
TOPOLOGIES

•
•
•

MATTHEW SKELTON
and MANUEL PAIS

Praise for

TEAM TOPOLOGIES

“Team Topologies provides fresh insights on how to anticipate and adapt to market and
technology changes. To survive, enterprises need to unlearn existing command and con-
trol structures and instead move authority to leaders with the best information to take
action and respond. This book will help executives and business leaders focus on the key
strategies of high-performance teams to effectively address the needs of today and the
evolving landscape of tomorrow.”

—Barry O’Reilly, Founder of ExecCamp, Business Advisor, and
Author of Unlearn and Lean Enterprise

“There is nothing more fundamental to management than how you structure your orga-
nization and what behaviors you encourage. Despite this, few have attempted to catalog
and analyze the organizational design patterns of IT organizations going through digi-
tal, DevOps, and SRE transformations. Skelton and Pais have not only accepted this
bold challenge, but they’ve also hit the mark by creating an indispensable and unique
resource.”

—Damon Edwards, Co-Founder of Rundeck

“Team Topologies provides a much-needed framework for evaluating and optimizing
team organization for increased flow. Teams that have the right size, the right bound-
aries, and the right level of communication are poised to deliver value to the company
and satisfaction to the team members. Team Topologies combines a methodical approach
with real-world case studies to unlock the full potential of your tech teams.”

—Greg Burrell, Senior Reliability Engineer at Netflix

“Team Topologies by Matthew Skelton and Manuel Pais is unique. It is going to have a
big influence across tech companies. We need a structured and methodical approach to
shaping teams for continuous delivery instead of copying a few Spotify rituals. This is
the book.”

—Nick Tune, API Platform Lead, Navico

“At Condé Nast International, [the DevOps Topologies] was crucial in understanding
our current DevOps state and in defining the vision for our aspirational DevOps operat-
ing model. We were able to navigate round the pitfalls and organizational anti-patterns
as excellently described in the models. . . . I am extremely pleased that Matthew and
Manuel are growing on the success of the DevOps Topologies and turning their further
learnings into the far-reaching book Team Topologies for organization design.”

—Crystal Hirschorn, VP of Engineering, Global Strategy and Operations at Condé Nast

“The high-performing team is the core generator of value in the modern digital econ-
omy. But cultivating and scaling an adaptive ecosystem of such teams is a too-often
elusive goal. In Team Topologies, Skelton and Pais provide innovative tools and concepts
for structuring the next generation digital operating model. Recommended for CIOs,
enterprise architects, and digital product strategists worldwide.”

—Charles Betz, Principal Analyst, Forrester Research

“Matthew Skelton and Manuel Pais say ‘Team Topologies is meant to be a functional
book’—and it is. It’s well constructed and sign-posted, based in sound thinking, and chal-
lenges readers to assume, like them, that an organization is a sociotechnical system or
ecosystem. From this assumption comes practical suggestions, no prescriptions, and skill
in explaining an approach that provides for effective tech/human organization design.
For anyone in the tech/organization design field, [Team Topologies is] well worth reading.”

—Dr. Naomi Stanford, Organization Design Practitioner,
Teacher, and Author

“I have found Matthew and Manuel’s work on patterns and language to be incredibly
valuable in both shaping strategies to transform team contexts over time across our
organization, as well as in helping business and technology leadership connect with the
topics of flow and continuous delivery.”

—Richard James, Head of Digital Technology &
Engineering at Nationwide

“Teams are the fundamental building block of organizations, how those teams work and
the system they operate in are the difference between average and high performance.
This book is a deep well of information for how you can optimize your organization’s
system for your current context.”

—Jeremy Brown, Director, Red Hat Open Innovation Labs EMEA

“DevOps is great, but how do real-world organizations actually structure themselves to
do it? You can’t just put everyone on a single, silo-less team, all sitting together in one
giant open-plan office and going out to lunch or playing foosball together. Team Topol-
ogies provides a practical set of templates for addressing the key DevOps question that
other guides leave as an exercise for the student.”

—Jeff Sussna, Founder & CEO, Sussna Associates, and
Author of Designing Delivery

“If you’re looking for an analysis of the challenges with the traditional ways of working, and
also some practical guidance on mitigation strategies (e.g., new interaction modes, reduc-
ing cognitive load, and creating appropriate ‘Team APIs’), then this is the book for you!”

—Daniel Bryant, Technical Consultant/Advisor and
News Manager at InfoQ

“Team Topologies makes for a fascinating read as it explores the symbiotic relation-
ship between teams and the IT architecture they support. It goes beyond the common
approach of static org charts or self-organizing chaos and shows how to evolve the peo-
ple system and IT system together.”

—Mirco Hering, Global DevOps Lead Accenture and
Author of DevOps for the Modern Enterprise

TEAM
TOPOLOGIES

ORGANIZING BUSINESS AND
TECHNOLOGY TEAMS

FOR FAST FLOW

MATTHEW SKELTON
and MANUEL PAIS

Foreword by Ruth Malan

25 NW 23rd Pl, Suite 6314
Portland, OR 97210

Copyright © 2019 by Matthew Skelton and Manuel Pais
For information about permission to reproduce selections from this book, write to

Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210.

Cover and book design by Devon Smith

Library of Congress Catalog-in-Publication Data
Available upon request

ISBN: 978-1942788-812
eBook ISBN: 978-1942788-829
Kindle ISBN: 978-1942788-836

Web PDF ISBN: 978-1942788-843

For information about special discounts for bulk purchases, or for information
on booking authors for an event, please visit our website atITRevolution.com.

TEAM TOPOLOGIES

To my wife, Suzy Beck—for all your support
and inspiration.

To Katie, my life partner and family stronghold—
thanks for your tireless love and support.

To Dan and Ben, daily sources of warmth—hopefully
this book can help you understand what Daddy does
for a living.

MATTHEW

MANUEL

CONTENTS
Figures & Tables x
Case Studies & Industry Examples xi
Foreword by Ruth Malan xv
Preface xvii

PART I TEAMS AS THE MEANS OF DELIVERY
Chapter 1: The Problem with Org Charts 3

Communication Structures of an Organization 4
Team Topologies: A New Way of Thinking about Teams 9
The Revival of Conway’s Law 9
Cognitive Load and Bottlenecks 11
Summary: Rethink Team Structures, Purpose, and Interactions 13

Chapter 2: Conway’s Law and Why It Matters 15
Understanding and Using Conway’s Law 15
The Reverse Conway Maneuver 18
Software Architectures that Encourage Team-Scoped Flow 21
Organization Design Requires Technical Expertise 23
Restrict Unnecessary Communication 24
Beware: Naive Uses of Conway’s Law 26
Summary: Conway’s Law Is Critical for Efficient Team Design in Tech 29

Chapter 3: Team-First Thinking 31
Use Small, Long-Lived Teams as the Standard 32
Good Boundaries Minimize Cognitive Load 39
Design “Team APIs” and Facilitate Team Interactions 46
Warning: Engineering Practices Are Foundational 55
Summary: Limit Teams’ Cognitive Load and Facilitate

Team Interactions to Go Faster 56

PART II TEAM TOPOLOGIES THAT WORK FOR FLOW
Chapter 4: Static Team Topologies 61

Team Anti-Patterns 62
Design for Flow of Change 63
DevOps and the DevOps Topologies 65

Contents | vii

Successful Team Patterns 67
Considerations When Choosing a Topology 72
Use DevOps Topologies to Evolve the Organization 75
Summary: Adopt and Evolve Team Topologies that

Match Your Current Context 77

Chapter 5: The Four Fundamental Team Topologies 79
Stream-Aligned Teams 81
Enabling Teams 86
Complicated-Subsystem Teams 91
Platform Teams 92
Avoid Team Silos in the Flow of Change 99
A Good Platform Is “Just Big Enough” 100
Convert Common Team Types to the Fundamental

Team Topologies 104
Summary: Use Loosely Coupled, Modular Groups

of Four Specific Team Types 109

Chapter 6: Choose Team-First Boundaries 111
A Team-First Approach to Software Responsibilities

and Boundaries 112
Hidden Monoliths and Coupling 112
Software Boundaries or “Fracture Planes” 115
Real-World Example: Manufacturing 121
Summary: Choose Software Boundaries to Match Team

Cognitive Load 123

PART III EVOLVING TEAM INTERACTIONS FOR INNOVATION
AND RAPID DELIVERY

Chapter 7: Team Interaction Modes 131
Well-Defined Interactions Are Key to Effective Teams 132
The Three Essential Team Interaction Modes 133
Team Behaviors for Each Interaction Mode 137
Choosing Suitable Team Interaction Modes 144
Choosing Basic Team Organization 146
Choose Team Interaction Modes to Reduce Uncertainty

and Enhance Flow 149
Summary: Three Well-Defined Team Interaction Modes 151

viii | Contents

Chapter 8: Evolve Team Structures with Organizational Sensing 153
How Much Collaboration Is Right for Each Team Interaction? 153
Accelerate Learning and Adoption of New Practices 155
Constant Evolution of Team Topologies 159
Combining Teams Topologies for Greater Effectiveness 164
Triggers for Evolution of Team Topologies 165
Self Steer Design and Development 170
Summary: Evolving Team Topologies 175

Conclusion: The Next-Generation Digital Operating Model 177
Four Team Types and Three Interaction Modes 178
Team-First Thinking: Cognitive Load, Team API,

Team-Sized Architecture 179
Strategic Application of Conway’s Law 180
Evolve Organization Design for Adaptability and Sensing 181
Team Topologies Alone Are Not Sufficient for IT Effectiveness 181
Next Steps: How to Get Started with Team Topologies 183

Glossary 187
Recommended Reading 189
References 191
Notes 203
Index 207
Acknowledgments 215
About the Authors 216

Contents | ix

FIGURES & TABLES

FIGURES
0.1: The Four Team Types and Three Interaction Modes xx
1.1: Org Chart with Actual Lines of Communication 6
1.2: Obstacles to Fast Flow 12
2.1: Four Teams Working on a Software System 19
2.2: Software Architecture from Four-Team Organization 20
2.3: Microservices Architecture with Independent Services

and Data Stores 21
2.4: Team Design for Microservices Architecture with Independent

Services and Data Stores 22
2.5: Inter-Team Communication 25
3.1: Scaling Teams Using Dunbar’s Number 34
3.2: No More than One Complicated or Complex Domain per Team 44
3.3: Typical vs. Team-First Software Subsystem Boundaries 45
3.4: Office Layout at CDL 52
4.1: Organization not Optimized for Flow of Change 64
4.2: Organization Optimized for Flow of Change 65
4.3: Relationship between SRE Team and Application Team 71
4.4: Influence of Size and Engineering Discipline on Team

Interaction Patterns 73
5.1: The Four Fundamental Team Topologies 80
5.2: Platform Composed of Several Fundamental Team Topologies 96
5.3: Traditional Infrastructure Team Organization 105
5.4: Support Teams Aligned to Stream of Change 107
6.1: Mobile, Cloud, and IoT Technology Fracture Plane Scenario 124
7.1: Collaboration vs. X-as-a-Service 133
7.2: The Three Essential Team Interaction Modes 134
7.3: Team Interaction Modes Scenario 135
7.4: X-as-a-Service Team Interaction Mode 138
7.5: Primary Interaction Modes for the Four Fundamental

Team Topologies 145
7.6: Team Interaction Modes at IBM around 2014 146
8.1: Collaboration between Cloud and Embedded Teams 156
8.2: System Build and Platform Build Team at TransUnion 158

x | Figures & Tables

8.3: System Build and Platform Build Team Collaboration
at TransUnion 158

8.4: System Build and Platform Build Teams Merged at TransUnion 158
8.5: System Build and Platform Build Teams Merged Back Into

Dev and Ops at TransUnion 159
8.6: Evolution of Team Topologies 160
8.7: Evolution of Team Topologies in an Enterprise 160
8.8: Example of a “Platform Wrapper” 168
8.9: New-Service and “Business as Usual” (BAU) Teams 173

8.10: Side-by-Side New Service and BAU Teams 174
9.1: Core Ideas of Team Topologies 178

TABLES
Table 7.1: Advantages and Disadvantages of Collaboration Mode 137
Table 7.2: Advantages and Disadvantages of X-as-a-Service Mode 140
Table 7.3: Advantages and Disadvantages of Facilitating Mode 141
Table 7.4: Team Interaction Modes of the Fundamental Team Topologies 144

CASE STUDIES &
INDUSTRY EXAMPLES
Chapter 1

Industry Example: OutSystems (Part 1)—Miguel Antunes,
R&D Principal Software Engineer, OutSystems 11

Chapter 2
Industry Example: Adidas—Fernando Cornago,

Senior Director Platform Engineering, and Markus Rautert,
Vice President Platform Engineering and Architecture, Adidas 16

Chapter 3
Industry Example: OutSystems (Part 2)—Miguel Antunes,

R&D Principal Software Engineer, OutSystems 42
Industry Example: IKEA—Albert Bertilsson, Solution Team Lead,

and Gustaf Nilsson Kotte, Web Developer, IKEA 46

Figures & Tables • Case Studies & Industry Examples | xi

Case Study: Team-Focused Office Space at CDL—
Michael Lambert, Head of Development, and Andy Rubio,
Development Team Leader, CDL 50

Case Study: Stream-Aligned Office Layout for
Flow-Based Collaboration at Auto Trader—
Dave Whyte, Operations Engineering Lead, and
Andy Humphrey, Head of Customer Operations, Auto Trader 53

Chapter 4
Industry Example: Spotify—Henrik Kniberg, Agile/Lean Coach,

and Anders Ivarsson, Organizational Coach, Spotify 63
Industry Example: Feature Teams Supported by Cross-

Subsystem Functions at Ericsson—Wolfgang John,
Research Leader, Ericsson 68

Industry Example: DevOps Team Topologies at a Healthcare
Organization—Pulak Agrawal, DevOps Manager and
Technology Architect, Accenture 75

Case Study: Evolution of Team Topologies at TransUnion (Part 1)—
Ian Watson, Head of DevOps, TransUnion 76

Chapter 5
Case Study: Strictly Independent Service Teams at Amazon 82
Case Study: Engineering Enablement Team within a Large

Legal Organization—Robin Weston, Engineering Leader,
BCG Digital Ventures 88

Case Study: Sky Betting & Gaming—Platform Feature Teams (Part 1)—
Michael Maibaum, Chief Architect, Sky Betting & Gaming 94

Case Study: Evolving Highly Responsive IT Operations at
Auto Trader—Dave Whyte, Operations Engineering Lead, and
Andy Humphrey, Head of Customer Operations, Auto Trader 97

Chapter 6
Case Study: Finding Good Software Boundaries at Poppulo—

Stephanie Sheehan, VP of Operations, and Damien Daly,
Director of Engineering, Poppulo 121

Chapter 7
Case Study: Team Interaction Diversity at IBM around 2014—

Eric Minick, Program Director for Continuous Delivery, IBM 146

xii | Case Studies & Industry Examples

Chapter 8
Case Study: Adoption of Kubernetes to Drive Organizational Change

at uSwitch—Paul Ingles, Head of Engineering, uSwitch 155
Case Study: Evolution of Team Topologies at TransUnion (Part 2)—

Dave Hotchkiss, Platform Build Manager, TransUnion 157
Case Study: Sky Betting and Gaming—Platform Feature Teams

(Part 2)—Michael Maibaum, Chief Architect, Sky Betting
& Gaming 162

Case Studies & Industry Examples | xiii

Keeping our systems small and simple is a worthy goal, yet it is also one that
most successful systems defy. Lehman’s laws of software evolution, and, in

particular, continuing growth, captures the evolutionary pressure to add capa-
bilities as systems are used and new demands or opportunities are perceived.
Being able to cope with, and even harness, this increasing complexity raises
the importance of dual design arenas: the design of systems and the design
of the organization that creates and evolves systems. We have a considerable
body of work focused on the former; that is, on systems and software design
and architecture, including an ever growing number of books on domain
driven design and software architecture. Team Topologies addresses the design
of the software development organization, with Conway’s law in view.

