk, 118–119
single view of the world, 114
software boundaries, 115–123
standardization, 114
team location, 118
technology, 120
user personas, 120–121

team-first mindset, 37–38
team-first software architecture, 35
team-first thinking, 31–57, 179–180

benched bay approach, 51
boundaries, 39–47
case study, 50–52, 53–55
cognitive load, 39–47
diversity, 38
domain identification, 43
domain limitations, 42–45
Dunbar’s number, 32
ecosystem tuning, 46
environment design, 50
extraneous, 40
“Eyes On, Hands Off,” 46
germane, 40
group chat prefixes, 55–56
guilds, 49
heuristics for domain assignment, 43
high-trust organizations, 32
horizons, 36
intrinsic, 40
onion concept, 34
relative domain complexity, 41–42
responsibility restriction, 39–41
small long-lived teams, 32–39

Index | 71

software boundary size, 45–47
software ownership, 36–37
squads, 50
team APIs, 47–56
team definition, 32
team interactions, 49
team lifespans, 35–36
team size, 32
team-first mindset, 37–38
team-first software architecture, 35
trust and team size, 33–35
Tuckman Teal Performance Model, 36
types of, 39–40
virtual environment design, 53–56
workspace design, 50–56

teams, small long-lived, 32–39
diversity, 38
Dunbar’s number, 32
high-trust organizations, 32
horizons, 36
onion concept, 34
software ownership, 36–37
team definition, 32
team lifespans, 35–36
team size, 32
team-first mindset, 37–38
team-first software architecture, 35
trust and team size, 33–35
Tuckman Teal Performance Model, 36

team-scoped flow, 21–23
technical and cultural maturity, 72–73
“Technical Consulting Teams,” 86
technology for team-first boundaries, 120
Thinking Environments, 4
thinnest viable platform (TVP), 101, 184, 188
Thoughtworks, 10
tool choice and communication, 27
tooling teams, 106–107
topology choice considerations, 72–75

dependencies, 74–75
engineering maturity, 73–74
organization size, 73–74
silo reduction, 74
software scale, 73–74
splitting responsibilities, 74
technical and cultural maturity, 72–73
topology choice considerations, 72–75
wait time between teams, 74–75

Toyota, 134
TransUnion, 76–77, 157–159
Treynor, Ben, 70
tribes, 75
trust and team size, 33–35
Tuckman, Bruce, xx
Tuckman Teal Performance Model, 36
Tune, Nick, 116

U
uncertainty, reducing, 148–151
unnecessary communication, 24–26

user personas, 120–121
uSwitch, 155

V
version compatibility, 22
virtual environment design, 53–56
Vogels, Werner, 83

W
wait time between teams, 74–75
Watson, Ian, 76–77
Weston, Robin, 88–90
Whyte, Dave, 53–55, 97–99
Wiener, Norbert, xix
Wiley, Evan, 48–49, 149–150
Windows, 101
Witthoft, Scott, 53
workspace design, 50–56

X
X-as-a-Service mode, 9, 133, 137–140

and collaboration mode, 149, 153–154
defined, 188
and delivery predictability, 160–161
and evolution of team topologies, 159–161
team behaviors for, 143

Acknowledgments | 72

Writing a book is a collaborative task involving many people without whom

the finished book wouldn’t be impossible. We’d like to thank our peer

reviewers for taking the time to give detailed feedback on the book: Charles

T. Betz, Jeremy Brown, Joanne Molesky, Nick Tune, and Ruth Malan. We also

want to thank the authors and originators of our case studies and industry

examples: Albert Bertilsson, Anders Ivarsson, Andy Humphrey, Andy Rubio,

Damien Daly, Dave Hotchkiss, Dave Whyte, Eric Minick, Fernando Cornago,

Gustaf Nilsson Kotte, Henrik Kniberg, Ian Watson, Markus Rautert, Michael

Lambert, Michael Maibaum, Miguel Antunes, Paul Ingles, Pulak Agrawal,

Robin Weston, Stephanie Sheehan, and Wolfgang John.

We’d like to thank everyone who contributed to the original DevOps Topolo-

gies patterns, especially James Betteley, Jamie Buchanan, John Clapham, Kevin

Hinde, and Matt Franz. A special thanks goes to John Cutler for a passionate

outsider’s view of the Team Topologies approach, and to Gareth Rushgrove for

helping to expand the audience for the original DevOps Topologies patterns. We

also want to thank our colleague Jovile Bartkeviciute at Conflux for her tireless

research.

The team at IT Revolution Press has been amazing, especially Anna Noak,

Lean Brown, and the other editors and designers—we’ve really valued their

advice, support, and infectious enthusiasm. We’re grateful to Gene Kim for

inviting us to speak at DevOps Enterprise Summit in London in 2017, which

helped us to realize the value of the emerging Team Topologies ideas.

Finally, we’d like to thank the people whose ideas, talks, and writing

inspired us to become interested in the fascinating relationship between

teams and software in the first place, and helped to make this book a real-

ity: Allan Kelly, Andy Longshaw, Charles T. Betz, Donella Meadows, James

Lewis, Gene Kim, Mel Conway, Mirco Hering, Rachel Laycock, Ruth Malan,

and Randy Shoup.

ACKNOWLEDGMENTS

About the Authors | 73

ABOUT THE AUTHORS

Matthew Skelton has been building, deploying,

and operating commercial software systems since

1998, and has worked for organizations including

London Stock Exchange, GlaxoSmithKline, FT.com,

LexisNexis, and the UK government. Head of Con-

sulting at Conflux (confluxdigital.net), Matthew is

the co- author of the books Continuous Delivery with

Windows and .NET (2016) and Team Guide to Software

Operability (2016). Matthew holds a BSc in com-

puter science and cybernetics from the University of

Reading, an MSc in neuroscience from the Univer-

sity of Oxford, and an MA in music from the Open

University; he is a chartered engineer (CEng) in the UK. In his free time, Mat-

thew plays the trumpet, sings in choirs, writes music, and enjoys trail running.

Manuel Pais is an independent DevOps and Continuous Delivery Consul-

tant focused on team design, practices, and flow. He helps organizations define

and adopt DevOps and Continuous Delivery (both from technical and human

perspectives) via strategic assessments, practical workshops, and coaching.

Manuel is the co-author of Team Guide to Software

Releasability (2018).

Matthew and Manuel have worked together

on organization design for modern software sys-

tems with many clients around the world. Their

training sessions on organization design for

modern software systems have helped numerous

organizations to rethink their approach to team

intercommunication and software architecture,

improving flow and the effectiveness of software

delivery.

