

A Novel about DevOps, Security, Audit Compliance,

and Thriving in the Digital Age

Helen Beal

Bill Bensing

Jason Cox

Michael Edenzon

Tapabrata Pal

Caleb Queern

John Rzeszotarski

Andres Vega

John Willis

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2022 by Helen Beal, Bill Bensing, Jason Cox, Michael Edenzon, Tapabrata Pal,

Caleb Queern, John Rzeszotarski, Andres Vega, John Willis

All rights reserved, for information about permission to reproduce selections from this book,

write to Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition

Printed in the United States of America

27 26 25 24 23 22 1 2 3 4 5 6 7 8 9 10

Cover and book design by Devon Smith

Library of Congress Control Number: 2022935846

ISBN: 9781950508532

eBook ISBN: 9781950508549

Web PDF ISBN: 9781950508563

This is a work of fiction. Names, characters, and businesses are the products of the authors’ imaginations.

Any resemblance to actual persons, living or dead, or actual businesses is purely coincidental.

However, certain real long-standing institutions, agencies, and public offices are mentioned. The events

in this book are fictional but inspired by many real-life events.

For information about special discounts for bulk purchases or for information

on booking authors for an event, please visit our website at www.ITRevolution.com.

INVESTMENTS UNLIMITED

To all those change agents in every organization

who dare to challenge the status quo,

build bridges instead of walls,

and propel us into the unlimited future.

CONTENTS

 Investments Unlimited Directory ix

 Preface xi

 Prelude xiii

 Chapter 1 1

 Chapter 2 9

 Chapter 3 19

 Chapter 4 27

 Chapter 5 33

 Chapter 6 45

 Chapter 7 53

 Chapter 8 61

 Chapter 9 73

 Chapter 10 83

 Chapter 11 91

 Chapter 12 105

 Chapter 13 117

 Epilogue 127

 Appendix 1: MRAs and MRIAs 129

 Appendix 2: Pipeline Design with Control Tollgates 131

 Appendix 3: DevSecOps Manifesto 133

 Appendix 4: Shift Left 134

 Appendix 5: Software Composition Analysis 136

 Appendix 6: US Executive Order on Improving the Nation’s Cybersecurity 137

 Appendix 7: FAQ 138

 Acknowledgments 141

 About the Authors 145

Contents

BOARD
Bernard Collins

CEO
Susan Jones

SVP Digital
Jason Colbert

CIO
Jennifer Limus

CISO
Tim Jones

CRCO
Jada King

Security
Barry David

VP Product
Bill Lucas

Engineer
Omar

SRE
Dillon

VP Engineering
Carol Smith

Andrea Regan

Lucy

Sr. Staff

Engineer
Michelle Dundin

EXTERNAL

AUDIT FIRM
Laura Perez

Organization Chart

Development

Dependency

Mgmt

Artifact

Repo

Prod DeployBuild

Common Control

1. Access Control

2. Audit Trail/Log

3. Everything Source Control

4. Usage Policies

Common Actors

1. Auditor, Risk/Compliance Office

2. (System)

3. Tools Admin

Package
Non Prod

Deploy

* Source: DevOps Automated Governance Reference Architecture

Figure 1

Action

Items
Control Stage Attestation

Source of

Truth
Example

Peer Review Build
Number of

Approvers

Source

Control Tool
Pass

Controls/Toll-

gates
Deployment Pass/Fail Policy Engine Pass

Elevated

Access
Deployment Pass/Fail Policy Engine Pass

Table 1

Figure 2

Demo App

README.md

Version

Build

Pull Request

0.0.4

PASS

1 APPROVAL

Figure 3

Souce Code

Platform

Souce

Code

Build Payload

A�estation

Enriched Payload

Webhook

CI Pipeline

Processor

Processor

Badges

Database

Version

Build

Pull Request

0.0.4

PASS

1 APPROVAL

Figure 4

Accountability to stakeholders

for organizational oversight

GOVERNING BODY

E
X

T
E

R
N

A
L

 A
S

S
U

R
A

N
C

E
 P

R
O

V
ID

E
R

S

Actions (including managing risk)

to achieve organizational objectives

MANAGEMENT
Independent assurance

INTERNAL AUDIT

Governing body roles: integrity,

leadership, and transparency

First line roles:
Provision of
products/
services to

clients;
managing

risk.

