
G E N E K I M & S T E V E Y E G G E

Fo r e wo r d b y D a r i o A m o d e i ,

C E O a n d C o fo u n d e r o f A n t h r o p i c

V I B E

C O D I N G

B UI L D I NG P R O D U C T I O N - G R A D E

S O F T W A R E W I T H G E N A I , C H A T,

AG E N T S , A N D B E Y O N D

IT Revolution

Independent Publisher Since 2013

Portland, Oregon

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2025 by Gene Kim and Steve Yegge

All rights reserved. For information about permission to reproduce selections from this book,

write to Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition

Printed in the United States of America

30 29 28 27 26 25 1 2 3 4 5 6 7 8 9 10

Cover Design by Alana McCann

Book Design by Devon Smith

Library of Congress Control Number: 2025022944

Paperback: 9781966280026

Ebook: 9781966280033

Audio: 9781966280040

For information about special discounts for bulk purchases

or for information on booking authors for an event,

please visit our website at www.ITRevolution.com.

Executive Chef

Sous Chef

Saucier Rotisseur Entremetier Poissonier Patissier Garde Manager

Figure 0.1: �e Kitchen Brigade

Figure 8.1: Vibe Coded Bouncing Red Ball (Claude)

Figure 8.2: Vibe Coded Cube with Two-Colored Lighting (Gemini)

Figure 8.3: �e Number of Photographs Taken Annually,

Generated Using Vibe Coding (Claude)

Start the
Conversation

Review
with Care

Test and
Verify

Redefine and
Iterate

Frame Your
Objective

Decompose
the Tasks

6

2

4

5

3
BONUS:

Automate
Your Workflow

7

1

Figure 9.1: �e Vibe Coding Loop

System Prompt

Core instructions, rules, and capabilities

AI Model Context Window

Total Context Size: 12,000 Tokens

0

1,000

2,000

4,000

6,000

8,000

10,000

12,000

User Rules & Initial Prompt

User-defined constraints and initial question

Code Context

Repository files, code snippets, functions

Media & Documentation

Images, PDFs, docs, reference materials

Remaining Token Space

Available space for new inputs

Reserved Output Space

Space for model’s response generation

Conversation History

Previous turns in the conversation

Figure 10.1: A Typical AI Model’s Context Window

{

 "messages": [

 {"role": "system", "content": "You are a helpful coding

 assistant..."},

 {"role": "user", "content": "How do I implement a

 binary tree in Python?"},

 {"role": "assistant", "content": "Here's how you can

 implement a binary tree:..."},

 {"role": "user", "content": "Now I'm getting this

 error: TypeError: 'NoneType'..."}

]

}

Turn 1 Turn 2

Context Window Capacity: 90% Full

Turn 3 Turn 4 (Current)

LLM Context Window Filling Up

Current Turn

Previous Turns

Figure 10.2: LLM Context Window Filling Up with Each Turn

Deliver Project
E-commerce Platform

Core Application

Top-Level Task, Graph Entry Point

Platform

& API

Auth

Library

Web &

Mobile

Clients

Auth Impl
Tests,

Docs

REST

Interface

Token

Logic

Set-up Tools

& Repos

Automate

Build/Test

Automate

Deployment

Capacity

Planning

Deploy

Clusters
Budgeting

SecurityDNS & LBLogging

Deliver CI/CD Pipeline Provision Infrastructure

Figure 12.1: Example Large Project Task Graph

with AI Handling Some Leaf Nodes

Execution Wrappers & Utils

Arg Parsing, Subcommand Dispatch

Preamble

Sandbox

Docker

Gradle

gcloud Subcommands

API

Content

...

Script

Figure 12.2: Architecture of Steve’s Ruby Admin Script

Local

Data Source B

Remote

Server B

Local

Data Source A

MCP Protocol

Web APIs

MCP P
ro

to
col

MCP Protocol

Host with MCP Client

(Claude, IDEs, Tools)

MCP Server A

MCP Server B

MCP Server C

Internet

Figure 13.1: MCP-Enabled System

// from AI → MCP server

{

 "jsonrpc": "2.0",

 "id": 42, // request-id, which allows for async and parallel RPCs

 "method": "tools/call",

 "params": { "name": "fetch_weather", "arguments":

 {"location": "San Francisco" } }

}

�e server translates fetch_weather into real operations (e.g., API calls to

weather services or database queries), then replies:

{

 "jsonrpc": "2.0",

 "id": 42, // response-id

 "result": { "ok": true }

}

Write Code

Compile

RunTest

Debug

4

5 2

3

1

Figure 14.1: Traditional Developer Loop

Seconds to Minutes

Hours to Days

Weeks to Months

INNER LOOP

MIDDLE LOOP

OUTER LOOP

Figure 14.2: �e �ree Developer Loop Timescales

2 3

6 5

41 C

ED

AB

Start Conversation
with AI

Refine and
Iterate

Create Plan
with AI

Write
CodeCompile

Run

Test Debug

Test and
Verify

Have AI
Execute

Plan

Break Off
New

Subtask

Figure 14.3: �e Vibe Coding Developer Loop

60,000

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

50,000

40,000

30,000

Lines of

Code

20,000

10,000

0
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2018

2019

2017

Lines of

Code

0
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20192018

Clojure Codebase—Introduction and Retention of Code

Scala Codebase—Introduction and Retention of Code

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2006

2005

2004

2003

2007

Lines of

Code

0
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 20152014 2018/920172016

Figure 16.1: Code Survival Graphs for Clojure

and Linux (High) and Scala (Low)
Source: Rich Hickey, “A History of Clojure.” Proceedings of the ACM on Programming Languages, 2020. https://

dl.acm.org/doi/pdf/10.1145/3386321; SRC-d. “Hercules: Fast, Insightful and Highly Customizable Git History

Analysis.” GitHub Repository, 2023. https://github.com/src-d/hercules.

Table 16.1: Vibe Coding Testing Strategies

High Risk Low Risk

K
n

o
w

 T
e

c
h

W
e

ll

Deep white-box and black-

box (exhaustive testing).

Light white-box, light

black-box.

K
n

o
w

 T
e

c
h

P
o

o
rl

y

Deep black-box, light

human white-box (code

spot-checks are all you can

do), heavy AI white-box.

Black box only (let it write

some tests, then verify

that the overall outputs

“look right”).

Order
Placed

(Dining
Room)

Allergy/
Med Check

Refire/Fix

Garde Manager Entremetier Poissonier Rotisseur Patissier

Final Assembly
5 min.

Combine Base
10 min.

Combine Base
10 min.

Prepare
Sauce

20 min.

Cook
Protein
25 min.

Prepare
Veg

15 min.

Rest Protein
8 min.

Serve
1 min.

Runner/Service

Dish Delivered

Saucier

Head Chef/
(Pass/QC)

POS
Ticket

Expediter/Expo

Figure 17.1: Parallelizing Kitchen Work with a Task Graph

GLOSSARY OF COMMON TERMS

Agent: An AI system designed to perform tasks autonomously with directed

intent, o�en handling multiple subtasks and steps. Unlike LLMs, agents

maintain state and can work independently toward speci�c goals.

API: Application programming interface.

API Key: �is is your ticket for API access. It’s a sequence of characters gen-

erated by the API provider and should be kept secret.

ChatGPT: A conversational AI model developed by OpenAI, based on the

GPT (generative pre-trained transformer) family of models. Available

through both web interface and API, it’s widely used for code generation

and explanation.

CHOP (Chat-Oriented Programming): A programming methodology

where developers write code through natural language conversations

with AI assistants, rather than writing code directly by hand.

Claude: An AI assistant developed by Anthropic, known for strong coding

capabilities and detailed technical explanations. Available in several ver-

sions with varying capabilities and performance characteristics.

Code AI: An umbrella term encompassing all the ways people use Generative

AI and LLMs to help their company’s engineers, including Chat-Oriented

Programming (CHOP), API-based automation, AI agents, assistants

with agentic behavior, LLM-produced code indexes, and many other

approaches that people are using to bring AI to so�ware engineering.

Coding Assistant: A specialized AI tool designed to integrate directly into

development environments (like VS Code or other IDEs), o�ering

context-aware code suggestions, explanations, and modi�cations.

Context: In AI programming, the background information provided to AI

about your code, requirements, and constraints. �is includes code snip-

pets, documentation, error messages, and previous conversation history

that helps AI understand the current task.

Context Window: �e amount of text an AI model can consider at once

when generating responses, typically measured in tokens. �is includes

both the conversation history and any provided code or documentation.

Dynamic Context: Temporary, task-speci�c information that changes fre-

quently during development, such as current problem descriptions,

intermediate code versions, and debugging information.

Foundation Model: A large AI model trained on vast amounts of data that

serves as the base for various AI applications. Examples include GPT-4,

Claude, and Llama.

Gemini: Google’s family of AI models, designed to work with multiple types

of input including text and images. Available in di�erent sizes, o�ering

various trade-o�s between capability and speed.

Generative AI (GenAI): AI systems that can create new content—including

code, text, images, and more—based on training data and user prompts.

Unlike traditional AI that focuses on classi�cation or prediction, GenAI

can produce novel outputs that follow patterns learned from its training.

In so�ware development, GenAI tools like LLMs can generate code, doc-

umentation, tests, and other artifacts while engaging in natural language

dialogue with developers.