The basic thesis [. . . .] is that organizations which design systems [. . . .]
are constrained to produce designs which are copies of the communi-
cation structures of these organizations. We have seen that this fact
has important implications for the management of system design.
Primarily, we have found a criterion for the structuring of design orga-
nizations: a design effort should be organized according to the need for
communication.1

The above quote from the conclusion of Mel Conway’s classic paper on
organizational design for software development is a most fitting beginning to
this book. Team Topologies describes organizational patterns for team structure
and modes of interaction, taking the force that the organization exerts on the
system as a driving design concern.

As the complexity of the system increases, so, generally, do the cognitive
demands on the organization building and evolving it. Managing cognitive load
through teams with clear responsibilities and boundaries is a distinguishing
focus of team design in the Team Topologies approach. To achieve duly scoped,

Foreword | xv

FOREWORD

bounded responsibilities, natural—and relatively independent—system (sub)
structure is sought to align teams to. This takes Conway’s law into account and
leverages it to help maintain cohesive structures with clear boundaries and loose
coupling (known as the reverse Conway maneuver, and described herein).

If this was the extent of it, Team Topologies would be a useful elaboration
of Conway’s paper, setting it in the current context. Of course, Team Topologies
is even more than that. Notably, it identifies four team patterns, describing
their outcomes, form, and the forces they address and are shaped by. Stream-
aligned teams are the primary team form. These are teams that are optimized
for flow, with all they need to effect continuous delivery of value and be fully
responsive to the associated feedback cycles. This means that system design
seeks not just loose coupling but a decomposition that supports flow and
lowers dependencies and coordination needs between stream-aligned teams.
Complicated-subsystem and platform teams reduce load for stream-aligned
teams, where the latter are internal customers of the former’s subsystem or
platform capabilities (supporting all phases of development, delivery, and
operations for multiple stream teams). Enabling teams likewise serve other
teams, but they are service providers, helping stream-aligned teams learn
new techniques, investigate new technologies, and so forth, allowing stream-
aligned teams to retain focus while growing effectiveness.

Matthew Skelton and Manuel Pais have brought their considerable experi-
ence to bear, describing what these various team forms need to be successful,
but also highlighting variations in context, identifying the design implications
thereof, and indicating anti-patterns to avoid. They also, with great generosity,
weave in insights from and offer pointers to related work. This, along with a set
of case studies, further textures the book.

Team Topologies informs and enriches our understanding of organizational
architecture, via the nuanced presentation of these key structural patterns,
interaction modes or dynamics, and considerations for evolution. And, due to
its clarity and focus, it serves as a pragmatic guide whether forming teams and
enabling them to meet their challenges or helping existing teams become more
effective at responsive value delivery.

—Ruth Malan, Architecture Consultant at
Bredemeyer Consulting

xvi | Foreword

FO
RE

W
O

RD

[Modern] organisational design . . . is about designing for collaborative
technologies, for the voice of the customer.

—Naomi Stanford, Guide to Organization Design

Preface | xvii

PREFACE

Teams are always works in progress, but they are also your best shot at
delivering value continuously and sustainably by aligning them with the

business. Ideally, teams should be long lived and autonomous, with engaged
team members. However, teams don’t live in isolation. They need to under-
stand how and when to interact with each other. And these team interactions
need to evolve over time to support the distinct phases of discovery and execu-
tion that products and technology go through during their lifetimes. In short,
organizations not only need to strive for autonomous teams, they also need
to continuously think about and evolve themselves in order to deliver value
quickly to customers.

This book offers a practical, step-by-step, adaptive model for organiza-
tional design that we have used and seen work across businesses at varying
levels of maturity: Team Topologies.

However, Team Topologies is not a universal formula for building and run-
ning software systems successfully. There are teams and organizations who
succeed with organizational dynamics very different from those described and
recommended here (particularly in organizations with excellent culture and
best practices already in place).

xviii | Preface

PR
EF

AC
E

Team Topologies is meant to provide clear patterns that are straight-
forward for many different teams and organizations to follow and interpret,
not to dictate to outstanding players how to perform. We like to think of Team
Topologies as a set of music parts for an orchestra or big band, not the mel-
ody for a top jazz trumpeter. Printed music for a large musical ensemble helps
the group to succeed but does not dictate every aspect of performance; lots of
detail is left for the ensemble to interpret to suit the occasion, venue, or mix of
players. Likewise, there is huge value in agreeing to a coherent vocabulary and
way of working together across teams to achieve good software delivery.

The Team Topologies approach helps organizations that are struggling
to find a way to optimize their team structure, or for those that are not yet
aware of the impact team design can have on good business outcomes and soft-
ware systems in particular. Team Topologies helps organizations succeed more
quickly and more continuously than before.

This book is for anyone who cares about the effectiveness of the delivery
and operations of software systems: C-level leaders (including CTOs/CIOs,
CEOs, CFOs, and so on) managers, heads of department, software architects
and systems architects, and anyone else involved in building or running soft-
ware systems who wants or needs to make the delivery and running of those
systems more effective.

How We Came to Write This Book

In 2013, while introducing DevOps and Continuous Delivery at a company in
the UK, Matthew devised the original DevOps Topologies patterns (and anti-
patterns) in a blog post titled “What Team Structure Is Right for DevOps to
Flourish?”1 At the time, the company he was consulting with was struggling
to adopt modern approaches to software delivery, and the early topology pat-
terns Matthew created provided the company a way to explore different options.

Manuel interviewed Matthew at the QCon London software development
conference back in 2015, where Matthew was speaking on Conway’s law and the
early DevOps Topology patterns. The resulting article, “How Different Team
Topologies Influence DevOps Culture,” was published by InfoQ and translated
into several languages.2 Later that year, Manuel helped to expand the DevOps
Topology patterns and there were contributions from the community.

Since then, the use of DevOps Topology patterns has exploded. They have
been referenced over and over again in talks, articles, and conversations. They
have helped organizations of all sizes and from varying industries around the

Preface | xix

PR
EF

AC
E

world to think about the relationships between teams and how their interac-
tions influence both organizational culture and software architecture.

Over time, we realized that the original DevOps Topologies presented a
static view of team interrelationships that, while useful for initial discussions,
was quite limited in scope. Through our combined experience with training and
consulting organizations from across the world, we discovered that some teams
work better relatively isolated or autonomous, while other teams work better
with strong collaboration. We asked ourselves why, and we kept evolving our
ideas based on feedback from our clients.

Eventually, this led to the Team Topologies as you see them presented in
this book: a dynamic and evolving approach to organizational design based on
real scenarios from across different geographies and industries.

How to Use This Book

Team Topologies is meant to be a functional book. It is our intention to provide
content that is interactive and delivers as much learning as we are able to fit
within these pages. To help with that, we have made some design choices that
will help you navigate this book.

First, the book is organized in three parts:
Part I of the book explores Conway’s law, the way organizational interre-

lationships constrain the design of systems we build, and how we can use this
tendency to our advantage. We then define what we mean by teams and look at
some practical constraints that affect effective teamwork.

In Part II, we investigate a set of static team patterns that have been proven
in the industry and the implications of choosing one pattern over another with
Conway’s law and organizational context in mind. This section should help you
think about team topologies that are broadly suitable for your organizational
context. This part also provides some guidance in deciding how to align teams
to areas of the system, taking into account Conway’s law and fundamental team
topologies.

Finally, in Part III, we deal with ways to evolve the organization design to
provide powerful capabilities for innovation and rapid delivery in response to a
quickly changing operating context. We explain how to use the Team Topolo-
gies approach to create a sensing organization that responds to the market and
user demands, and accounts for the implications this has for hiring and skills.

Each part opens with a breakdown of key takeaways from each of the
chapters. Throughout the chapters, we have included figures and callouts to

xx | Preface

PR
EF

AC
E

highlight information we think is helpful to know and/or reference. We also
provide easy-to-recognize scenarios, case studies, and explicit recommenda-
tions for different situations along the way.

Finally, the shapes, colors, and patterns found within many of the figures
also have consistent meaning throughout much of the book. Here is the key:

For the fullest understanding, you should read the book from cover to
cover, as the subject matter builds up chapter by chapter. However, we have
written the material so that each section is fairly independent.

In that spirit, here are some scenarios with corresponding ways to read the
book that might match with your current situation:

• I need more clarity about different team types and which team types
are effective.

o Review Chapter 1 (overview), then Chapter 4 (static topologies),
then Chapter 5 (fundamental topologies).

• I need to split up a large, monolithic software system.
o Review Chapter 6 (boundaries) and then Chapter 3 (the team).

• I need to improve the architecture of the software system.

Stream-aligned
team

Complicated-
subsystem team

Platform team

Collaboration

Four Team Types Three Interaction Modes

Facilitating

X-as-a-Service

Enabling team

Figure 0.1: The Four Team Types and Three Interaction Modes

Preface | xxi

PR
EF

AC
E

o Review Chapter 2 (Conway’s law), then Chapter 4 (static topolo-
gies), then Chapter 6 (boundaries).

• I need to improve the effectiveness of software development teams.
o Review Chapter 3 (the team), then Chapter 6 (boundaries), then

Chapter 5 (fundamental topologies).
• I need to improve morale and effectiveness within teams.

o Review Chapter 3 (the team) and then Chapter 5 (fundamental
topologies).

• I need to understand where to invest effort to help with projected
growth.

o Review Chapter 1 (overview), then Chapter 5 (fundamental topol-
ogies), then Chapter 8 (topology evolution).

• I need to understand how to evolve team topologies to meet changing
business needs.

o Review Chapter 7 (dynamic aspects) and then Chapter 8 (topol-
ogy evolution and organizational sensing).

Key Influences that Informed this Book

In addition to our own experience, this book is strongly influenced by several
related approaches and sets of thinking. First, we assume that an organization
is a sociotechnical system or ecosystem that is shaped by the interaction of
individuals and the teams within it; in other words, that an organization is the
interaction between people and technology. In this aspect, the book fits with
ideas from the fields of: cybernetics (especially the use of the organization as a
“sensing mechanism,” which goes back as far as 1948, when Norbert Wiener’s
book Cybernetics: Or Control and Communication in the Animal and the Machine
was first published), systems thinking (particularly the work of W. Edwards
Deming), and approaches such as the Cynefin framework for assessing domain
complexity (described by Dave Snowden and Mary Boone in their 2007 Harvard
Business Review paper titled “A Leader’s Framework for Decision Making”),
and adaptive structuration theory (a term coined by Gerardine DeSanctis and
Marshall Scott Poole in their Organization Science article, “Capturing the Com-
plexity in Advanced Technology Use: Adaptive Structuration Theory,” where
they emphasized that the impact of technology is not a given, as it depends on
how groups and organizations perceive it).

Second, we assume that “the team” is something that behaves differently
from a mere collection of individuals, and that the team should be nurtured and

xxii | Preface

PR
EF

AC
E

supported in its evolution and operation. In this respect, we draw on ideas
from Bruce Tuckman (who proposed the four-stages model—forming,
storming, norming, performing—for team development in his 1965 paper
“Developmental Sequence in Small Groups”), Russ Forrester and Allan Drexler
(who explored team-based organization performance in their 1999 paper
“A Model for Team-Based Organization Performance”), Pamela Knight (who
found evidence that storming takes place throughout the entire lifetime
of a team in her 2007 paper “Acquisition Community Team Dynamics: The
 Tuckman Model vs. the DAU Model”), Patrick Lencioni (who explores com-
mon interaction issues in his seminal book The Five Dysfunctions of a Team: A
Leadership Fable), and similar team-focused theories and research.

Third, we assume that Conway’s law (or a variant of it) is a strong driver
of software product shape and that organizations would benefit from explic-
itly addressing the implications of this law. In this regard, we draw on writing
and ideas from Mel Conway; from software architecture consultant and team
organization design award-winner Ruth Malan; from ThoughtWorks technical
director and one of the “reverse Conway maneuver” proponents James Lewis;
and from similar authors and practitioners.

Finally, we draw on numerous sources that describe practical successes
developing and running software systems at scale, including organizations
such as Adidas, Auto Trader, Ericsson, Netflix, Spotify, TransUnion, and oth-
ers. The size and speed of these organizations has made it possible for them to
see tangible gains from changes in organization structure and team interaction
over the space of several months to a few years.

As you travel through this book, we hope you get inspired to challenge how
you think about teams, their structures, and how they function.

PART I
Teams As the Means
of Delivery

KEY TAKEAWAYS
CHAPTER 1

• Conway’s law suggests major gains from designing software architec-
tures and team interactions together, since they are similar forces.

• Team Topologies clarifies team purpose and responsibilities, increas-
ing the effectiveness of their interrelationships.

• Team Topologies takes a humanistic approach to building software
systems while setting up organizations for strategic adaptability.

CHAPTER 2
• Organizations are constrained to produce designs that reflect commu-

nication paths.
• The design of the organization constrains the “solution search space,”

limiting possible software designs.
• Requiring everyone to communicate with everyone else is a recipe for

a mess.
• Choose software architectures that encourage team-scoped flow.
• Limiting communication paths to well-defined team interactions pro-

duces modular, decoupled systems.