KEY: Accountability, reporting Delegation, direction,
resources, oversight

Alignment, communication
coordination, collaboration

Second line
roles:

Expertise,
support,

monitoring and
challenge on
risk-related

ma�ers.

Third line roles:
Independent and

objective assurance
and advice on

all ma�ers related
to the achievement

of objectives.

Figure 5

Demo App

Version

Unit Test

Build

0.0.4

PASS

PASS

Code Review PASS

Branching PASS

SCA FAIL

Figure 6

Demo App

Version

Code Review

0.0.23

1 APPROVAL

Build PASS

Branching Pa�ern TRUNK BASED

Code Signature CHECKSUM VERIFIED

Unit Tests PASS, 82% COVERAGE

Static Code Quality Scan RELIABILITY: A, MAINTAINABILITY: A

Static Security Test 0 VULNERABILITIES

SCA PASS

Figure 7

Demo App

Version

Code Review

0.0.24

0 APPROVAL

Build PASS

Branching Pa�ern TRUNK BASED

Code Signature CHECKSUM NOT VERIFIED

Unit Tests PASS, 82% COVERAGE

Static Code Quality Scan RELIABILITY: A, MAINTAINABILITY: A

Static Security Test 0 VULNERABILITIES

SCA PASS

Figure 8

2021-05-04 11:01:01

2021-05-04 11:01:02

2021-05-04 11:01:03

2021-05-04 11:01:04

2021-05-04 11:01:05

2021-05-04 11:01:06

2021-05-04 11:01:07

2021-05-04 11:01:08

checking out https://git.investmentsunlimitedbank.com;kraken/iui-demo/commit/9a6e39

verifying policy for iui-demo-app:0.0.24

iui-demo-app:0.0.24 failed the following policies [”code review”, “code signature”]

deployment failed, please create a support ticket before opening an incident

https://https://developer.investmentsunlimitedbank.com//help

Figure 9

Turbo Eureka - WDP

https://turboeureka.investmentsunlimitedbank.com

Wealth Management / Wealth Digital Platform (WDP)
Portfolio TLC

v2.0.25

DEV QA PROD

account-generation-service

v8.8.10

DEV QA PROD

auth-token-generator

v0.0.3

DEV QA PROD

customer-login-service

v2.0.2

DEV QA PROD

fraud-detection-service

v1.1.0

DEV QA PROD

help-service

v2.15.4

DEV QA PROD

help-ui

v12.1.0

DEV QA PROD

login-service

v3.2.8

DEV QA PROD

login-ui

v0.2.24

DEV QA PROD

event-sink

v6.7.11

DEV QA PROD

report-generation-service

v4.3.19

DEV QA PROD

traceability-console

v1.13.1

DEV QA PROD

push-notification-service

v6.17.2

DEV QA PROD

web-ui

Pass (92%)13 Components Fail (5%) Missing (3%)

Table 2

Control

#
Control

Included in the

IUI story?

Might you use this to

block a build?

1 Peer Review Yes
Yes; lack of peer review

may block a build.

2
Static Application

Security Testing
Yes

Yes; critical and (optional-

ly) high findings may block

a build.

3

Software

Composition

Analysis

Yes

Yes; critical and (optional-

ly) high findings may block

a build.

4 Code Quality Yes Probably not.

5 Unit Testing Yes Probably not.

6 Code Signing Yes
Yes; lack of code signing

may block a build.

7 License Check No Probably not.

8

Trusted

Dependency

Store

No

Yes; use of dependencies

originating outside the

trusted store may block a

build.

9
Container

Vulnerability Scan
No

Yes; critical and (optional-

ly) high findings may block

a build.

