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Table 2

Control 

#
Control

Included in the 

IUI story?

Might you use this to 

block a build?

1 Peer Review Yes
Yes; lack of peer review 

may block a build.

2
Static Application 

Security Testing
Yes

Yes; critical and (optional-

ly) high findings may block 

a build.

3

Software  

Composition 

Analysis

Yes

Yes; critical and (optional-

ly) high findings may block 

a build.

4 Code Quality Yes Probably not.

5 Unit Testing Yes Probably not.

6 Code Signing Yes
Yes; lack of code signing 

may block a build.

7 License Check No Probably not.

8

Trusted 

Dependency 

Store

No

Yes; use of dependencies 

originating outside the 

trusted store may block a 

build.

9
Container  

Vulnerability Scan
No

Yes; critical and (optional-

ly) high findings may block 

a build.

10 Secrets Scanning No

Yes; the presence of sensi-

tive tokens, keys, pass-

words, etc. in the source 

code may block a build.
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APPENDIX 1

MRAS AND MRIAS

MRAs are deficiencies that are important and should be addressed over a reason-

able period of time, but where the institution’s response need not be immediate. No 

matter how serious the concern, it is addressed to the institution’s board of directors.

MRAs describe practices that:

1. Deviate from sound governance, internal control, or risk-management prin-

ciples, and have the potential to adversely affect the bank’s condition, includ-

ing its financial performance or risk profile, if not addressed.

2. Result in substantive noncompliance with laws or regulations, enforcement 

actions, or conditions imposed in writing in connection with the approval of 

any application or other request by the bank. 

The Office of the Comptroller of the Currency (OCC) refers to such practices as 

deficient practices. Such practices also may be unsafe or unsound generally, any action, 

or lack of action that is contrary to generally accepted standards of prudent operation 

and the possible consequences of which, if continued, would be abnormal risk or loss 

or damage to an institution, its shareholders, or the Deposit Insurance Fund.

MRIAs arise from an examination, inspection, or any other supervisory activ-

ity and are matters of significant importance and urgency that the Federal Reserve 

requires banking organizations to address immediately and include:

1. matters that have the potential to pose significant risk to the safety and sound-

ness of the banking organization,

2. matters that represent significant noncompliance with applicable laws or reg-

ulations,

3. repeat criticisms that have escalated in importance due to insufficient atten-

tion or inaction by the banking organization,

4. and, in the case of consumer compliance examinations, matters that have the 

potential to cause significant consumer harm. An MRIA will remain an open 

issue until resolution and examiners confirm the banking organization’s cor-

rective actions. 
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5. For more, see the following references:

https://www.federalreserve.gov/supervisionreg/srletters/sr1313a1.pdf

https://www.federalregister.gov/documents/2017/08/09/2017-16735 

/proposed-guidance-on-supervisory-expectation-for-boards-of-directors

https://www.occ.gov/publications-and-resources/publications/comptrollers 

-handbook/files/bank-supervision-process/pub-ch-bank-supervision 

-process.pdf (pg 51)
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APPENDIX 2

PIPELINE DESIGN WITH CONTROL 

TOLLGATES

An organization might design their pipelines using a concept of “controls and toll-

gates.” The idea is that certain types of gates in the pipeline can be used to alert or 

stop the software delivery process. Here are examples of sixteen such controls/

tollgates:

Controls in the Build Pipeline

Many events in a build pipeline can be collected and saved in a tamper proof format. 

Once available, they may:

• inform decisions to block a build

• trigger alerts monitored by a security operations team

• serve as attestation that controls were performed prior to deployment

As more controls from across the software development life cycle are imple-

mented and their events are securely collected in a single place, the likelihood of 

risky software in production decreases, IT leaders and regulators will have improved 

visibility that inspires trust, and the organization enjoys safer software that allows it 

to accomplish its mission.

This table offers a few options readers may consider implementing in their own 

build pipelines. A list of more than thirty controls you may consider storing can be 

• source code version control

• optimum branching strategy

• static analysis

• >80% code coverage

• vulnerability scan

• open-source scan

• artifact version control

• automated provisioning

• immutable servers

• integration testing

• performance testing

• build deploy testing  

automated for every commit

• automated rollback

• automated change order

• zero downtime release

• feature toggle
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found on page 34 of the IT Revolution white paper DevOps Automated Governance 

Reference Architecture.

Control 

#
Control

Included in the 

IUI story?

Might you use this to 

block a build?

1 Peer Review Yes
Yes; lack of peer review 

may block a build.

2
Static Application 

Security Testing
Yes

Yes; critical and (optional-

ly) high findings may block 

a build.

3

Software  

Composition 

Analysis

Yes

Yes; critical and (optional-

ly) high findings may block 

a build.

4 Code Quality Yes Probably not.

5 Unit Testing Yes Probably not.

6 Code Signing Yes
Yes; lack of code signing 

may block a build.

7 License Check No Probably not.

8

Trusted 

Dependency 

Store

No

Yes; use of dependencies 

originating outside the 

trusted store may block a 

build.