CHAPTER 3
• The team is the most effective means of software delivery, not

individuals.
• Limit the size of multi-team groupings within the organization based

on Dunbar’s number.
• Restrict team responsibilities to match the maximum team cognitive

load.
• Establish clear boundaries of responsibility for teams.
• Change the team working environment to help teams succeed.

Organizations should be viewed as complex and adaptive organisms
rather than mechanistic and linear systems.

—Naomi Stanford, Guide to Organisation Design

Part I: Teams As the Means of Delivery | 3

1 The Problem with Org Charts

Technology workers are in a constant state of action: creating and updating
systems at an unbelievable rate, and combining different types of technol-

ogy to create a compelling user experience. Mobile applications; cloud-based
services; web applications; and embedded, wearable, or industrial IoT devices
all need to interoperate effectively to achieve the desired business outcomes.

Today, these systems affect nearly every aspect of people’s day-to-day
lives in ways that are increasingly profound. If software is poorly designed—or
more importantly, if there is a mismatch in the interaction of the software,
the provider, and the customer—people will be adversely affected. They can
be stranded long distances from home if a taxi-hailing application fails. They
may be unable to pay rent if the software or processes for internet banking fail.
They may even see their life in danger if a medical device fails. Never before has
explicit sociotechnical design been so important.

Building and running these highly complex, interconnected software sys-
tems is a team activity, requiring the combined efforts of people with different
skills across different platforms. In addition, modern IT organizations must
deliver and operate software systems rapidly and safely, while simultaneously
growing and adapting to changes and pressures in the business or regulatory

4 | Team Topologies

C
H

A
PT

ER
 O

N
E

environment. Businesses can no longer choose between optimizing for stability
and optimizing for speed.

But despite these risks and demands, many organizations are still orga-
nizing their people and teams in ways that are counterproductive to modern
software development and operations. Organizations that rely too heavily on
org charts and matrixes to split and control work often fail to create the nec-
essary conditions to embrace innovation while still delivering at a fast pace. In
order to succeed at that, organizations need stable teams and effective team
patterns and interactions. They need to invest in empowered, skilled teams as
the foundation for agility and adaptability. To stay alive in ever more competi-
tive markets, organizations need teams and people who are able to sense when
context changes and evolve accordingly.

The good news is that it is possible to be fast and safe with the right mind-
set and with tools that emphasize adaptability as well as repeatability, while
putting teams and people at the center. As Mark Schwartz and co-authors put it
in their 2016 paper Thinking Environments, “the organizational structure must
coordinate accountabilities to support the goals of delivering high-quality,
impactful software.”1

As members of the technology teams managing these interfaces, we must
shift our thinking from treating teams as collections of interchangeable indi-
viduals that will succeed as long as they follow the “right” process and use the
“right” tools, to treating people and technology as a single human/computer
carbon/silicon sociotechnical ecosystem. At the same time, we need to ensure
that teams are intrinsically motivated and are given a real chance of doing their
best work within such a system.

This chapter will introduce Team Topologies as an adaptive model for tech-
nology organization design allowing businesses to achieve speed and stability.
But first, let’s look at how real communication structures in most organizations
are often quite distinct from what the org chart tells us, and what the implica-
tions of that are.

Communication Structures of an Organization

Most organizations want or are required to have a single view of their teams
and people called the “org chart.” This chart depicts the teams, departments,
units, and other organizational entities, as well as how they relate to each other.
It usually shows hierarchical lines of reporting, which imply lines of communi-
cation running “up and down” the organization.

Part I: Teams As the Means of Delivery | 5

C
H

A
PT

ER
 O

N
E

The org chart does have its uses in the context of building software
systems, specifically around regulatory and legal compliance. However, in a
highly collaborative context filled with uncertainty over outcomes, relying on
the org chart as a principal mechanism of splitting the work to be done leads
to unrealistic expectations. We need to rely instead on decoupled, long-lived
teams that can collaborate effectively to meet the challenge of balancing speed
and safety.

The problem with taking the org chart at face value is that we end up trying
to architect people as if they were software, neatly keeping their communi cation
within the accepted lines. But people don’t restrict their communications only
to those connected lines on the chart. We reach out to whomever we depend
on to get work done. We bend the rules when required to achieve our goals.
That’s why actual communication lines look quite different from the org chart,
as shown in Figure 1.1 (see page 6).

Org Chart Thinking Is the Problem
Traditional org charts don’t help us understand what the actual patterns of
communication in our organization are, as illustrated in Figure 1.1. Instead,
organizations need to develop more realistic pictures of the expected and actual
communication happening between individuals and teams. The gaps will help
inform what types of systems are a better fit for the organization.

Furthermore, decisions based on org-chart structure tend to optimize
for only part of the organization, ignoring upstream and downstream effects.
Local optimizations help the teams directly involved, but they don’t necessarily
help improve the overall delivery of value to customers. Their impact might be
negligent if there are larger bottlenecks in the stream of work. For example,
having teams adopting cloud and infrastructure-as-code can reduce the time to
provision new infrastructure from weeks or months to minutes or hours. But if
every change requires deployment (to production) approval from a board that
meets once a week, then delivery speed will remain weekly at best.

Systems thinking focuses on optimizing for the whole, looking at the
overall flow of work, identifying what the largest bottleneck is today, and
elimi nating it. Then repeat. Team Topologies focuses on how to set up dynamic
team structures and interaction modes that can help teams adapt quickly to
new conditions, and achieve fast and safe software delivery. This might not
be your largest bottleneck today, but eventually, you will face the issue of rigid
team structures with poor communication and/or inadequate processes, slow-
ing down delivery.

6 | Team Topologies

C
H

A
PT

ER
 O

N
E

Actual Comms

Isolated

Figure 1.1: Org Chart with Actual Lines of Communication
In practice, people communicate laterally or “horizontally” with people from

other reporting lines in order to get work done. This creativity and problem solving
needs to be nurtured for the benefit of the organization, not restricted to optimize

for top-down/bottom-up communication and reporting.

Part I: Teams As the Means of Delivery | 7

C
H

A
PT

ER
 O

N
E

Thinking of the org chart as a faithful representation of how work gets
done and how teams interact with each other leads to ineffective decisions
around allocation of work and responsibilities. Much like a software archi-
tecture document gets outdated as soon as the actual software development
starts, an org chart is always out of sync with reality.

Naturally, we are by no means the first to acknowledge the imbalance
between formal organization structures and the way work actually gets done.
Geary Rummler and Alan Brache’s book Improving Performance: How to Manage
the White Space on the Organization Chart set the stage for continuous business
process improvement and management. The recent focus (at least within IT)
on product and team centricity, as illustrated by Mik Kersten’s book on moving
from Project to Product, is another major milestone. We like to think that Team
Topologies is another piece of this puzzle—in particular, having clear and fluid
team structures, responsibilities, and interaction modes.

Beyond the Org Chart
So if org charts are not an accurate representation of organizational structures,
what is? Niels Pflaeging, author of Organize for Complexity, identifies not one
but three different organizational structures in every organization:2

1. Formal structure (the org chart)—facilitates compliance
2. Informal structure—the “realm of influence” between individuals
3. Value creation structure—how work actually gets done based on

inter-personal and inter-team reputation

Pflaeging suggests that the key to successful knowledge work organi-
zations is in the interactions between the informal structure and the value
creation structure (that is, the interactions between people and teams).3 Other
authors have proposed similar characterizations, such as Frédéric Laloux in
Reinventing Organizations or Brian Robertson’s Holacracy approach.4

The Team Topologies approach acknowledges the importance of informal
and value creation structures as defined by Pflaeging. By empowering teams,
and treating them as fundamental building blocks, individuals inside those
teams move closer together to act as a team rather than just a group of peo-
ple. On the other hand, by explicitly agreeing on interaction modes with other
teams, expectations on behaviors become clearer and inter-team trust grows.

Over the last several decades, there have been many new approaches to
organizing businesses, but usually the new design remains a static view of

8 | Team Topologies

C
H

A
PT

ER
 O

N
E

the organization that does not take into consideration the real behaviors and
structures that emerge after reorganization. For instance, the “matrix man-
agement” approach that started in the 1990s—and became quite popular
over the next couple of decades—tried to address the inherent complexity
of highly uncertain, highly skilled work by having individuals report to both
business and functional managers. Despite a clearer focus on business value
compared to a purely functional organization of teams, this is still a static
view of the world that becomes outdated as the business and technology
domains quickly evolve.

For workers, re-orgs, like introducing matrix management, can bring a
lot of fear and worry. Often, it’s seen as a time and effort drain that is more
likely to set the business back rather than move it forward. And once the next
technological or methodological revolution hits, the business undertakes yet
another re-org, breaking down established forms
of communication and splitting up teams that
were just starting to get their mojo.

It is increasingly clear that relying on a single,
static organizational structure, like the org chart or
matrix management, is untenable for effective out-
comes with modern software systems. Instead of a
single structure, what is needed is a model that is
adaptable to the current situation—one that takes
into consideration how teams grow and interact
with each other. Team Topologies provides the
(r)evolutionary approach required to keep teams,
processes, and technology aligned for all kinds of organizations.

In her excellent 2015 book, Guide to Organisation Design: Creating High-
Performing and Adaptable Enterprises, Naomi Stanford lists five rules of thumb
for designing organizations:5

1. Design when there is a compelling reason.
2. Develop options for deciding on a design.
3. Choose the right time to design.
4. Look for clues that things are out of alignment.
5. Stay alert to the future.

As we continue to move through this book, we will explore how to address
these five heuristics for organization design.

The Team Topologies
approach adds the
dynamic and sensing
aspects required for
technology organiza-
tions that are missing
from traditional orga-
nization design.

Part I: Teams As the Means of Delivery | 9

C
H

A
PT

ER
 O

N
E

Team Topologies: A New Way of Thinking about Teams

The Team Topologies approach brings new thinking around effective team struc-
tures for enterprise software delivery. It provides a consistent, actionable guide
for evolving team design to continuously cope with technology, people, and busi-
ness changes, covering size, shape, placement, responsibilities, boundaries, and
interaction of teams building and running modern software systems.

Team Topologies provides four fundamental team types—stream-aligned,
platform, enabling, and complicated-subsystem—and three core team interaction
modes—collaboration, X-as-a-Service, and facilitating. Together with awareness
of Conway’s law, team cognitive load, and how to become a sensing organi-
zation, Team Topologies results in an effective and humanistic approach to
building and running software systems.

In particular, it looks at ways in which different team topologies can
evolve with technological and organizational maturity. Periods of technical
and product discovery typically require a highly collaborative environment
(with overlapping team boundaries) to succeed. But keeping the same struc-
tures when discovery is over (established technologies and product) can lead to
wasted effort and misunderstandings.

By emphasizing an adaptive model for organization design and actively pri-
oritizing the interrelationship of teams, the Team Topologies approach provides
a key technology-agnostic mechanism for modern software-intensive enter-
prises to sense when a change in strategy is required (either from a business
or technology viewpoint). The end goal is to help teams produce software that
aligns with customer needs and is easier to build, run, and own.

Team Topologies also emphasizes a humanistic approach to designing and
building software systems. It sees the team as an indivisible element of software
delivery and acknowledges that teams have a finite cognitive capacity that needs
to be respected. Together with the dynamic team design solidly grounded on
Conway’s law, Team Topologies becomes a strategic tool for solution discovery.

The Revival of Conway’s Law

We’ve mentioned the importance of Conway’s law as a driver for team design
and evolution. But what is this law exactly?

In 1968, the computer systems researcher Mel Conway published a paper
in Datamation called “How Do Committees Invent?” in which he explored the
relationship between organizational structure and the resulting design of

10 | Team Topologies

C
H

A
PT

ER
 O

N
E

 systems. The article is full of sparkling insights, some of which we cover later in
this chapter, but this is the phrase that became known as Conway’s law: “Orga-
nizations which design systems . . . are constrained to produce designs which
are copies of the communication structures of these organizations.”6

Conway based his observation on organizations building early electronic
computer systems. In his words, this “law” indicates the strong correlation
between an organization’s real communication paths (the value creation struc-
tures mentioned by Pflaeging) and the resulting software architecture,7 or
what author Allan Kelly calls the “homomorphic force.”8 This homomorphic
force tends to make things the same shape between the software architecture
and team structures. In other words, building software requires an understand-
ing of communication across teams in order to realistically consider what kind
of software architectures are feasible. If the desired theoretical system archi-
tecture does not fit the organizational model, then one of the two will need to
change.

Eric Raymond stated this in a humorous way in his book The New Hacker’s
Dictionary: “If you have four groups working on a compiler, you’ll get a 4-pass
compiler.”9

Since 1968, it has become increasingly clear that Conway’s law continues
to apply to all software built. Those of us who have built software systems that
had to comply with an “architecture blueprint” can surely remember having
times when it felt like we were fighting against the architecture rather than it

helping steer our work in the right direction. Well,
that’s Conway’s law in action.

A sort of “revival” of Conway’s law took place
around 2015, when microservices architectures were
on the rise. In particular, James Lewis, Technical
Director at Thoughtworks, and others came up with
the idea of applying an “inverse Conway maneuver”
(or reverse Conway maneuver), whereby an organiza-
tion focuses on organizing team structures to match

the architecture they want the system to exhibit rather than expecting teams
to follow a mandated architecture design.10

The key takeaway here is that thinking of software architecture as a stand-
alone concept that can be designed in isolation and then implemented by any
group of teams is fundamentally wrong. This gap between architecture and
team structures is visible across all types of architectures, from client-server
to SOA and even microservices. Specifically, that is why monoliths need to be

Team structures
must match the
required software
architecture or risk
producing unin-
tended designs.

Part I: Teams As the Means of Delivery | 11

C
H

A
PT

ER
 O

N
E

broken down (in particular, any indivisible software part that exceeds the cog-
nitive capacity of any one team) while keeping a team focus, a topic we will
discuss in depth in Chapter 6.

Cognitive Load and Bottlenecks

When we talk about cognitive load, it’s easy to understand that any one person
has a limit on how much information they can hold in their brains at any given
moment. The same happens for any one team by simply adding up all the team
members’ cognitive capacities.

However, we hardly ever discuss cognitive load when assigning respon-
sibilities or software parts to a given team. Perhaps because it’s hard to
quantify both the available capacity and what the cognitive load will be. Or
perhaps because the team is expected to adapt to what it’s being asked to
do, no questions asked.