10 Secrets Scanning No

Yes; the presence of sensi-

tive tokens, keys, pass-

words, etc. in the source

code may block a build.

Figure 10

Amplified Feedback Loops

DEV OPS

Figure 11

Pipeline Plan

Dev Ops

DevOps Security

Code Test Release Deploy Operate

Before DevOps

DevOps

APPENDIX 1

MRAS AND MRIAS

MRAs are deficiencies that are important and should be addressed over a reason-

able period of time, but where the institution’s response need not be immediate. No

matter how serious the concern, it is addressed to the institution’s board of directors.

MRAs describe practices that:

1. Deviate from sound governance, internal control, or risk-management prin-

ciples, and have the potential to adversely affect the bank’s condition, includ-

ing its financial performance or risk profile, if not addressed.

2. Result in substantive noncompliance with laws or regulations, enforcement

actions, or conditions imposed in writing in connection with the approval of

any application or other request by the bank.

The Office of the Comptroller of the Currency (OCC) refers to such practices as

deficient practices. Such practices also may be unsafe or unsound generally, any action,

or lack of action that is contrary to generally accepted standards of prudent operation

and the possible consequences of which, if continued, would be abnormal risk or loss

or damage to an institution, its shareholders, or the Deposit Insurance Fund.

MRIAs arise from an examination, inspection, or any other supervisory activ-

ity and are matters of significant importance and urgency that the Federal Reserve

requires banking organizations to address immediately and include:

1. matters that have the potential to pose significant risk to the safety and sound-

ness of the banking organization,

2. matters that represent significant noncompliance with applicable laws or reg-

ulations,

3. repeat criticisms that have escalated in importance due to insufficient atten-

tion or inaction by the banking organization,

4. and, in the case of consumer compliance examinations, matters that have the

potential to cause significant consumer harm. An MRIA will remain an open

issue until resolution and examiners confirm the banking organization’s cor-

rective actions.

Appendix 1

5. For more, see the following references:

https://www.federalreserve.gov/supervisionreg/srletters/sr1313a1.pdf

https://www.federalregister.gov/documents/2017/08/09/2017-16735

/proposed-guidance-on-supervisory-expectation-for-boards-of-directors

https://www.occ.gov/publications-and-resources/publications/comptrollers

-handbook/files/bank-supervision-process/pub-ch-bank-supervision

-process.pdf (pg 51)

Appendix 1

APPENDIX 2

PIPELINE DESIGN WITH CONTROL

TOLLGATES

An organization might design their pipelines using a concept of “controls and toll-

gates.” The idea is that certain types of gates in the pipeline can be used to alert or

stop the software delivery process. Here are examples of sixteen such controls/

tollgates:

Controls in the Build Pipeline

Many events in a build pipeline can be collected and saved in a tamper proof format.

Once available, they may:

• inform decisions to block a build

• trigger alerts monitored by a security operations team

• serve as attestation that controls were performed prior to deployment

As more controls from across the software development life cycle are imple-

mented and their events are securely collected in a single place, the likelihood of

risky software in production decreases, IT leaders and regulators will have improved

visibility that inspires trust, and the organization enjoys safer software that allows it

to accomplish its mission.

This table offers a few options readers may consider implementing in their own

build pipelines. A list of more than thirty controls you may consider storing can be

• source code version control

• optimum branching strategy

• static analysis

• >80% code coverage

• vulnerability scan

• open-source scan

• artifact version control

• automated provisioning

• immutable servers

• integration testing

• performance testing

• build deploy testing

automated for every commit

• automated rollback

• automated change order

• zero downtime release

• feature toggle

Appendix 2

found on page 34 of the IT Revolution white paper DevOps Automated Governance

Reference Architecture.

Control

#
Control

Included in the

IUI story?

Might you use this to

block a build?

1 Peer Review Yes
Yes; lack of peer review

may block a build.

2
Static Application

Security Testing
Yes

Yes; critical and (optional-

ly) high findings may block

a build.