9
Container  

Vulnerability Scan
No

Yes; critical and (optional-

ly) high findings may block 

a build.

10 Secrets Scanning No

Yes; the presence of sensi-

tive tokens, keys, pass-

words, etc. in the source 

code may block a build.
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APPENDIX 3

DEVSECOPS MANIFESTO

Through security as code, we have and will learn that there is simply a better way for 

security practitioners, like us, to operate and contribute value with less friction. We 

know we must adapt our ways quickly and foster innovation to ensure data security 

and privacy issues are not left behind because we were too slow to change. 

By developing security as code, we will strive to create awesome products and 

services, provide insights directly to developers, and generally favor iteration over try-

ing to always come up with the best answer before a deployment. We will operate like 

developers to make security and compliance available to be consumed as services. We 

will unlock and unblock new paths to help others see their ideas become a reality.

We won’t simply rely on scanners and reports to make code better. We will attack 

products and services like an outsider to help you defend what you’ve created. We 

will learn the loopholes, look for weaknesses, and work with you to provide remedi-

ation actions instead of long lists of problems for you to solve on your own.

We will not wait for our organizations to fall victim to mistakes and attackers. 

We will not settle for finding what is already known; instead, we will look for anoma-

lies yet to be detected. We will strive to be a better partner by valuing what you value:

• Leaning in over always saying “No”

• Data and security science over fear, uncertainty, and doubt

• Open contribution and collaboration over security-only requirements

• Consumable security services with APIs over mandated security controls 

and paperwork

• Business-driven security scores over rubber-stamp security

• Red and Blue Team exploit testing over relying on scans and theoretical 

vulnerabilities

• 24/7 proactive security monitoring over reacting after being informed of 

an incident

• Shared threat intelligence over keeping info to ourselves

• Compliance operations over clipboards and checklists

You can read the full DevSecOps manifesto here: https://www.devsecops.org/
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Appendix 4

APPENDIX 4

SHIFT LEFT

As with most things related to DevOps and DevSecOps, the term “shift left” can 

be traced all the way back to Toyota Production Systems and the use of the Jidoka 

and the Andon Cord. The main idea is that when delivering products, it’s more cost 

effective to find defects earlier in the process. This leads to higher-quality output, as 

well. The first use of “shift left” in software delivery can be traced back to software 

testing in the software development life cycle (SDLC).

Shift-left testing is important because it helps to prevent the following types of 

harm due to late testing:

• Testers may be less involved in initial planning, often resulting in insuffi-

cient resources being allocated to testing.

• Defects in requirements, architecture, and design remain undiscovered 

while significant effort is wasted implementing them.

• Debugging (including identifying, localizing, fixing, and regression- 

testing defects) becomes harder as more software is produced and inte-

grated.

• Encapsulation impedes white-box testing, reducing code coverage during 

testing.

• There is less time to fix defects found by testing, thereby increasing the like-

lihood that they will be postponed until later increments or versions of the 

system. This creates a “bow wave” of technical debt that can sink projects if 

it grows too large.1

The agile movement promoted Test-Driven Development (TDD) as a “shift-

left” concept. It was the DevOps movement that really formalized the idea of “shift 

left” as a common term. Gene Kim et al. further explored this concept of “shift left” in 

 

1. Wikipedia, “Shift-Left Testing,” modified November 8, 2021. https://en.wikipedia.org/wiki/Shift-left 

_testing#:~:text=Defects%20in%20requirements%2C%20architecture%2C%20and,software%20is 

%20produced%20and%20integrated.
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the book The DevOps Handbook. In it, they describes the Second Way as a process of 

amplifying feedback loops.
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APPENDIX 5

SOFTWARE COMPOSITION ANALYSIS

Software Composition Analysis (SCA) is the process of identifying the components 

that comprise a given piece of software. The components may be identified at a range 

of levels, from higher level (such as corresponding to items in “cloud diagrams”) to 

mid level (such as distinct classes, modules, or files) to low level (such as functions 

or methods comprising a file or class).

The software to be examined may be generally perceived as a single monolithic 

entity (in which case SCA aims to reveal its constituent components), or it may—as 

in the case of modern operating systems—already be seen as a collection of compo-

nents (in which case SCA may identify components at a greater level of granularity 

or identify the interrelationships among already-known components).

The term SCA may also refer to the analysis of a single component, showing for 

example its inputs, outputs, and side effects.

In the industry, SCA is often viewed as limited to identification of open source 

used within a software product. For example, a typical definition is: “SCA is the 

process of automating visibility into the use of open source software (OSS) for the 

purpose of risk management, security, and license compliance.” However, SCA does 

not need to be limited to open-source and may include identification of proprietary 

third-party or in-house components. The common restriction to open source may 

be based on if software components are invisible without source code. However, 

software reverse-engineering, including both static examination (e.g., disassembly 

and decompilation) and dynamic examination (e.g., packet sniffing) of commercial 

products, provides often-feasible methods to determine the composition of software 

without the benefit of source code.