When cognitive load isn’t considered, teams are spread thin trying to
cover an excessive amount of responsibilities and domains. Such a team lacks
bandwidth to pursue mastery of their trade and struggles with the costs of
switching contexts.

Miguel Antunes, R&D Principle Software Engineer at OutSystems, a
low-code platform vendor, relayed an example of this very challenge. Their
Engineering Productivity team at OutSystems was five years old. The team’s
mission was to help product teams run their builds efficiently, maintain infra-
structure, and improve test execution. The team kept growing and took on
extra responsibilities around continuous integration (CI), continuous delivery
(CD), and infrastructure automation.

Victims of their own success, sprint planning for the now eight-person-
strong team was a mix and match of requests across their stack of responsibilities.
Prioritization was hard, and the frequent context switching even throughout
a single sprint led to a dip in people’s motivation. This is not surprising if we
consider Dan Pink’s three elements of intrinsic motivation: autonomy (quashed
by constant juggling of requests and priorities from multi ple teams), mas-
tery (“jack of all trades, master of none”), and purpose (too many domains of
responsibility).11

While the team in this industry example was providing internal services
to development teams, the effect is the same for teams working on software
for external customers. The number of services and components for which
a product team is responsible (in other words, the demand on the team)

12 | Team Topologies

C
H

A
PT

ER
 O

N
E

 typically keeps growing over time. However, the development of new services
is often planned as if the team had full-time availability and zero cognitive
load to start with. This neglect is problematic because the team is still required
to fix and enhance existing services. Ultimately, the team becomes a delivery
bottleneck, as their cognitive capacity has been largely exceeded, leading to
delays, quality issues, and often, a decrease in team members’ motivation.

We need to put the team first, advocating for restricting their cognitive
loads. Explicitly thinking about cognitive load can be a powerful tool for decid-
ing on team size, assigning responsibilities, and establishing boundaries with
other teams. (We will cover this in detail in Chapter 3.)

Overall, the Team Topologies approach advocates for organization design
that optimizes for flow of change and feedback from running systems. This
requires restricting cognitive load on teams and explicitly designing the intercom-

Figure 1.2: Obstacles to Fast Flow

Obstacles to
Fast Flow

Disengaged Teams

Pushing Against
Conway’s Law

Painful Re-Org
Every Few Years

Flow Is Blocked

Software Too
Big for Teams

Too Many
Surprises

Confusing Org
Design Options

Team Pulled
in Many

Directions

Part I: Teams As the Means of Delivery | 13

C
H

A
PT

ER
 O

N
E

munications between them to help produce the software-systems architecture
that we need (based on Conway’s law).

Summary: Rethink Team Structures, Purpose,
and Interactions

Developing and operating software effectively for modern, interconnected sys-
tems and services requires organizations to consider many different dimensions.
Historically, most organizations have seen software development as a kind of
manufacturing to be completed by separate individuals arranged into functional
specialties, with large projects planned up front and with little consideration
for sociotechnical dynamics. This led to the prevailing problems depicted in Fig-
ure 1.2 on page 12.

The Agile, Lean IT, and DevOps movements helped demonstrate the enor-
mous value of smaller, more autonomous teams that were aligned to the flow
of business, developing and releasing in small, iterative cycles, and course cor-
recting based on feedback from users. Lean IT and DevOps also encouraged big
strides in telemetry and metrics tooling for both systems and teams, helping
people building and running software to make proactive, early decisions based
on past trends, rather than simply responding to incidents and problems as
they arose.

However, traditional organizations have often been limited in their ability
to fully reap the benefits of Agile, Lean IT, and DevOps due to their organiza-
tional models. It’s no surprise that there is a strong focus on the more immediate
automation and tooling adoption, while cultural and organizational changes
are haphazardly addressed. The latter changes are much harder to visualize,
let alone to measure their effectiveness. Yet having the right team structure,
approach, and interaction in place, and understanding their need to evolve over
time is a key differentiator for success in the long run.

In particular, traditional org charts are out of sync with this new reality
of frequent (re)shaping of teams for collaborative knowledge work in environ-
ments filled with uncertainty and novelty. Instead, we need to take advantage
of Conway’s law (organizational design prevails over software architecture
design), cognitive load restrictions, and a team-first approach in order to design
teams with clear purposes and promote team interactions that prioritize flow
of software delivery and strategic adaptability.

The goal of Team Topologies is to give you the approach and mental tools to
enable your organization to adapt and dynamically find the places and timing

14 | Team Topologies

C
H

A
PT

ER
 O

N
E

when collaboration is needed, as well as when it is best to focus on execution
and reduce communication overhead.

NOTE

We found a fascinating example of strategic and collaborative inter-
action in a totally different field when researching for this book. It
turns out that grouper fish and moray eels, seemingly unrelated
species (silos, anyone?), explicitly collaborate (via signals) to hunt
down smaller fishes that hide in crevices. The eel sneaks into the
crevices and scares off smaller fish, which are then forced to come
out and become easy prey for the grouper. Read on to find out how
to enable the groupers and eels in your organization to join forces
for better flow and business outcomes!

[Conway’s law] creates an imperative to keep asking: “Is there a better
design that is not available to us because of our organization?”

—Mel Conway, Toward Simplifying Application Development,
 in a Dozen Lessons

Part I: Teams As the Means of Delivery | 15

2 Conway’s Law and Why It Matters

In Chapter 1, we discussed why organizations need to consider team organiza-
tion as an integral factor to success. We also discussed the underpinning ideas

and principles that help us understand how teams work within an organization.
We introduced some key concepts that we will begin to build on throughout
the book. In the remaining chapters of Part I, we will discuss in more detail
what Conway’s law reveals about teams, organization structure, and software
architecture; then we will dig into what a team-first approach means. The goal
in Part I is to give you the foundational principles for organization and team
design that you will need to understand as you consider team topologies, start-
ing with Conway’s law.

Understanding and Using Conway’s Law

Conway’s law is critical to understanding the forces at play when organizing
teams amidst the long-lasting, unattended impact they can have on our soft-
ware systems as the latter have become larger and more interconnected than
ever before. But you might wonder if a law from 1968 about software architec-
ture has stood the test of time.

16 | Team Topologies

C
H

A
PT

ER
 T

W
O

We’ve come a long way after all: microservices, the cloud, containers,
serverless. In our experience, such novelties can help teams improve locally,
but the larger the organization, the harder it becomes to reap the full benefits.
The way teams are set up and interact is often based on past projects and/
or legacy technologies (reflecting the latest org-chart design, which might be
years old, if not decades).

If you’ve ever worked for a large organization, you have likely encountered
examples of monolithic shared databases powering an entire business. There
were, of course, valid historical reasons for the predominance of monolithic
databases (such as the rise in specialism of people and teams on technical stack
layers) up until DevOps and microservices gained traction. Factors such as proj-
ect orientation, cost cutting via outsourcing, or junior teams without sufficient
experience have contributed to the perpetuation of this (now recognizable)
anti-pattern. Monolithic databases couple the applications that depend on
them and become magnets for small-business logic changes at the database
level (more on this in Chapter 6). Yet, to avoid them, organizations need not
only good architectural practices but also actual team structures and composi-
tion that align with this new way of thinking.

Sportswear company Adidas went through an interesting transforma-
tion where they explicitly looked at Conway’s law as a driver for organization
design. As Fernando Cornago, Senior Director of Platform Engineering, and
Markus Rautert, Vice President of Platform Engineering and Architecture,
explained their IT department went from being seen as a cost center, with a
single vendor providing most of the software (requiring frequent hand-offs)
and only a few in-house engineers (doing more managing than engineer-
ing), to a product-oriented team organization. Adidas invested 80% of its
engineering resources to creating in-house software delivery capabilities via
cross-functional teams aligned with business needs. The other 20% were
 dedicated to a central-platform team taking care of engineering platforms
and technical evolution, as well as consulting and onboarding new profes-
sionals. Adidas was able to increase release frequency of their digital products
sixtyfold, while positively impacting software quality as well.1

Besides empirical experience, there’s also an increasing body of research
that generally confirms the tendencies outlined by Conway. Alan MacCormack
and colleagues at Harvard Business School undertook studies of various open-
source and closed-source software products and found “strong evidence to
support the hypothesis that a product’s architecture tends to mirror the struc-
ture of the organization in which it is developed.”2

Part I: Teams As the Means of Delivery | 17

C
H

A
PT

ER
 T

W
O

Studies in other industries, such as vehicle manufacturing and aircraft
engine design, also corroborate this idea.3 In fact, there has been enough indus-
try research undertaken to show that the homomorphic force identified by
Conway’s law applies broadly.

This quote from Ruth Malan provides what could be seen as the modern
version of Conway’s law: “If the architecture of the system and the archi-
tecture of the organization are at odds, the architecture of the organization
wins.”4 Malan reminds us that the organization is constrained to produce
designs that match or mimic the real, on-the-ground communication struc-
ture of the organization. This has significant strategic implications for any
organization designing and building software systems, whether in-house or
via suppliers.

In particular, an organization that is arranged in functional silos (where
teams specialize in a particular function, such as QA, DBA, or security) is
unlikely to ever produce software systems that are well-architected for end-
to-end flow. Similarly, an organization that is arranged primarily around
sales channels for different geographic regions unlikely to produce effective
software architecture that provides multiple different software services to all
global regions.

Why are organizations unlikely to discover or sustain certain architec-
tures? Conway provides some clues in his 1968 article: “Given any [particular]
team organization, there is a class of design alternatives which cannot be effec-
tively pursued by such an organization because the necessary communication
paths do not exist.”5

Communication paths (along formal reporting lines or not) within an orga-
nization effectively restrict the kinds of solutions that the organization can
devise. But we can use this to our strategic advantage. If we want to discour-
age certain kinds of designs—perhaps those that are too focused on technical
internals—we can reshape the organization to avoid this. Similarly, if we want
our organization to discover and adopt certain designs—perhaps those more
amenable to flow—then we can reshape the organization to help make that
happen. There is, of course, no guarantee that the organization will find and
use the designs we want, but at least by shaping the communication paths, we
are making it more likely.

Organization design using Conway’s law becomes a key strategic activ-
ity that can greatly accelerate the discovery of effective software designs and
help avoid those less effective. (In Chapter 8, we go into more detail on how to
evolve an organization strategically with Conway’s law in mind.)

18 | Team Topologies

C
H

A
PT

ER
 T

W
O

The Reverse Conway Maneuver

To increase an organization’s chances of building effective software systems
optimized for flow, a reverse Conway maneuver (or inverse Conway maneuver)
can be undertaken to reconfigure the team intercommunications before the
software is finished. Although you might get initial pushback, with sufficient
willpower from management and awareness from teams this approach can and
does work.

The reverse Conway maneuver gained traction in the technology world
around 2015 and has been applied in many organizations since. Accelerate:
The Science of Dev Ops by Nicole Forsgren, PhD, Jez Humble, and Gene Kim
supports the importance of this strategy for high-performing organizations:

Our research lends support to what is sometimes called the “inverse
Conway maneuver,” which states that organizations should evolve their
team and organizational structure to achieve the desired architecture.
The goal is for your architecture to support the ability of teams to get
their work done—from design through to deployment—without requir-
ing high-bandwidth communication between teams.6

Remember the monolithic database anti-pattern we mentioned earlier?
We’ve seen extreme cases where, because there were no stable teams and all
changes were made via temporary projects (mostly outsourced), applications
became deeply coupled at the database level (shared data and procedures).
This later impeded adoption of commodity systems for certain parts of the
business since the latter could not be decoupled from the rest of the busi-
ness logic. Instead of freeing up in-house engineers to work on differentiating
features that meet evolving customer needs, accruing technical debt like this
curtails an organization’s ability to move faster and make a difference against
competitors.

So, how can the reverse Conway maneuver help steer team organization to
obtain the desired software architecture?

Let’s look at a deliberate simplification of Conway’s law in an organiza-
tion building software to illustrate the ideas and forces at work. Let’s say that
four independent teams, each comprised of front-end and back-end developers,
work on different parts of a system and then hand over to a database adminis-
trator (DBA) for database changes. The flow of changes may look conceptually
like the diagram in Figure 2.1.

Part I: Teams As the Means of Delivery | 19

C
H

A
PT

ER
 T

W
O

According to Conway’s law, the software architecture that naturally emerges
from such a team design would have separate front-end and back-end compo-
nents for each team, and a single, shared core database (Figure 2.2, see page 20).

In other words, the use of a shared DBA team is likely to drive the emergence
of a single shared database; and the use of separate front-end and back-end
developers is likely to drive a separation between UI and app tiers, due to the
nature of the communication taking place. If this single shared database and
four, two-tier apps is the software architecture we want, then all is well.

However, if we do not want a single shared database, we have a problem.
The homomorphic force identified by Conway’s law is exerting a strong pull on

Team
A

Front-End
Dev

Back-End
Dev

DBA Ops

Team
B

Team
C

Team
D

Figure 2.1: Four Teams Working on a Software System

Four separate teams consisting of front-end and back-end developers work on a
software system. Front-end devs communicate only with back-end devs, who

communicate with a single DBA for the database changes.

20 | Team Topologies

C
H

A
PT

ER
 T

W
O

the “natural” software architecture to emerge from the current organization
design and communication paths.

For example, let’s say that we want to use a microservices architecture for
some new cloud-based software systems, where each separate service is inde-
pendent and has its own data store (Figure 2.3, see page 21).

By applying the reverse Conway maneuver, we can design our teams to
“match” the required software architecture by having separate developers for
the client applications and the API, and a database developer within the team
rather than separate from it (Figure 2.4, see page 22).

Figure 2.2: Software Architecture from Four-Team Organization

Four separate applications, each with a separate user interface (UI) and a back-
end application tier that communicate with a single shared database. This reflects

and matches the team communication architecture from Figure 2.1;
 the diagram has simply been rotated ninety degrees.

Application 1 Application 2 Application 3 Application 4

UI

App
Tier

Core DB

Ops

Part I: Teams As the Means of Delivery | 21

C
H

A
PT

ER
 T

W
O

According to Conway’s law, this team design will most “naturally” pro-
duce the desired software architecture. If we want our data store to be aligned
with the business domain, then we need to avoid having a single “fan-in”
database person or team (perhaps by adding a data capability within the
application-development team).

Software Architectures that Encourage
Team-Scoped Flow

Conway’s law tells us that we need to understand what software architec-
ture is needed before we organize our teams, otherwise the communication
paths and incentives in the organization will end up dictating the software

Client

API

Data
Store

Client

API

Data
Store

Client

API

Data
Store

Client

API

Data
Store

Microservice

A

Microservice

B

Microservice

C

Microservice

D

Figure 2.3: Microservices Architecture with Independent Services

and Data Stores

A microservices-based architecture with four separate services, each with its
own data store, API layer, and front-end client.