3

Software

Composition

Analysis

Yes

Yes; critical and (optional-

ly) high findings may block

a build.

4 Code Quality Yes Probably not.

5 Unit Testing Yes Probably not.

6 Code Signing Yes
Yes; lack of code signing

may block a build.

7 License Check No Probably not.

8

Trusted

Dependency

Store

No

Yes; use of dependencies

originating outside the

trusted store may block a

build.

9
Container

Vulnerability Scan
No

Yes; critical and (optional-

ly) high findings may block

a build.

10 Secrets Scanning No

Yes; the presence of sensi-

tive tokens, keys, pass-

words, etc. in the source

code may block a build.

Appendix 2

APPENDIX 3

DEVSECOPS MANIFESTO

Through security as code, we have and will learn that there is simply a better way for

security practitioners, like us, to operate and contribute value with less friction. We

know we must adapt our ways quickly and foster innovation to ensure data security

and privacy issues are not left behind because we were too slow to change.

By developing security as code, we will strive to create awesome products and

services, provide insights directly to developers, and generally favor iteration over try-

ing to always come up with the best answer before a deployment. We will operate like

developers to make security and compliance available to be consumed as services. We

will unlock and unblock new paths to help others see their ideas become a reality.

We won’t simply rely on scanners and reports to make code better. We will attack

products and services like an outsider to help you defend what you’ve created. We

will learn the loopholes, look for weaknesses, and work with you to provide remedi-

ation actions instead of long lists of problems for you to solve on your own.

We will not wait for our organizations to fall victim to mistakes and attackers.

We will not settle for finding what is already known; instead, we will look for anoma-

lies yet to be detected. We will strive to be a better partner by valuing what you value:

• Leaning in over always saying “No”

• Data and security science over fear, uncertainty, and doubt

• Open contribution and collaboration over security-only requirements

• Consumable security services with APIs over mandated security controls

and paperwork

• Business-driven security scores over rubber-stamp security

• Red and Blue Team exploit testing over relying on scans and theoretical

vulnerabilities

• 24/7 proactive security monitoring over reacting after being informed of

an incident

• Shared threat intelligence over keeping info to ourselves

• Compliance operations over clipboards and checklists

You can read the full DevSecOps manifesto here: https://www.devsecops.org/

Appendix 3

Appendix 4

APPENDIX 4

SHIFT LEFT

As with most things related to DevOps and DevSecOps, the term “shift left” can

be traced all the way back to Toyota Production Systems and the use of the Jidoka

and the Andon Cord. The main idea is that when delivering products, it’s more cost

effective to find defects earlier in the process. This leads to higher-quality output, as

well. The first use of “shift left” in software delivery can be traced back to software

testing in the software development life cycle (SDLC).

Shift-left testing is important because it helps to prevent the following types of

harm due to late testing:

• Testers may be less involved in initial planning, often resulting in insuffi-

cient resources being allocated to testing.

• Defects in requirements, architecture, and design remain undiscovered

while significant effort is wasted implementing them.

• Debugging (including identifying, localizing, fixing, and regression-

testing defects) becomes harder as more software is produced and inte-

grated.

• Encapsulation impedes white-box testing, reducing code coverage during

testing.

• There is less time to fix defects found by testing, thereby increasing the like-

lihood that they will be postponed until later increments or versions of the

system. This creates a “bow wave” of technical debt that can sink projects if

it grows too large.1

The agile movement promoted Test-Driven Development (TDD) as a “shift-

left” concept. It was the DevOps movement that really formalized the idea of “shift

left” as a common term. Gene Kim et al. further explored this concept of “shift left” in

1. Wikipedia, “Shift-Left Testing,” modified November 8, 2021. https://en.wikipedia.org/wiki/Shift-left

_testing#:~:text=Defects%20in%20requirements%2C%20architecture%2C%20and,software%20is

%20produced%20and%20integrated.

Appendix 4

the book The DevOps Handbook. In it, they describes the Second Way as a process of

amplifying feedback loops.