The purposes of SCA include security audits (particularly when a product’s use 

of a particular version of a component can be identified and compared to reposito-

ries of known security vulnerabilities), license compliance (both OSS and propri-

etary components), and intellectual property infringement.

The SCA process should produce a valid software bill of materials (SBOM) or a 

“software tear down.” The industry is aligning on the CycloneDX and SPDX standard 

formats for SBOMs.



APPENDIX 6

US EXECUTIVE ORDER ON IMPROVING 

THE NATION’S CYBERSECURITY

On May 12, 2021, President Biden signed an executive order to improve the nation’s 

cybersecurity and to protect federal government networks. This executive order 

was directly related to recent cybersecurity incidents such as SolarWinds, Microsoft 

Exchange, and the Colonial Pipeline.

“It is the policy of my administration that the prevention, detection, assessment, 

and remediation of cyber incidents is a top priority and essential to national and 

economic security. The federal government must lead by example. All federal infor-

mation systems should meet or exceed the standards and requirements for cyberse-

curity set forth in and issued pursuant to this order.”1

In short, the executive order calls for the:2

• Removal of barriers to threat information sharing between government 

and the private sector.

• Modernizing and implementing stronger cybersecurity standards in the 

federal government.

• Improving software supply chain security.

• Establishing a Cybersecurity Safety Review Board.

• Creating a standard playbook for responding to cyber incidents.

• Improving detection of cybersecurity incidents on federal government net-

works.

• Improving investigative and remediation capabilities.

1. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order 

-on-improving-the-nations-cybersecurity/

2. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order 

-on-improving-the-nations-cybersecurity/
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APPENDIX 7

FAQ

This section is meant to provide general guidance on how to think about embark-

ing on an automated governance effort and dispel misconceptions that may inhibit 

readers from getting started.

1. The story focuses mostly on the technical approach to modernizing gov-

ernance. Is there more to it than technology? Yes. You may recall the classic 

triad of “People, Process, and Technology,” a useful, if simple, way to think 

about the elements of such a transformation. For the purposes of quick sto-

rytelling, we focused on the tech; neglect the people and process aspects at 

your own risk.

2. Do I need to be mostly a cloud native organization to pull all this off? No, 

but we do see a correlation between maturity in cloud adoption and becom-

ing a high-performing IT organization. Automated governance, like most 

modern development practices, benefits from the speed and agility offered by 

cloud computing capabilities.

3. Does my organization need to have mostly in-house, non third-party 

developers (like the large tech companies) to pull all this off? No. Anecdot-

ally, however, there is evidence that such transformations are less challenging 

when there are less entities to account for, such as various outsourced software 

development partners who may not embrace the mission as energetically or 

possess as much agency as in-house developers. There are even examples of 

hesitance or even authority among third-party development teams to priori-

tize security fixes with the same enthusiasm as new features. This is likely an 

understandable, if unfortunate, consequence of contracts signed with third-

party development teams being focused on new features being delivered by an 

agreed upon date; security and compliance efforts like automated governance 

may thus take a back seat.

4. If my application portfolio is predominantly made up of certain program-

ming languages or frameworks, will that make any of this easier? The spe-

cific languages or frameworks in use in an organization are less important 

than the number of languages or frameworks that the organization decides 
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to officially support. Being intentional about such support and limiting the 

number of languages or frameworks reduces entropy in the organization and 

can generally make it easier to get work done together, like automated gov-

ernance.

5. Does my organization need to already be a moderate- to high-perform-

ing DevOps organization before considering automated governance? No. 

There are few truly high-performing DevOps organizations. There are, how-

ever, parts of many organizations that are high performing when it comes 

to DevOps. While maturity in certain aspects of DevOps such as express-

ing “everything as code” and holistically applying software development best 

practices across development and operations, DevOps is not strictly a precur-

sor to automated governance. In fact, automated governance can catalyze and 

accelerate progress along the continuum of the DevOps journey.

6. Do I need to have already consolidated/homogenized the disparate build 

pipelines across my organization to pull all this off? W. Edwards Deming 

professed that “uncontrolled variation is the enemy of quality”. In that spirit, 

there are clear benefits to standardizing on the infrastructure and workflow 

that development of software must adhere to. Driving consolidation of the 

number of build pipelines and their configuration in an organization makes 

managing software delivery easier because when new practices such as auto-

mated governance are to be implemented, there are less environments that 

may drift and require attention. If your organization has not already taken 

active steps to do so, consider a formal effort to minimize the “build pipeline 

sprawl” so automated governance and other optimizations are effective across 

your software portfolio.

7. Is a crisis needed for an organization to consider pursuing automated 

governance? While crises like receiving an MRIA can focus an organization’s 

attention and will rally action, we do not recommend waiting for a crisis. 

Instead, we encourage being proactive. You can start small with a few appli-

cations in an automated governance effort to demonstrate the value to lead-

ership and earn permission for a broader effort—one that should reduce the 

likelihood of crises.
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