22 | Team Topologies

C
H

A
PT

ER
 T

W
O

 architecture. As Michael Nygard says: “Team assignments are the first draft
of the architecture.”7

For a safe, rapid flow of changes, we need to consider team-scoped flow
and design the software architecture to fit it. The fundamental means of deliv-
ery is the team (see more in Chapter 3), so the system architecture needs to
enable and encourage fast flow within each team. Thankfully, in practice, this
means that we can follow proven software-architecture good practices:

• Loose coupling—components do not hold strong dependencies on
other components

• High cohesion—components have clearly bounded responsibilities,
and their internal elements are strongly related

• Clear and appropriate version compatibility

Team
A

Team
B

Team
C

Team
D

App Dev API Dev DB Dev

App Dev API Dev DB Dev

App Dev API Dev DB Dev

App Dev API Dev DB Dev

Microservice
A

Microservice
B

Microservice
C

Microservice
D

Figure 2.4: Team Design for Microservices Architecture with

Independent Services and Data Stores

An organization design that anticipates the homomorphic force behind Conway’s
law to help produce a software architecture with four independent microservices.

(Again, this is basically the diagram in Figure 2.3 rotated ninety degrees.)

Part I: Teams As the Means of Delivery | 23

C
H

A
PT

ER
 T

W
O

• Clear and appropriate cross-team testing

At a conceptual level, software architectures should resemble the flows
of change they enable; instead of a series of interconnected components, we
should be designing flows on top of an underlying platform (we will cover plat-
forms in Chapter 5).

By keeping things team sized, we help to achieve what MacCormack and
colleagues call “an ‘architecture for participation’ that promotes ease of under-
standing by limiting module size, and ease of contribution by minimizing the
propagation of design changes.”8 In other words, we need a team-first software
architecture that maximizes people’s ability to work with it.

Keeping things decoupled and team-scoped should be a key, ongoing orga-
nization test because, as John Roberts says in The Modern Firm, “real gains in
performance can often be achieved by adopting designs that adhere to [a] dis-
aggregated model.”9 These performance gains are partly due to the increased
rate of flow of change and partly due to the organization’s ability to change the
architecture to suit new contexts.

Don Reinertsen, author of The Principles of Product Development Flow, says
“we can also exploit architecture as an enabler of rapid changes. We do this by
partitioning our architecture to gracefully absorb change.”10 Architecture thus
becomes an enabler, not a hindrance, but only if we take a team-first approach
informed by Conway’s law.

Organization Design Requires Technical Expertise

If we accept that the self-similar force (between architecture and team organi-
zation) described by Conway is real, then we also need to accept that anyone
who makes decisions about the shape and placement of engineering teams is
strongly influencing the software systems architecture. There is a logical impli-
cation of Conway’s law here, in the words of Ruth Malan: “if we have managers
deciding . . . which services will be built, by which teams, we implicitly have
managers deciding on the system architecture.”11

How much awareness does the HR department have about software sys-
tems? Does the group of department leaders deciding how to allocate budget
across teams know of the likely effects of their choices on the viability of the
software architecture?

Given that there is increasing evidence for the homomorphism behind
Conway’s law, it is very ineffective (perhaps irresponsible) for organizations

24 | Team Topologies

C
H

A
PT

ER
 T

W
O

that build software systems to decide on the shape, responsibilities, and bound-
aries of teams without input from technical leaders.

Organization design and software design are, in practice, two sides of
the same coin, and both need to be undertaken by the same informed group
of people. Allan Kelly’s view of a software architect’s role expands further on
this idea:

More than ever I believe that someone who claims to be an Architect
needs both technical and social skills, they need to understand people
and work within the social framework. They also need a remit that is
broader than pure technology—they need to have a say in organizational
structures and personnel issues, i.e. they need to be a manager too.12

Fundamentally, we need to involve technical people in organization
design because they understand key software design concepts, such as APIs
and interfaces, abstraction, encapsulation, and so on. Naomi Stanford puts it
like this: “departments and divisions, systems, and business processes . . . can
be designed independently as long as interfaces and boundaries with the wider
organization form part of the design.”13

Restrict Unnecessary Communication

One key implication of Conway’s law is that not all communication and col-
laboration is good. Thus it is important to define “team interfaces” to set
expectations around what kind of work requires strong collaboration and what
doesn’t. Many organizations assume that more communication is always bet-
ter, but this is not really the case.

What we need is focused communication between specific teams. We need
to look for unexpected communication and address the cause; as Manuel
Sosa and colleagues found in their 2004 research into aircraft manufactur-
ing, “managers should focus their efforts on understanding the causes of
unaddressed design interfaces . . . and unpredicted team interactions . . . across
modular systems.”14

Mike Cohn, one of the originators of the Scrum product-development
approach, asks these questions to assess the health of inter-team communi-
cation within an organization: “Does the structure minimize the number of
communication paths between teams? . . . Does the structure encourage teams
to communicate who wouldn’t otherwise do so?15

Part I: Teams As the Means of Delivery | 25

C
H

A
PT

ER
 T

W
O

Here, Cohn is addressing the need to ensure that if, logically, two teams
shouldn’t need to communicate based on the software architecture design, then
something must be wrong if the teams are communicating. Is the API not good
enough? Is the platform not suitable? Is a component missing? If we can achieve
low-bandwidth communication—or even zero-bandwidth communication—
between teams and still build and release software in a safe, effective, rapid
way, then we should. This is visualized in Figure 2.5, which is based on Henrik
Kniberg’s “Real Life Agile Scaling.”16

A simple way to restrict communication is to move two teams to different
parts of the office, different floors, or even different buildings. If the teams
are virtual or mostly communicate over a chat messenger tool, the volume

High bandwidth: in team

Mid bandwidth: between
“paired” teams

Low bandwidth: between
most teams

Figure 2.5: Inter-Team Communication

Communication within teams is high bandwidth. Communication between two
“paired” teams can be mid bandwidth. Communication between most teams

should be low bandwidth.

26 | Team Topologies

C
H

A
PT

ER
 T

W
O

and patterns of the team-to-team communications can help identify com-
munications that do not match the interactions expected for the software
architecture.

Similarly, if a large team regularly deals with two separate areas of the sys-
tem, it can be useful to split this team into two smaller teams dedicated to
each part, although only if it’s the same team members who work on differ-
ent systems. If the whole team works on more than one part of the system
by design (for example, a newer service and an older component), keep the
team together. (See Chapter 9 for more on patterns for long-term “continuity
of care” for older software systems.)

Sometimes, two or more teams may feel the need to communicate on
software purely because the code for their parts of the system is in the same
version-control repository or is even part of the same application or service,
whereas logically, it should be separate. In these cases, we need to use “fracture
plane” patterns (which will be discussed in Chapter 6) to split up the software
into smaller chunks that can live in separate repositories.

Everyone Does Not Need to Communicate with Everyone
With open-plan offices and, particularly, with ubiquitous, instant communica-
tion via chat tools, anyone can communicate with anyone else. In this situation,
one can accidentally fall into a pattern of communication and interaction where
everyone needs to communicate with everyone else (putting the onus on the
consumer to distill what is relevant) in order to get work done. From the view-
point of Conway’s law, this will drive unintended consequences for the software
systems, especially a lack of modularity between subsystems.

If the organization has an expectation that “everyone should see every
message in the chat” or “everyone needs to attend the massive standup meet-
ings” or “everyone needs to be present in meetings” to approve decisions, then
we have an organization design problem. Conway’s law suggests that this kind
of many-to-many communication will tend to produce monolithic, tangled,
highly coupled, interdependent systems that do not support fast flow. More
communication is not necessarily a good thing.

Beware: Naive Uses of Conway’s Law

There is a danger of misinterpreting Conway’s law and creating a set of teams
that appear to map well to the required architecture but, in fact, work strongly
against fast flow. Furthermore, the relationship between cross-team tools and

Part I: Teams As the Means of Delivery | 27

C
H

A
PT

ER
 T

W
O

communication is often missed or ignored, but such tooling can be a powerful
driver of self-similar design. In this section, we identify some potential pitfalls
resulting from the naive application of Conway’s law.

Tool Choices Drive Communication Patterns
The way in which teams use software communication tools can have a

strong influence on communication patterns between teams. A common prob-
lem in organizations struggling to build and run modern software systems is a
mismatch between the responsibility boundaries for teams or departments and
those for tools. Sometimes an organization has multiple tools when a single one
would suffice (providing a common, shared view). Other times, a single tool is
used and problems arise because teams need separate ones.

As we’ve seen, Conway’s law tells us that an organization is constrained to
produce designs that are copies of its communication structures. We therefore
need to be mindful of the effect of shared tools on the way teams interact.
If we want teams to collaborate, then shared tools make sense. If we need a
clear responsibility boundary between teams, then separate tools (or separate
instances of the same tool) may be best.

Let’s say we need a software development team to work closely with the
IT operations team; having separate ticketing or incident-management tools
for the two teams will likely result in poor inter-team communication. To help
these teams collaborate and communicate, we should choose a tool that can
meet the needs of both groups. Similarly, having a special “production only”
tool that is limited to teams with security access to production should be
avoided. If that tool interacts with or measures the software being built, then
the restricted access to the tool is likely to drive a communication gap between
teams with access and teams without. The tool can help or hinder communica-
tion flow and, therefore, the effective interaction of teams.

TIP

Make information visible while keeping security in place.
Log-aggregation tools provide a simple solution for application teams
that need to consult production logs (for debugging purposes, for
instance) but do not have access to production environments. Such
tools ship all the logs to an external location, where they get pro-
cessed and indexed together (and anonymized if need be), making it

28 | Team Topologies

C
H

A
PT

ER
 T

W
O

faster to search and correlate events than individual logs. Teams get
access to the information they need while production security con-
trols remain intact (other than ensuring logs are being transferred
in a secure fashion).

However, when responsibility boundaries between two teams do not over-
lap (when the teams have very distinct roles without much need to collaborate),
we will not get much value from insisting on the same incident-tracking tool
or even the same monitoring tool for the two teams, particularly if one of the
teams is outside the organization providing a service.

In summary, don’t select a single tool for the whole organization without
considering team inter-relationships first. Have separate tools for independent
teams, and use shared tools for collaborative teams.

Many Different Component Teams
Some organizations have naively used Conway’s law to create many different
component teams focused on building small parts of systems. Component
teams—better called complicated-subsystem teams (see Chapter 5)—are
occasionally needed but only for exceptional cases, where very detailed exper-
tise is required. Generally speaking, we need to optimize for fast flow, so
stream-aligned teams are preferred. We will cover these aspects more in
Chapter 5.

Repeated Reorganizations that Create Fiefdoms
or Reduce Headcount

The underlying aim of many “reorganizations” in the past was to reduce staff or
create fiefdoms of power for managers and leaders. When we change the orga-
nization structure to accommodate Conway’s law, we are aiming to improve
the space (context, constraints, etc.) in which organizations search for solu-
tions with software systems. These two approaches are mutually exclusive.
With software and “product” companies, structure should anticipate product
architecture. Combined with a team-first approach, regular reorganizations for
management reasons should become a thing of the past.

To put this in the strongest way, regular reorganizations for the sake of
management convenience or reducing headcount actively destroy the ability
of organizations to build and operate software systems effectively. Reorganiza-

Part I: Teams As the Means of Delivery | 29

C
H

A
PT

ER
 T

W
O

tions that ignore Conway’s law, team cognitive load, and related dynamics risk
acting like open heart surgery performed by a child: highly destructive.

Summary: Conway’s Law Is Critical for Efficient
Team Design in Tech

Conway’s law tells us that an organization’s structure and the actual commu-
nication paths between teams persevere in the resulting architecture of the
systems built. They void the attempts of designing software as a separate activ-
ity from the design of the teams themselves.

The effects of this simple law are far reaching. On one hand, the organi-
zation’s design limits the number of possible solutions for a given system’s
architecture. On the other hand, the speed of software delivery is strongly
affected by how many team dependencies the organization design instills.

Fast flow requires restricting communication between teams. Team col-
laboration is important for gray areas of development, where discovery and
expertise is needed to make progress. But in areas where execution prevails—
not discovery—communication becomes an unnecessary overhead.

One key approach to achieving the software architecture (and associated
benefits like speed of delivery or time to recover from failure) is to apply the
reverse Conway maneuver: designing teams to match the desired architecture.
We provided a simple example where an organization could avoid a monolithic
database by embedding database skills in the application team, so that they
had sufficient autonomy to maintain a separate data store (perhaps relying on
a centralized DBA team for recommendations on database design or synchro-
nization with other databases).

In short, by considering the impact of Conway’s law when designing soft-
ware architectures and/or reorganizing team structures, you will be able to
takeadvantage of the isomorphic force at play, which converges the software
architecture and the team design.

Disbanding high-performing teams is worse than vandalism: it is
corporate psychopathy.

—Allan Kelly, Project Myopia

Part I: Teams As the Means of Delivery | 31

3 Team-First Thinking

Experts in organizational behavior have known for decades that modern
complex systems require effective team performance: in particular, Driskell

and Salas found that teams working as a cohesive unit perform far better
than collections of individuals for knowledge-rich, problem-solving tasks that
require high amounts of information.1 Even previously hierarchical organiza-
tions such as the US Army have adopted the team as the fundamental unit
of operation. In the bestselling book Team of Teams, retired US Army General
Stanley McChrystal notes that the best-performing teams “accomplish remark-
able feats not simply because of the individual qualifications of their members
but because those members coalesce into a single organism.”2 (italics added)

In software development specifically, the speed, frequency, complexity,
and diversity of changes needed for modern software-rich systems means that
teams are essential. Relying on individuals to comprehend and effectively deal
with the volume and nature of information required to build and evolve mod-
ern software is not sustainable. In fact, research by Google on their own teams
found that who is on the team matters less than the team dynamics; and that
when it comes to measuring performance, teams matter more than individu-
als.3 We must, therefore, start with the team for effective software delivery.

32 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

There are multiple aspects to consider and nurture: team size, team lifespan,
team relationships, and team cognition.

Use Small, Long-Lived Teams as the Standard

In this book, “team” has a very specific meaning. By team, we mean a stable group-
ing of five to nine people who work toward a shared goal as a unit. We consider
the team to be the smallest entity of delivery within the organization. Therefore,
an organization should never assign work to individuals; only to teams. In all
aspects of software design, delivery, and operation, we start with the team.