Amplified Feedback Loops

DEV OPS

In 2014, Andrew Storms tied the concept of “shift left” to security in an article

for DevOps.com called “Moving Security to the Left in a DevOps World.”

A concise summary of “shifting left” may be the intentional prioritization of

controls, behaviors, and capabilities in the SDLC that prevent defects in software in

production rather than those which detect and respond to such defects.

Pipeline Plan

Dev Ops

DevOps Security

Code Test Release Deploy Operate

Before DevOps

DevOps

Appendix 5

APPENDIX 5

SOFTWARE COMPOSITION ANALYSIS

Software Composition Analysis (SCA) is the process of identifying the components

that comprise a given piece of software. The components may be identified at a range

of levels, from higher level (such as corresponding to items in “cloud diagrams”) to

mid level (such as distinct classes, modules, or files) to low level (such as functions

or methods comprising a file or class).

The software to be examined may be generally perceived as a single monolithic

entity (in which case SCA aims to reveal its constituent components), or it may—as

in the case of modern operating systems—already be seen as a collection of compo-

nents (in which case SCA may identify components at a greater level of granularity

or identify the interrelationships among already-known components).

The term SCA may also refer to the analysis of a single component, showing for

example its inputs, outputs, and side effects.

In the industry, SCA is often viewed as limited to identification of open source

used within a software product. For example, a typical definition is: “SCA is the

process of automating visibility into the use of open source software (OSS) for the

purpose of risk management, security, and license compliance.” However, SCA does

not need to be limited to open-source and may include identification of proprietary

third-party or in-house components. The common restriction to open source may

be based on if software components are invisible without source code. However,

software reverse-engineering, including both static examination (e.g., disassembly

and decompilation) and dynamic examination (e.g., packet sniffing) of commercial

products, provides often-feasible methods to determine the composition of software

without the benefit of source code.

The purposes of SCA include security audits (particularly when a product’s use

of a particular version of a component can be identified and compared to reposito-

ries of known security vulnerabilities), license compliance (both OSS and propri-

etary components), and intellectual property infringement.

The SCA process should produce a valid software bill of materials (SBOM) or a

“software tear down.” The industry is aligning on the CycloneDX and SPDX standard

formats for SBOMs.

APPENDIX 6

US EXECUTIVE ORDER ON IMPROVING

THE NATION’S CYBERSECURITY

On May 12, 2021, President Biden signed an executive order to improve the nation’s

cybersecurity and to protect federal government networks. This executive order

was directly related to recent cybersecurity incidents such as SolarWinds, Microsoft

Exchange, and the Colonial Pipeline.

“It is the policy of my administration that the prevention, detection, assessment,

and remediation of cyber incidents is a top priority and essential to national and

economic security. The federal government must lead by example. All federal infor-

mation systems should meet or exceed the standards and requirements for cyberse-

curity set forth in and issued pursuant to this order.”1

In short, the executive order calls for the:2

• Removal of barriers to threat information sharing between government

and the private sector.

• Modernizing and implementing stronger cybersecurity standards in the

federal government.

• Improving software supply chain security.

• Establishing a Cybersecurity Safety Review Board.

• Creating a standard playbook for responding to cyber incidents.

• Improving detection of cybersecurity incidents on federal government net-

works.

• Improving investigative and remediation capabilities.

1. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order

-on-improving-the-nations-cybersecurity/

2. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order

-on-improving-the-nations-cybersecurity/

Appendix 6

APPENDIX 7

FAQ

This section is meant to provide general guidance on how to think about embark-

ing on an automated governance effort and dispel misconceptions that may inhibit

readers from getting started.

1. The story focuses mostly on the technical approach to modernizing gov-

ernance. Is there more to it than technology? Yes. You may recall the classic

triad of “People, Process, and Technology,” a useful, if simple, way to think

about the elements of such a transformation. For the purposes of quick sto-

rytelling, we focused on the tech; neglect the people and process aspects at

your own risk.