In most organizations, an effective team has a maximum size of around
seven to nine people. Amazon, for instance, is known for limiting the size of
its software teams to those that can be fed by two pizzas.4 This limit, recom-
mended by popular frameworks such as Scrum, derives from evolutionary
limits on group recognition and trust known as Dunbar’s number (after anthro-
pologist Robin Dunbar). Dunbar found fifteen to be the limit of the number of
people one person can trust deeply.5 From those, only around five people can
be known and trusted closely.6

Allowing teams to grow beyond the magic seven-to-nine size imperils the
viability of the software being built by that team, because trust will begin to
break down and unsuitable decisions might ensue. Organizations need to max-
imize trust between people on a team, and that means limiting the number of
team members.

When delivering changes rapidly, it is important to ensure that high trust
is explicitly valued and designed for. High trust is what enables a team to inno-
vate and experiment. If trust is missing or reduced due to a larger group of
people, speed and safety of delivery will suffer.

NOTE

High-trust organizations may sustain larger teams.
There are exceptions to the seven-to-nine rule, but these are rare.
If an organization has engendered a very strong culture of trust,
mutual respect, and acceptance of failure, teams might work at
up to around fifteen people. However, in our experience, very few
organizations fit this criteria.

Part I: Teams As the Means of Delivery | 33

C
H

A
PT

ER
 T

H
RE

E

Smaller Size Fosters Trust
The limit on team size and Dunbar’s number extends to groupings of teams,
departments, streams of work, lines of business, and so on. In addition to
 Dunbar’s number, anthropological research shows that the type and depth of
relationship we can have with people has clear limits:7

• Around five people—limit of people with whom we can hold close per-
sonal relationships and working memory

• Around fifteen people—limit of people with whom we can experience
deep trust

• Around fifty people—limit of people with whom we can have mutual
trust

• Around 150 people—limit of people whose capabilities we can
remember

Some researchers have identified possible limits to effective social rela-
tionships at around 500 and 1,500 (there is roughly a three times multiplier at
work here). The key point is that—whether we like it or not—there are natural
restrictions on the size of effective groupings within any organization. As the
size of a group increases, the dynamics and behaviors between group members
will be subtly or radically different, and patterns and rules that worked at a
smaller scale will probably fail to work at a larger scale.

Teams need trust to operate effectively, but if the size of a group grows too
large for the necessary level of trust, that group can no longer be as effective as
it was when it was a smaller unit. Within an organization building and running
software systems, it is therefore important to consciously limit the size of team
groupings to Dunbar’s number to help achieve predictable behavior and inter-
actions from those teams:

• A single team: around five to eight people (based on industry
experience)

 In high-trust organizations: no more than fifteen people
• Families (“tribes”): groupings of teams of no more than fifty people
 In high-trust organizations: groupings of no more than 150 people
• Divisions/streams/profit & loss (P&L) lines: groupings of no more

than 150 or 500 people

34 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

Organizations can be composed from Dunbar-compatible groupings of these
sizes; when one of the limits is reached, the need to split off another unit as a
semi-independent grouping arises. We can visualize this “scaling by Dunbar” as
concentric circles of increasingly larger or smaller groups (see Figure 3.1, based
on the “onion” concept from James Lewis8):

In the context of products and services enabled by software systems, the
limits exposed by Dunbar’s number mean that the number of people in differ-

5 15 50 150 500

Figure 3.1: Scaling Teams Using Dunbar’s Number

Organizational groupings should follow Dunbar’s number, beginning with around
five people (or eight for software teams), then increasing to around fifteen people,

then fifty, then 150, then 500, and so on.

Part I: Teams As the Means of Delivery | 35

C
H

A
PT

ER
 T

H
RE

E

ent business lines or streams of work should also explicitly be limited when the
number of people in a department exceeds fifty (or 150, or 500), the internal
and external dynamics with other groupings will change. This, in turn, means
that the software architecture needs to be realigned with the new team group-
ings so that teams can continue to own the architecture effectively. This is
an example of what we like to call “team-first architecture,” which requires a
substantially new way of thinking for many organizations; but companies like
Amazon (with its “two-pizza” rule) have proven it can be a highly successful and
scalable approach.9

TIP

Team-first software architecture is driven by Dunbar’s number.
Expect to change the architecture of software systems to fit with the
limits on human interactions set by Dunbar’s number. Approaches
like microservices can help if applied with a team-first perspective.

Work Flows to Long-Lived Teams
Teams take time to form and be effective. Typically, a team can take from
two weeks to three months or more to become a cohesive unit. When (or if)
a team reaches that special state, it can be many times more effective than
individuals alone. If it takes three months for a team to become highly effec-
tive, we need to provide stability around and within the team to allow them
to reach that level.

There is little value in reassigning people to different teams after a six-
month project where the team has just begun to perform well. As Fred Brooks
points out in his classic book The Mythical Man-Month, adding new people to a
team doesn’t immediately increase its capacity (this became known as Brooks’s
law).10 In fact, it quite possibly reduces capacity during an initial stage. There’s
a ramp-up period necessary to bring people up to speed, but the communica-
tion lines inside the team also increase significantly with every new member.
Not only that, but there is an emotional adaptation required both from new
and old team members in order to understand and accommodate each other’s
points of view and work habits (the “storming” stage of Tuckman’s team-devel-
opment model).11

The best approach to team lifespans is to keep the team stable and “flow
the work to the team,” as Allan Kelly says in his 2018 book Project Myopia.12

36 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

Teams should be stable but not static, changing only occasionally and when
necessary.

In high-trust organizations, people may change teams once a year without
major detrimental effects on team performance. For example, at cloud soft-
ware specialist Pivotal, “an engineer would switch teams about every 9 to 12
months.”13 In typical organizations with lower levels of trust, people should
remain in the same team for longer (perhaps eighteen months or two years),
and the team should be given coaching to improve and sustain team cohesion.

NOTE

Beyond the Tuckman Teal Performance Model
The Tuckman model describes how teams perform in four stages:
 1. Forming: assembling for the first time
 2. Storming: working through initial differences in personality
 and ways of working
 3. Norming: evolving standard ways of working together
 4. Performing: reaching a state of high effectiveness

 However, in recent years, research by people like Pamela
Knight has found that this model is not quite accurate, and that
storming actually takes places continually throughout the life of
the team.14 Organizations should continually nurture team dynam-
ics to maintain high performance.

The Team Owns the Software
With small, long-lived teams in place, we can begin to improve the ownership
of software. Team ownership helps to provide the vital “continuity of care” that
modern systems need in order to retain their operability and stay fit for purpose.
Team ownership also enables a team to think in multiple “horizons”—from
exploration stages to exploitation and execution—to better care for software
and its viability. As Jez Humble, Joanne Molesky, and Barry O’Reilly put it in
their book Lean Enterprise,15 Horizon 1 covers the immediate future with prod-
ucts and services that will deliver results the same year; Horizon 2 covers the
next few periods, with an expanding reach of the products and services; and
Horizon 3 covers many months ahead, where experimentation is needed to
assess market fit and suitability of new services, products, and features.

Part I: Teams As the Means of Delivery | 37

C
H

A
PT

ER
 T

H
RE

E

The danger of allowing multiple teams to change the same system or sub-
system is that no one owns either the changes made or the resulting mess.
However, when a single team owns the system or subsystem, and the team
has the autonomy to plan their own work, then that team can make sensible
decisions about short-term fixes with the knowledge that they will be removing
any dirty fixes in the next few weeks. Awareness of and ownership over these
different time horizons helps a team care for the code more effectively.

Every part of the software system needs to be owned by exactly one team.
This means there should be no shared ownership of components, libraries, or
code. Teams may use shared services at runtime, but every running service,
application, or subsystem is owned by only one team. Outside teams may
submit pull requests or suggestions for change to the owning team, but they
cannot make changes themselves. The owning team may even trust another
team so much that they grant them access to the code for a period of time, but
only the original team retains ownership.

Note that team ownership of code should not be a territorial thing. The
team takes responsibility for the code and cares for it, but individual team
members should not feel like the code is theirs to the exclusion of others.
Instead, teams should view themselves as stewards or caretakers as opposed to
private owners. Think of code as gardening, not policing.

Team Members Need a Team-First Mindset
The team should be the fundamental means of delivery rather than the individ-
ual. If we follow this team-first approach, we need to ensure that the people within
our teams also have (or develop) a team-first mindset. This may be unfamiliar to
some people, but with the right coaching and time to learn, many people adapt.

For teams to work, team members should put the needs of the team above
their own. They should:

• Arrive for stand-ups and meetings on time.
• Keep discussions and investigations on track.
• Encourage a focus on team goals.
• Help unblock other team members before starting on new work.
• Mentor new or less experienced team members.
• Avoid “winning” arguments and, instead, agree to explore options.

However, even with coaching, some people are unsuitable to work on
teams or are unwilling to put team needs above their own. Such people can

38 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

destroy teamwork and, in extreme cases, destroy teams. These people are
“team toxic” and need to be removed before damage is done. There is a good
amount of research in this area. For example, one study found that “collectively
oriented team members were more likely to attend to the task inputs of other
team members and to improve their performance during team interaction than
egocentric team members.”16

Embrace Diversity in Teams
In the context of rapidly changing requirements and technologies, teams must
continuously find novel and creative ways to address the challenges placed
upon them and to communicate effectively with other teams. Recent research
in both civilian and military contexts strongly suggests that teams with mem-
bers of diverse backgrounds tend to produce more creative solutions more
rapidly and tend to be better at empathizing with other teams’ needs.17

This diverse mix of people also appears to foster better results, as team
members make fewer assumptions about the context and needs of their soft-
ware users. Tom DeMarco and Timothy Lister, authors of the influential book
Peopleware, observe that “a little bit of heterogeneity can be an enormous aid
to create a jelled team.”18 In the context of discovering new possibilities, having
a variety of viewpoints and experiences helps teams traverse the landscape of
solutions much more rapidly. As Naomi Stanford, author of Guide to Organisa-
tion Design, puts it: “people and organizations benefit from a diverse workforce
where differences spark positive energy.”19

Reward the Whole Team, Not Individuals
W. Edwards Deming, author of Out of the Crisis and a pivotal figure in the Lean
manufacturing movement, identified one of his key fourteen points for man-
agement as “abolishment of the annual or merit rating and of management
by objective.”20 Looking to reward individual performance in modern organiza-
tions tends to drive poor results and damages staff behavior. One particularly
insidious usage of individual bonuses is when companies use it to leverage
their end-of-year profitability. Outstanding individual efforts might receive
limited or no bonuses because of a crisis year. This increases the misalignment
between the individual’s merits and the bonus they actually receive, leading to
frustration and demotivation.

With a team-first approach, the whole team is rewarded for their com-
bined effort. One of the defining features of work at technology company
Nokia during its hugely successful years in the 1990s and 2000s was: “Pay dif-

Part I: Teams As the Means of Delivery | 39

C
H

A
PT

ER
 T

H
RE

E

ferences across the organization were muted. Bonuses were small and typically
paid on a team basis and on overall company performance, not individually.”21

The same can be applied to training budgets. With a team-first approach,
the whole team rather than each individual gets a single training budget.
If the team wants to send the same person to six or seven conferences during
the year because they are so good at reporting back to the team, that should
be the team’s decision.

Good Boundaries Minimize Cognitive Load

Having established the team as the fundamental means of delivery, organiza-
tions also need to ensure that the cognitive load on a team is not too high. A
team working with software systems that require too high of a cognitive load
cannot effectively own or safely evolve the software. In this section, we will
identify ways in which the cognitive load on teams can be detected and limited
in order to safely promote fast flow of change.

Restrict Team Responsibilities to Match Team Cognitive Load
One of the least acknowledged factors that increases friction in modern soft-
ware delivery is the ever-increasing size and complexity of codebases that
teams have to work with. This creates an unbounded cognitive load on teams.

Cognitive load also applies to teams that do less coding and more execu-
tion of tasks, like a traditional operations or infrastructure team. They can
also suffer from excessive cognitive load in terms of domains of responsibility,
number of applications they need to operate, and tools they need to manage.

With a team-first approach, the team’s responsibilities are matched to the
cognitive load that the team can handle. The positive ripple effect of this can
change how teams are designed and how they interact with each other across
an organization.

For software-delivery teams, a team-first approach to cognitive load means
limiting the size of the software system that a team is expected to work with;
that is, organizations should not allow a software subsystem to grow beyond
the cognitive load of the team responsible for the software. This has strong and
quite radical implications for the shape and architecture of software systems,
as we shall see later in the book.

Cognitive load was characterized in 1988 by psychologist John Sweller
as “the total amount of mental effort being used in the working memory.”22

Sweller defines three different kinds of cognitive load:

40 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

• Intrinsic cognitive load—relates to aspects of the task fundamental to
the problem space (e.g., “What is the structure of a Java class?” “How
do I create a new method?”)

• Extraneous cognitive load—relates to the environment in which the
task is being done (e.g., “How do I deploy this component again?”
“How do I configure this service?”)

• Germane cognitive load—relates to aspects of the task that need spe-
cial attention for learning or high performance (e.g., “How should this
service interact with the ABC service?”)

For example, the intrinsic cognitive load for a web application developer
could be the knowledge of the computer language being used (on top of the
fundamentals of programming), the extraneous cognitive load might be details
of the commands needed to instantiate a dynamic testing environment (which
needs multiple hard-to-remember console commands), and the germane cogni-
tive load could be the specific aspects of the business domain that the application
developer is programming (such as an invoicing system or a video-processing
algorithm). Jo Pearce’s work on cognitive load in the context of software devel-
opment provides numerous additional examples.23

Broadly speaking, for effective delivery and operations of modern soft-
ware systems, organizations should attempt to minimize intrinsic cognitive
load (through training, good choice of technologies, hiring, pair programming,
etc.) and eliminate extraneous cognitive load altogether (boring or superfluous
tasks or commands that add little value to retain in the working memory and
can often be automated away), leaving more space for germane cognitive load
(which is where the “value add” thinking lies).

As we have seen earlier in this chapter, there is an effective maximum size
of seven to nine members for a team building and running software systems
(see Figure 3.1 on page 34), so it follows that there is a maximum amount
of cognitive load that a certain team can deal with. Many organizations do
not consider the cognitive load on teams when assigning responsibility for
parts of a software system, instead assuming that by adding more teams to
the problem, the cognitive load will be shared across the teams. Instead, the
teams will suffer from similar communication and interaction strains as men-
tioned in Brooks’s law.

If we stress the team by giving it responsibility for part of the system that
is beyond its cognitive load capacity, it ceases to act like a high-performing unit
and starts to behave like a loosely associated group of individuals, each trying

Part I: Teams As the Means of Delivery | 41

C
H

A
PT

ER
 T

H
RE

E

to accomplish their individual tasks without the space to consider if those are
in the team’s best interest.

Limiting the cognitive load for a team means limiting the size of the
subsystem or area on which the team works, a tactic suggested by Driskell
and colleagues in their research paper: “For those settings in which effective
teamwork is critical, it may be necessary to structure the task to make it less
demanding (i.e., by delegating subtasks), so that attention can be maintained
on essential task and teamwork cues.24

At the same time, the team needs the space to continuously try to reduce
the amount of intrinsic and extraneous load they currently have to deal with
(via training, practice, automation, and any other useful techniques).

Measure the Cognitive Load Using Relative Domain Complexity
A simple and quick way to assess cognitive load is to ask the team, in a
non-judgmental way: “Do you feel like you’re effective and able to respond in
a timely fashion to the work you are asked to do?”

While not an accurate measure, the answer will help gauge whether teams
are feeling overloaded. If the answer is clearly negative, organizations can apply
some heuristics to understand if and why cognitive load is too high. If it is, the
organization needs to take the necessary steps to reduce cognitive load, thus
ensuring that the team is able to be effective and proactive again. Incidentally,
this will increase motivational levels within the team as members see more
value and purpose in their work.

Trying to determine the cognitive load of software using simple measures
such as lines of code, number of modules, classes, or methods is misguided.
Computer researcher Graylin Jay and colleagues found in 2009 that some pro-
gramming languages are more verbose than others (and after the emergence
of microservices, polyglot systems became increasingly more common), and
teams using more abstractions and reusing code will have smaller but not nec-
essarily simpler codebases.25

When measuring cognitive load, what we really care about is the domain
complexity—how complex is the problem that we’re trying to solve with soft-
ware? A domain is a more largely applicable concept than software size. For
example, running and evolving a toolchain to support continuous delivery typi-
cally requires a fair amount of tool integration and testing. Some automation
code will be needed, but orders of magnitude less than the code needed for
building a customer-facing application. Domains help us think across the board
and use common heuristics.

42 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

While there is no formula for cognitive load, we can assess the number
and relative complexity (internal to the organization) of domains for which
a given team is responsible. The Engineering Productivity team at OutSys-
tems that we mentioned in Chapter 1 realized that the different domains they
were responsible for (build and continuous integration, continuous delivery,
test automation, and infrastructure automation) had caused them to become
overloaded. The team was constantly faced with too much work and context
switching prevailed, with tasks coming in from different product areas simul-
taneously. There was a general sense in the team that they lacked sufficient
domain knowledge, but they had no time to invest in acquiring it. In fact, most
of their cognitive load was extraneous, leaving very little capacity for value-add
intrinsic or germane cognitive load.

The team made a bold decision to split into microteams, each responsible
for a single domain/product area: IDE productivity, platform-server produc-
tivity, and infrastructure automation. The two productivity microteams were
aligned (and colocated) with the respective product areas (IDE and platform
server). Changes that overlapped domains were infrequent; therefore, the pre-
vious single-team model was optimizing for the exceptions rather than the
rule. With the new structure, the teams collaborated closely (even creating
temporary microteams when necessary) on cross-domain issues that required
a period of solution discovery but not as a permanent structure.

After only a few months, the results were above their best expectations.
Motivation went up as each microteam could now focus on mastering a single
domain (plus they didn’t have a lead anymore, empowering team decisions).
The mission for each team was clear, with less context switching and frequent
intra-team communication (thanks to a single shared purpose rather than a
collection of purposes). Overall, the flow and quality of the work (in terms of
fitness of the solutions for product teams) increased significantly.

Limit the Number and Type of Domains per Team
To be clear, there is no final answer for “Is this the right number and type
of domain for this team?” Domains are not static and neither is the team’s
 cognitive capacity. But the reasoning around relative domain complexity can
help shape teams’ responsibilities and boundaries. When in doubt about the
complexity of a domain, always prioritize how the responsible team feels
about it. Downplaying the complexity (e.g., “There are plenty of tools for con-
tinuous delivery—it’s not difficult.”) in order to “fit in” more domains with a
single team will only lead to failure.

Part I: Teams As the Means of Delivery | 43

C
H

A
PT

ER
 T

H
RE

E

To get started, identify distinct domains that each team has to deal with,
and classify these domains into simple (most of the work has a clear path of
action), complicated (changes need to be analyzed and might require a few iter-
ations on the solution to get it right), or complex (solutions require a lot of
experimentation and discovery). You should finetune the resulting classifica-
tion by comparing pairs of domains across teams: How does domain A stack
against domain B? Do they have similar complexity or is one clearly more com-
plex than the other? Does the current domain classification reflect that?

The first heuristic is to assign each domain to a single team. If a domain is
too large for a team, instead of splitting responsibilities of a single domain to
multiple teams, first split the domain into subdomains and then assign each
new subdomain to a single team. (See Chapter 6 for more help on how to break
down large domains.)

The second heuristic is that a single team (considering the golden seven-to-
nine team size) should be able to accommodate two to three “simple” domains.
Because such domains are quite procedural, the cost of context switching
between domains is more bearable, as responses are more mechanical. In this
context, a simple domain for a team might be an older software system that
has only minor, occasional, straightforward changes. However, there is a risk
here of diminishing team members’ motivation due to the more routine nature
of their work.

The third heuristic is that a team responsible for a complex domain should
not have any more domains assigned to them—not even a simple one. This is
due to the cost of disrupting the flow of work (solving complex problems takes
time and focus) and prioritization (there will be a tendency to resolve the
simple, predictable problems as soon as they come in, causing further delays
in the resolution of complex problems, which are often the most important
for the business).

The last heuristic is to avoid a single team responsible for two complicated
domains. This might seem feasible with a larger team of eight or nine people,
but in practice, the team will behave as two subteams (one for each domain),
yet everyone will be expected to know about both domains, which increases
cognitive load and cost of coordination. Instead, it’s best to split the team into
two separate teams of five people (by recruiting one or two more team mem-
bers), so they can each be more focused and autonomous. (See Figure 3.2 on
page 44.)

As always, these are only recommendations, not a definitive path to suc-
cess. Use these guidelines as a starting point from which to adapt as your

44 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

BEFORE

Team A

AFTER

Domain 2
(complex)

Domain 2
(complex)

Domain 4
(complex)

Domain 4
(complex)

Domain 1
(complicated)

Domain 1
(complicated)

Domain 3
(complicated)

Domain 3
(complicated)

Team 3

Team 1

Team 4

Team 2

Figure 3.2: No More than One Complicated or Complex Domain per Team

Before: a larger team is spread thin across four domains (two complicated and two complex) and
struggles to perform well. Intra-team morale is negatively affected, with frequent context switches

and individual disengagement. After: with multiple smaller teams each focusing on a single
domain, motivation rises and the team delivers faster and more predictably. Low bandwidth

inter-team collaboration allows solving occasional issues affecting two or more domains.

Part I: Teams As the Means of Delivery | 45

C
H

A
PT

ER
 T

H
RE

E

organization evolves and learns. Always remember that, in the end, even if
the allocation of domains seems to make sense, if the teams doing the work
are still feeling overwhelmed, stress builds up and morale weakens, leading to
poor results.

Match Software Boundary Size to Team Cognitive Load
To keep software delivery teams effective and able to own and evolve parts
of the software systems, we need to take a team-first approach to the size of
software subsystems and the placement of boundaries. Instead of designing a

A B

Teams

Team 1

Individuals

Typical Software
Subsystem
Boundaries

Team 3

C

D E

F

Team-First
Software Subsystem

Boundaries

Figure 3.3: Typical vs. Team-First Software Subsystem Boundaries

46 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

system in the abstract, we need to design the system and its software boundar-
ies to fit the available cognitive load within delivery teams.

Instead of choosing between a monolithic architecture or a microservices
architecture, design the software to fit the maximum team cognitive load. Only
then can we hope to achieve sustainable, safe, rapid software delivery. This team-
first approach to software boundaries leads to favoring certain styles of software
architecture, such as small, decoupled services. We can visualize this team-first
approach to software subsystem boundaries in Figure 3.3 (see page 45).

On the left, we see typical software subsystem boundaries, with different
parts of systems or products assigned to a mix of multiple teams, single teams,
and individuals. On the right, we see the Team Topologies’ team-first approach
to software subsystem boundaries, with every part of the system being team
sized and owned by one team.

To increase the size of a software subsystem or domain for which a team is
responsible, tune the ecosystem in which the team works in order to maximize
the cognitive capacity of the team (by reducing the intrinsic and extraneous
types of load):

• Provide a team-first working environment (physical or virtual). (You’ll
see more later in this chapter).

• Minimize team distractions during the workweek by limiting meet-
ings, reducing emails, assigning a dedicated team or person to support
queries, and so forth.

• Change the management style by communicating goals and outcomes
rather than obsessing over the “how,” what McChrystal calls “Eyes On,
Hands Off” in Team of Teams.26

• Increase the quality of developer experience (DevEx) for other teams
using your team’s code and APIs through good documentation, consis-
tency, good UX, and other DevEx practices.

• Use a platform that is explicitly designed to reduce cognitive load for
teams building software on top of it.

By actively reducing extraneous mental overheads for teams and team
members through these and similar approaches, organizations can give teams
more cognitive space to take on more challenging parts of the software sys-
tems. Conversely, if an organization does not have team-first office space, good
management practices, and especially a team-first platform, then the size of
software subsystems that teams can take on will be smaller. A larger number

Part I: Teams As the Means of Delivery | 47

C
H

A
PT

ER
 T

H
RE

E

of smaller parts requires more teams to work on them, costing more. Taking a
team-first approach to software subsystem boundaries by designing for cogni-
tive load means happier teams and (eventually) lower costs.

Albert Bertilsson, Solution Team Lead, and Gustaf Nilsson Kotte, Web
Developer, felt the weight of a continuously increasing cognitive load on the
mobile team they were leading at IKEA back in 2017. As they relayed to us, in
the previous year, the team kept growing as a result of successful delivery of
multiple projects in a short period of time and across multiple markets.

This high-performing team kept adding more and more responsibilities
on their shoulders, as the number of software products they maintained kept
increasing. Eventually, they started to run into problems due to some work
streams preventing the releases of others. Despite understandable pushback
from the team, Bertilsson and Kotte managed to convince team members that
they really had two products in the same codebase and needed to split the team
in two, following Conway’s law. An interesting bit to retain here is that this was
a high-performing team with all the intrinsic motivators (autonomy, mastery,
and purpose), yet they were still feeling the pains of cognitive overload.

A further benefit of taking a team-first approach to software boundaries
is that the team tends to easily develop a shared mental model of the soft-
ware being worked on. Research has shown that the similarity of team mental
models is a good predictor of team performance, meaning fewer mistakes,
more coherent code, and more rapid delivery of outcomes.27 As we begin to
optimize more and more for the team, the benefits begin to compound in a
positive way.

TIP

“Minimize cognitive load for others” is one of the most useful heu-
ristics for good software development.

Design “Team APIs” and Facilitate Team Interactions

Now that we see the team as the fundamental means of delivery, we can begin
to design other things around the team. In this section, we explore concepts
such as the team API and well-defined team interactions as ways to produce a
coherent, dynamic network of cleanly communicating teams.

48 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

Define “Team APIs” that Include Code, Documentation,
and User Experience

With stable, long-lived teams that own specific bits of the software systems,
we can begin to build a stable team API: an API surrounding each team. An API
(application programming interface) is a description and specification for how
to interact programmatically with software, so we extend this idea to entire
interactions with the team. The team API includes:

• Code: runtime endpoints, libraries, clients, UI, etc. produced by the
team

• Versioning: how the team communicates changes to its code and ser-
vices (e.g., using semantic versioning [SemVer] as a “team promise”
not to break things)

• Wiki and documentation: especially how-to guides for the software
owned by the team

• Practices and principles: the team’s preferred ways of working
• Communication: the team’s approach to remote communication tools,

such as chat tools and video conferencing
• Work information: what the team is working on now, what’s coming

next, and overall priorities in the short to medium term
• Other: anything else that other teams need to use to interact with

the team

The team API should explicitly consider usability by other teams: Will
other teams find it easy and straightforward to interact with us, or will it be
difficult and confusing? How easy will it be for a new team to get on board with
our code and working practices? How do we respond to pull requests and other
suggestions from other teams? Is our team backlog and product roadmap easily
visible and understandable by other teams?

For effective team-first ownership of software, teams need to continu-
ously define, advertise, test, and evolve their team API to ensure that it is fit
for purpose for the consumers of that API: other teams. In Dynamic Reteaming
(by Heidi Helfand), Evan Wiley, Director of Program Management at Pivotal
Cloud Foundry (PCF), a major enterprise Platform-as-a-Service (PaaS) pro-
vider, describes how more than fifty teams are seen at PCF:

We really try to maintain as much contract based, API-based separation of
concerns between teams [emphasis added] as we can. We try not to share

Part I: Teams As the Means of Delivery | 49

C
H

A
PT

ER
 T

H
RE

E

code bases between teams. All the git repos for a particular team’s fea-
ture are wholly owned by that team and if another team is going to make
an addition or change to that code base, they’ll either do it with a pull
request or through cross-team pairing, where we would kind of send one
half of a pair over to the dependency holding team and one half of that
team’s pair back to the upstream team to work on that feature.28

An even more stringent team API approach is taken at cloud vendor AWS,
where CEO Jeff Bezos insisted on almost paranoid levels of separation between
teams. For example, each team at AWS must assume that “every [other team]
becomes a potential DOS [denial of service] attacker requiring service levels,
quotas, and throttling.”29

Many of the behaviors and patterns that make a good team API also make
for a good platform and good team interactions in general. (See Chapter 5 for
more details about what makes a good platform, and Chapter 7 for details
about promise theory, a team-based approach to cooperation in sociotechnical
systems.)

Facilitate Team Interactions for Trust, Awareness,
and Learning

It is important to provide time, space, and money to enable and encourage peo-
ple from different teams with similar skills and expertise to come together to
learn from each other and to develop their professional competencies.

By explicitly setting aside time and space for teams and people to inter-
communicate and learn, organizations can make learning and trust building
part of the rhythm that facilitates effective team interactions. Two critical ways
this can help teams build trust and awareness and learn new things are: (1) a
consciously designed physical and virtual environment; and (2) time away from
desks at guilds, communities of practice (a group of people who regularly get
together on a voluntary basis to collectively learn and share knowledge about a
domain of interest, internal tech conferences, etc.