2. Do I need to be mostly a cloud native organization to pull all this off? No,

but we do see a correlation between maturity in cloud adoption and becom-

ing a high-performing IT organization. Automated governance, like most

modern development practices, benefits from the speed and agility offered by

cloud computing capabilities.

3. Does my organization need to have mostly in-house, non third-party

developers (like the large tech companies) to pull all this off? No. Anecdot-

ally, however, there is evidence that such transformations are less challenging

when there are less entities to account for, such as various outsourced software

development partners who may not embrace the mission as energetically or

possess as much agency as in-house developers. There are even examples of

hesitance or even authority among third-party development teams to priori-

tize security fixes with the same enthusiasm as new features. This is likely an

understandable, if unfortunate, consequence of contracts signed with third-

party development teams being focused on new features being delivered by an

agreed upon date; security and compliance efforts like automated governance

may thus take a back seat.

4. If my application portfolio is predominantly made up of certain program-

ming languages or frameworks, will that make any of this easier? The spe-

cific languages or frameworks in use in an organization are less important

than the number of languages or frameworks that the organization decides

Appendix 7

to officially support. Being intentional about such support and limiting the

number of languages or frameworks reduces entropy in the organization and

can generally make it easier to get work done together, like automated gov-

ernance.

5. Does my organization need to already be a moderate- to high-perform-

ing DevOps organization before considering automated governance? No.

There are few truly high-performing DevOps organizations. There are, how-

ever, parts of many organizations that are high performing when it comes

to DevOps. While maturity in certain aspects of DevOps such as express-

ing “everything as code” and holistically applying software development best

practices across development and operations, DevOps is not strictly a precur-

sor to automated governance. In fact, automated governance can catalyze and

accelerate progress along the continuum of the DevOps journey.

6. Do I need to have already consolidated/homogenized the disparate build

pipelines across my organization to pull all this off? W. Edwards Deming

professed that “uncontrolled variation is the enemy of quality”. In that spirit,

there are clear benefits to standardizing on the infrastructure and workflow

that development of software must adhere to. Driving consolidation of the

number of build pipelines and their configuration in an organization makes

managing software delivery easier because when new practices such as auto-

mated governance are to be implemented, there are less environments that

may drift and require attention. If your organization has not already taken

active steps to do so, consider a formal effort to minimize the “build pipeline

sprawl” so automated governance and other optimizations are effective across

your software portfolio.

7. Is a crisis needed for an organization to consider pursuing automated

governance? While crises like receiving an MRIA can focus an organization’s

attention and will rally action, we do not recommend waiting for a crisis.

Instead, we encourage being proactive. You can start small with a few appli-

cations in an automated governance effort to demonstrate the value to lead-

ership and earn permission for a broader effort—one that should reduce the

likelihood of crises.

Appendix 7

ACKNOWLEDGMENTS

When we first assembled to pull together a guidance document about governance,

we struggled to get a compelling outline in place. We had several great ideas we

wanted to convey, but no matter how we structured it, it was going to be very aca-

demic and profoundly dry.

Then we had an idea . . . why not turn it into a short story? That’s exactly what

we did. Susan, Tim, Bill, Jada, Michelle, Jason, and the rest of the cast sprung to life

in a brief narrative to convey what we were trying to capture. The technical guidance

paper suddenly became approachable. We were happy with the result, and it seemed

the DevOps Enterprise Forum community agreed.

Four months later we got a call . . . “Gene and the staff at IT Revolution have

discussed your paper. We want to turn it into a book!” Leah Brown told us. We were

stunned and delighted. Leah went on to explain that IT Rev would do some editing

and expansion of the narrative so that it would be a short novel. We all agreed that

was a great idea. The more we thought about it, the more excited and enthusiastic

we all became.

Finally, John Willis said he had another idea. He asked us if we were all willing

to invest some additional time and turn this good idea into a great idea and into a

full-length novel. We agreed and invited Helen Beal to join our squad of authors.