Because this team interaction is outside the everyday building and running
of the main software systems, Conway’s law plays a much less obvious role, and
a freer cross-association between teams can take place. Crucially, teams that
have a chance to rehearse their team interactions in these contexts tend to find
it easier to interact with other teams when building and running software sys-
tems, as found in the groundbreaking research by Robert Axelrod and author
Mark Burgess.30

50 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

Explicitly Design the Physical and Virtual Environments to
Help Team Interactions

Consciously designed physical and virtual environments are necessary for
teams to learn and build trust. However, different people need different envi-
ronments at different times to be productive. Some tasks (e.g., implementing
and testing a complicated algorithm) might require full concentration and low
levels of noise. Other tasks require a very collaborative approach (e.g., defining
user stories and acceptance criteria). People who work all day with headphones
on are seen as anti-social, and their behavior does not promote interaction and
collaboration; but it could well be that the office environment is generally noisy
and these people require a quiet environment to be effective.

Neither individual cubicles nor fully open-plan seating is generally suitable
for teams: we need something better. Teams need the ability to collaborate fre-
quently, internally and only occasionally externally (with other teams). This
balance is hard to achieve both in an open-plan layout (no dedicated work area
for the team) and in an individual-workspaces layout (time together needs to
be planned ahead of time and meeting rooms are often scarce). Spotify recog-
nized this early on in their growth and arranged their office space to support
both needs.31 Back in 2012, Henrik Kniberg and Anders Ivarsson—then work-
ing at Spotify—talked about how “squads in a tribe are all physically in the
same office, normally right next to each other, and the lounge areas nearby
promote collaboration between the squads.”32

Office design for effective software delivery should accommodate all of
the following modes of work: focused individual work, collaborative intra-team
work, and collaborative inter-team work.

Having workspaces that clearly indicate the type of work going on also
helps reduce disturbance and unnecessary interruptions.

CASE STUDY: TEAM-FOCUSED OFFICE SPACE AT CDL

Michael Lambert, Head of Development, CDL
Andy Rubio, Development Team Leader, CDL
CDL is a UK-based company that is a market leader in the highly competitive
retail-insurance sector.

Here at CDL, our Agile journey has seen us evolve in many ways. One
aspect many people are interested in is how we organize the working
environment for our teams. From the start, we have always had the

Part I: Teams As the Means of Delivery | 51

C
H

A
PT

ER
 T

H
RE

E

luxury of being able to colocate our Agile teams. After moving to new
offices and then quickly outgrowing them, we moved many of our
development project teams back to our old headquarters, which gave
us multiple small project rooms where a development team could set up
home. We liked the space and ownership this brought, but cross-team
communication and visibility of other teams was less optimal. When
our new home, “The Codeworks,” was built, we thought long and hard
about what the layout of the development areas should be.

We visualized everything, so lots of magnetic whiteboards [were]
essential. We liked the team space our old building gave us, but we
needed less isolation of teams, and we had the usual physical numbers
and space constraints. If teams did not have enough space or only had
small cubical clusters or tight horseshoe arrangements, then availabil-
ity of meeting rooms for team ceremonies would become a big problem.
 Ideally, we wanted both: team space for the team to get their stuff done
and openness for the teams to collaborate and share.

What we came up with was a “benched bay” approach, with one
long bench for each team, and each bench was flanked by whiteboard
 partitions. Where a team butted up to an end wall, we painted it with
smart-surface paint so we could draw on it (see Figure 3.4 on page 52).

The size and growth of teams is also an important factor in design.
Some teams may be smaller while others may need to grow fast. The
bench arrangement allowed for easy growth, especially if you haven’t got
supporting legs and pedestals in the way. Small teams could spread out
while growing teams could squeeze up a bit. Of course, there is a limit on
this. When the team is too big, we split it into two smaller teams, each
taking functionally half of the backlog to make their own. The beauty of
this is each team takes the culture of the old team with them, and they
will diverge and grow themselves over time; but you can (with luck!) skip
the “storming” and “norming” phases of starting a team from scratch. We
deliberately have differing sizes of bays, where an extra table or two can
be accommodated.

Initially, team benches were set centrally and symmetrically
between the dividing whiteboard partitions, but we soon realized that
an asymmetrical arrangement worked much better, where the bench
was closer to one partition. This provided more space on one side to
gather the team yet still allowed the opposite whiteboards to be used
effectively.

52 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

We used what we had learned from this arrangement when it came
to fitting out the top floor for our new digital teams. Our original parti-
tions were expensive, heavyweight structures that could only be moved
at some expense. For the new digital space, we opted for lots of large,
portable, but still substantial, whiteboards. Teams could now reposition
and make breaks as they organized themselves.

This design is by no means perfect. All spaces are compromised in
one way or another. We get things wrong, but we continue to learn and
adapt. One such experiment was to remove the small glass partitions
running down the center of the team benches. Another was to have
height-adjustable sections on the ends of each set of benches for stand-
ing or for people who needed extra legroom.

As the case study from CDL shows, the physical work environment has a sig-
nificant effect on the ability of teams to interact in useful ways. Successful
organizations make sure to spend time and money achieving a good physical
environment for their staff.

Closed-off
meeting room(s)

Squad areas offset to provide squad
standup or whiteboarding space

Partition

Figure 3.4: Office Layout at CDL

Part I: Teams As the Means of Delivery | 53

C
H

A
PT

ER
 T

H
RE

E

For example, the bank ING Netherlands explicitly redesigned its office
space as part of a major organizational change around 2015 to align teams to
value streams.33 At ING, several stream-aligned “squads” working on similar
products and services within a stream form a “tribe.” Each tribe has a sepa-
rate area within the office, including multiple team-sized spaces, one for each
squad. The thought-out design of the office layout means that people from
other squads or tribes can easily recognize aspects of other teams’ work (such
as kanban boards, WIP limits, status radiators, and so on) and rapidly learn
new approaches. Some organizations have taken this even further, aligning
entire floors of their office space to separate business streams, promoting high
flow and easier collaboration within a stream.

Jeremy Brown from Red Hat Open Innovation Labs told us how they had
everything on wheels (even plants!) in order to frequently reconfigure their
physical environment for different types of work, and for teams to emerge and
evolve their own space.34 In their 2012 book Make Space, Scott Doorley and Scott
Witthoft present many other creative ideas for arranging physical space in ways
that ignite creativity and useful team interactions.35

CASE STUDY: STREAM-ALIGNED OFFICE LAYOUT FOR
FLOW-BASED COLLABORATION AT AUTO TRADER

Dave Whyte, Operations Engineering Lead, Auto Trader
Andy Humphrey, Head of Customer Operations, Auto Trader

Back in 2013, as we started to move from a print-based business with
many different offices around the country to a 100% digital business,
we began to look at ways we could improve collaboration and optimize
for the flow of work. We reorganized from fifteen offices into three, with
our main office in Manchester, UK, on only two floors. The working
environment was created to be as open plan as possible, with all senior
managers sitting with their teams and no private offices. This made it
much easier for people to communicate with each other, and we finally
started bridging the gap between “the business” and IT.

Our new offices were built for collaboration, from the way the desks
could be laid out to the limits on the number of monitor screens that
one person could have at their desk (to avoid people “hiding” behind
screens). Over the past few years, we have experimented with different

54 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

office layouts and seating plans to help the right teams communicate
and to promote flow:

• Organizing technical and non-technical teams on the same
floors and in the same areas: This helped break down barriers
between departments that shared the same goals and cus-
tomers. The equipment given to sales, product, service, and
technology became more aligned so that we could share tools
more widely and work in the same way (e.g., all our sales and
service colleagues have laptops; you don’t have to be a rockstar
developer to get a MacBook anymore).

• Clear-desk policy: We provided lockers for personal belongings
and encouraged people to move around the office and sit where
they needed to be that day in order to add value and not be
limited to sitting at the same desk in the same team.

• Technology restrictions: The desks were designed with single
monitors so that people could see those sitting opposite them
and interact more freely. It was common for some technical
staff to have two or three monitors, so this was not popular;
but it’s an interesting example of becoming a digital organiza-
tion by actually restricting the use of some technology in order
to meet the goal of being more collaborative. The desks even
had recessed legs, creating a bench effect, so that people could
move between them without snagging [their] legs—helping
pairing and sitting with other people.

• Writable walls: To encourage more informal, creative conversa-
tions, the walls were made writable so that people could draw
as they discussed, whether they were in a corridor or next to
a car. Most meeting rooms were made of glass so that people
could see who was in there and work out if they needed to be
in there too. We also created more informal meeting spaces—
sofas, soft chairs, etc.—so that people could sit down for a
chat with a colleague without needing to plan a meeting room
in advance.

• Event spaces: We also have event spaces designed into all our
buildings, so we can get together as a company and even invite
our local community by hosting events and meetups that help
us get to know and work with people outside our organization.

Part I: Teams As the Means of Delivery | 55

C
H

A
PT

ER
 T

H
RE

E

We now have all the people in a certain business division sitting
together. For example, private advertising is one of our business areas,
handling vehicle sales by private individuals, and everyone involved
in this stream of business sits on the same floor: marketing people,
sales people, developers, testers, product managers, and so on. This
means that everyone in the same business stream can “feel the pain”
together and all decisions are more jointly owned. We have found that
you start seeing things from other people’s viewpoints when you sit
with them.

Our office layout is quite deliberately designed to help flow and
specific collaboration. We based our teams loosely on the model from
Spotify, so we have squads of around eight people that build specific
parts of a system, and collections of squads known as tribes. Each squad
has its own team area located close to other squad areas from the same
tribe. This enables squads from the same tribe to talk easily to each
other—collaborating on similar parts of the system—while being physi-
cally separated from other tribes by walls and floors.

This layout helps teams focus on their business stream area,
mini mizing the need to talk with teams from other business areas to
get their day-to-day work done. We bring teams together for cross-
tribe learning by holding regular guild learning sessions and evening
meetups.

The virtual environment is increasingly important as many organizations adopt
a remote-first policy. The virtual environment comprises digital spaces such as
a wiki, internal and external blogs and organization websites, chat tools, work
tracking systems, and so forth. Effective remote work goes beyond having the
necessary tools; teams need to agree on ground rules around working hours,
response times, video conferencing, tone of communication, and other prac-
tical aspects that, if underestimated, can make or break a distributed team,
even when all the right tools are available. In their 2013 book Remote: Office
Not Required, Jason Fried and David Heinemeir Hansson go through how to
address these and many other important aspects for remote teams.36

From an efficient-communication perspective, the virtual environment
should be easy to navigate, guiding people to the right answer quickly. In par-
ticular, chat tools should have channel names or space names that are easy to
predict and search for, with prefixes to group chats:

56 | Team Topologies

C
H

A
PT

ER
 T

H
RE

E

#deploy-pre-production
. . .
#practices-engineering
#practices-testing
. . .
#support-environments
#support-logging
#support-onboarding
. . .
#team-vesuvius
#team-kilimanjaro
#team-krakatoa

In a virtual environment, it can be useful to use naming conventions in
usernames to make it easy for people to identify who’s in a particular team,
especially if that team is a central X-as-a-Service team, providing a platform
or component (more on this in Chapter 5). Instead of simply “Jai Kale” as the
display name within the chat tool and wiki, use something like “[Platform] Jai
Kale” to identify that Jai Kale is in the platform team.

Warning: Engineering Practices Are Foundational

At the end of the day, technology teams need to invest in proven team practices
like continuous delivery, test-first development, and a focus on software oper-
ability and releasability. Without them, all the effort invested in a team-first
approach to work and flow will be greatly undermined or at least underachieved.

Continuous delivery practices support hypothesis-driven development
and automation, operability practices provide early and ongoing operational
checks and discovery, testability practices and test-first development enhance
the design and fitness for purpose of solutions, and releasability practices
ensure delivery pipelines are treated as a first-grade product. All of them are
critical for fast flow and require an ongoing effort by all engineering teams.

Summary: Limit Teams’ Cognitive Load and
Facilitate Team Interactions to Go Faster

In a fast-changing and challenging context, teams are more effective than
groups of individuals. Successful organizations—from the US military to

Part I: Teams As the Means of Delivery | 57

C
H

A
PT

ER
 T

H
RE

E

corporations large and small—treat the team as the fundamental means of
getting work done. Teams are generally small, stable, and long lived, allowing
team members the time and space to develop their working patterns and team
dynamics.

Importantly, due to limits on team size (Dunbar’s number), there is an
effective upper limit on the cognitive load that a single team can bear. This
strongly suggests a limit on the size of the software systems and complexity of
domains that any team should work with. The team needs to own the system
or subsystems they are responsible for. Teams working on multiple codebases
lack ownership and, especially, the mental space to understand and keep the
corresponding systems healthy.

The team-first approach provides opportunities for many kinds of peo-
ple to thrive in an organization. Instead of needing a thick skin or resilience
in order to survive in an organization that atomizes individuals, people in a
team-first organization have the space and support to develop their skills and
practices within the context of a team.

Crucially, because communication between individuals is de-emphasized
in favor of communication between teams for day-to-day work, the organiza-
tion supports a wide range of communication preferences, from those people
who communicate best one to one to those who like large group conversations.
Furthermore, the effect of previously destructive individuals is curtailed. This
humanistic approach is a huge benefit of choosing teams first.

PART II
Team Topologies that
Work for Flow

KEY TAKEAWAYS
CHAPTER 4

• Ad hoc or constantly changing team design slows down software
delivery.

• There is no single definitive team topology but several inadequate
topologies for any one organization.

• Technical and cultural maturity, org scale, and engineering discipline
are critical aspects when considering which topology to adopt.

• In particular, the feature-team/product-team pattern is powerful but
only works with a supportive surrounding environment.

• Splitting a team’s responsibilities can break down silos and empower
other teams.

CHAPTER 5
• The four fundamental team topologies simplify modern software team

interactions.
• Mapping common industry team types to the fundamental topologies

sets up organizations for success, removing gray areas of ownership
and overloaded/underloaded teams.

• The main topology is (business) stream-aligned; all other topologies
support this type.

• The other topologies are enabling, complicated-subsystems, and
platform.

• The topologies are often “fractal” (self-similar) at large scale: teams of
teams.

CHAPTER 6
• Choose software boundaries using a team-first approach.
• Beware of hidden monoliths and coupling in the software-delivery

chain.
• Use software boundaries defined by business-domain bounded

contexts.
• Consider alternative software boundaries when necessary and suitable.