This book would not have happened without the incredible encouragement of

the larger DevOps community. We are indebted to the inspiration and support of

the Scenius1 and the community of leaders from DevOps Enterprise Summit and

DevOps Enterprise Forum. Gene and Margueritte Kim are at the top of that list as

both the organizers and inspirational leaders of the DevOps movement.

1 Scenius: Breakthroughs typically emerge from a scene: an exceptionally productive community of

practice that develops novel epistemic norms. Brian Eno, who first coined this, wrote, “major inno-

vation may indeed take a genius—but the genius is created in part by a scenius.” https://itrevolution.

com/love-letter-to-conferences/#why-i-think-virtual-forum-worked-so-well

Acknowledgments

The core concepts presented throughout this book had been brewing through

the years in the community, as well as in the form of several DevOps Enterprise

Forum guidance papers produced at the annual gathering of community leaders and

experts, including many of the authors of this book.2 Without these papers and their

collaborators’ vision and research, this book would not exist. We want to mention

those foundational papers and their collaborators for their invaluable contribution

to the DevOps community:

• An Unlikely Union: DevOps and Audit (2015) by James DeLucia, Paul

Duvall, Chairman, Mustafa Kapadia, Gene Kim, Dave Mangot, Tapabrata

“Topo” Pal, James Wickett, Julie Yoo.

• Dear Auditor (2018) by Ben Grinnell, James Wickett, Jennifer Brady, the

late Rob Stroud (may he rest in peace), Sam Guckenheimer, Scott Nasello,

Tapabrata “Topo” Pal.

• DevOps Automated Governance (2019) by Michael Nygard, Tapabrata

“Topo” Pal, Stephen Magill, Sam Guckenheimer, John Willis, John

Rzeszotarski, Dwayne Holmes, Courtney Kissler, Dan Beauregard, Collette

Tauscher.

How do you write a book with nine authors? Cat herding has been an import-

ant part of arriving at our destination. We would like to thank Leah Brown for her

insightful and supportive sessions with the panel of authors, as well her shepherding

of the collaborative editing process. This book would not have happened without her.

Subject matter experts were key to ensure our message stayed relevant and

accurate. While this is a work of fiction, our intent was to convey the learning in

prose that represented plausible real-world situations. We would like to thank Chris

Palumbo for the regulatory insight and Branden Williams and Jen Suiters for their

powerful lessons on MRIAs and what regulators would expect.

We would like to thank our peer reviewers, Gene Kim, Courtney Kissler, Emily

Fox, Jeff Gallimore, Jennifer Hansen, Cameron Haight, and Maya Senen for their

brilliant insight and critical and candid feedback that helped nudge the story from

good toward great.

We would also like to thank Brian Scheck, Keith Silvestri, and Mike Onders,

whose vision and dedication laid the foundation for many of the stories, learnings,

and outcomes in this book.

2 The DevOps Enterprise Forum is an annual event held by IT Revolution, in which industry leaders

and experts come together to discuss the most important challenges facing the community. From

this event, a series of guidance papers are produced. You can view the full collection of papers here:

https://itrevolution.com/resources.

Acknowledgments

Even with nine authors, the time investment was significant. We are indebted to

our families and loved ones who gave us space to write, encouraged us despite the

chatty late-night sessions with the group, and the supportive understanding when

our noses were buried in our screens typing away at the narrative.

Bill Bensing would like to thank his mom, dad, family, and Kendra for their

enduring support. The Nelsons’, Tampows’, Tingles’, and Willis’ of the world make

these opportunities possible. They, and many others like them, give Bill the friend-

ship, mentoring, and opportunities to be his best. These are the type of people Bill

hopes everyone finds in their careers and lives.

Jason Cox would like to thank his wife Jane and their four children, Jonathan,

Julia, Jessica, and Jenna. He would also like to thank his incredible team of SREs,

fellow technology and business leaders who build magic every day and prove that we

can all do the impossible.

Michael Edenzon would like to thank his family: Kathy, Marc, AJ, Zach, Irwin,

and Frankie

Tapabrata Pal would like to thank his wife, Chiru, and their two children, Shaily

and Ayush.

Caleb Queern would like to thank his wife Marian and his son Joseph.

John Rzeszotarski would like to thank his family: Marla, Sophia, Sebastian,

Sawyer, and Simon.

Andres Vega would like to express his deepest gratitude to Olga, Victoria, and

Mateo for giving him purpose and constantly challenging him to make Husband and

Dad Unlimited thrive. They are the joy and happiness of his life.

And thank you! We are indebted to all of you, the larger community of business

and technology leaders who are willing to listen, learn, experiment, and teach. We

believe that the future is truly unlimited. With your help, we can all unlock new

potential for our businesses, embrace better ways of working, and elevate our human

experience across the planet. Thank you for joining us on this journey. Now, let’s go

change the world!

Acknowledgments

About the Authors

ABOUT THE AUTHORS

Helen Beal is a DevOps and Ways of Working coach, Chief Ambassador at DevOps

Institute, and ambassador for the Continuous Delivery Foundation. She is the Chair

of the Value Stream Management Consortium and provides strategic advisory ser-

vices to DevOps industry leaders. She is also an analyst at Techstrong Research, hosts

the Day-to-Day DevOps webinar series for BrightTalk and the Value Stream Evolu-

tion series on TechStrong TV. She currently lives in the UK.

Bill Bensing builds things that build things. He is a skilled leader and architect of

software, people, teams, and companies. Bill is an expert at making innovation a

wholly inclusive process. His love of DevOps comes from a background in logistics

and operations management. Automated Governance is a topic Bill finds very inter-

esting. He believes a lack of good governance is the single biggest issue preventing

breakthrough value. Bill will tell you, “Good strategy and good governance are the

grease and guide rails for success.” He lives in the Tampa Bay, FL, area.

Jason Cox is a champion of DevOps practices, promoting new technologies and

better ways of working. He enjoys helping organizations deliver more value, better,

faster, safer and happier. He is an inspirational speaker who loves people and delights

in amplifying their abilities with technology. Jason frequently speaks at conferences,

contributes to open source and writes on technical and leadership topics. He cur-

rently leads several SRE teams and resides in Los Angeles with his wife and their

children.

Michael Edenzon is a senior IT leader and engineer that modernizes and disrupts

the technical landscape for highly regulated organizations. Michael provides tech-

nical design, decisioning, and solutioning across complex verticals and leverages

continuous learning practices to drive organizational change. He is a fervent advocate

About the Authors

for the developer experience and believes that enablement-focused automation is the

key to building compliant software at scale.

Topo Pal is a thought leader, keynote speaker, evangelist in the areas of DevSec-

Ops, Continuous Delivery, Cloud Computing, Open Source Adoption and Digital

Transformation. He is a hands-on developer and Open Source contributor. Topo has

been leading and contributing to industry initiatives around automated governance

in DevOps practices. Topo resides in Richmond, VA, with his wife and two children.

Caleb Queern helps CIOs and CISOs reduce risk across the software development

life cycle so they can innovate quickly and win in the market. He lives in Austin,

Texas with his wife, Marian, and son, Joseph.

John Rzeszotarski has led organizations with a focus on digital, payments, security,

and development. His primary passion is solving complex business and IT problems

through technology, fast flow, and building learning organizations. He loves cod-

ing new things and driving change in insanely regulated environments. He lives in

Pittsburgh, PA, with his family.

Andres Vega helps engineering organizations securely build large-scale, distributed

software leveraging novel approaches to reduce the compliance toil associated with

the area. He is recognized in the open-source community as a maintainer, contribu-

tor, and technical leader focused on the improvement of ecosystem security. Outside

of his profession, he is a family guy and an avid outdoors person. You are sure to find

him adventuring with his family all over the trails of the San Francisco Bay Area in

his best attempt not to get mauled to death by hungry mountain lions.

John Willis is an author and Senior Director of the Global Transformation Office at

Red Hat. John is considered one of the founders of the DevOps movement. He lives

in Acworth, GA.