Hallucination: When an AI model generates incorrect or fabricated infor-

mation, such as referring to non-existent functions or APIs.

Inference Provider: A service or platform that hosts and runs AI models,

handling the computational resources needed for AI operations. Exam-

ples include AWS Bedrock and Azure OpenAI Service.

Leaf Node: In the task graph model, a small, independent task that can be

completed without breaking it down further. In vibe coding, these are

typically tasks that AI can accelerate by 10x compared to manual imple-

mentation.

LLAMA (Large Language Model Meta AI): A family of open-source lan-

guage models developed by Meta (formerly Facebook). �ese models

can be run locally and have spawned numerous derivatives and �ne-

tuned versions.

LLM (Large Language Model): An AI system trained on vast amounts of

text data that can understand and generate human-like text, including

code. Examples include GPT-4 and Claude.

Multi-Turn Conversation: A chat conversation with a model that involves

multiple “turns” or round trips between the human or agent and the

machine (LLM). Multi-turn interactions are a basic building block of

agentic behavior because they enable planning and dynamic adaptation.

Contrast this with a single-turn or “one-shot” conversation, in which the

human sends one query, and the LLM sends one response. A few-shot

query is similar to a one-shot because they’re both fast enough to operate

in pair-programming mode.

Ollama: An open-source tool that simpli�es running various large language

models locally on your computer. It provides an easy way to download,

run, and manage di�erent open-source models like Llama.

One-Shot Query: �e simplest vibe coding operation. You send the LLM a

question and some context and get the answer back in a single “turn,”

meaning one human request followed by one machine response. Con-

trast this with few-shot queries and multi-turn conversations, which

make more round trips, trading o� time for accuracy.

Prompt: �e input provided to an AI model to guide its response, including

instructions, context, and any special requirements or constraints.

Prompt Engineering: �e practice of cra�ing e�ective inputs to AI models

to get desired outputs, though becoming less critical with newer models

that better understand natural language.

Prompt Library: A collection of reusable prompts and context snippets that

can be applied across di�erent AI programming sessions to maintain

consistency and e�ciency.

RAG (Retrieval Augmented Generation): A technique that enhances AI

model responses by �rst retrieving relevant information from a knowl-

edge base, such as your code base, documentation, or other resources,

and then using that information to generate more accurate and contextual

responses. RAG typically involves indexing your code and documenta-

tion, capturing frozen semantic meaning, and then retrieving the most

relevant pieces of content when AI needs to answer questions or generate

code. �is helps AI maintain consistency with your existing code base and

follow your team’s patterns and conventions. RAG is particularly import-

ant for enterprise development where AI needs access to proprietary code

and documentation that wasn’t part of its training data.

Static Context: Stable, long-lived information about a project that remains

relevant across multiple LLM sessions. Important because static context

is o�en large and needs indexing. It includes all your relevant existing

code, the vast majority of which never changes, and can also include

coding standards, architecture documents, long-lived administrative

prompts, API documentation, and large bodies of data such as issue

trackers, databases, and logs. O�en retrieved via RAG.

Task Graph: A conceptual model representing a project’s work as intercon-

nected nodes, where each node is some task or challenge that can be

handled by humans, AI assistants, or agents. �e connections between

nodes represent dependencies and information �ow.

Token: �e basic unit of text that LLMs process, roughly equivalent to three-

fourths of a word in English. Token limits a�ect how much context can

be provided to and generated by an AI model.

Token Window: �e maximum number of tokens an AI model can process

in a single interaction, including both input context and generated out-

put.

V&V (Veri�cation & Validation): In the context of AI-assisted program-

ming, the process of ensuring generated code both meets technical

requirements (veri�cation) and solves the intended problem (validation).

Workspace: A persistent environment for AI-assisted development that

maintains context, conversations, and generated and/or uploaded arti-

facts across multiple sessions. Alternatively called a Project, for instance,

in both Claude and Google AI Studio.

APPENDIX:

THE INNER/MIDDLE/OUTER LOOPS

Inner Developer Loop
(seconds to minutes)

Prevent

• Checkpoint and save your game frequently

• Keep your tasks small and focused

• Get the AI to write speci�cations

• Have AI write the tests

• AI is a Git maestro

Detect

• Verify AI’s claims yourself

• Always on watch: keeping your AI on the rails

• Use test-driven development

• Learn while watching

• Put your sous chef on cleanup duty

• Tell your sous chef where the freezer is

Correct

• When things go wrong: �x forward or roll back

• Automate linting and correction

• When to take back the wheel

• Your AI as a rubber duck

Middle Developer Loop
(hours to days)

Prevent

• Written rules: because your sous chefs can’t read your mind

• �e Memento Method

• Design for AI manufacturing

• Working with two agents at once, and more

• Intentional AI coordination

• Keeping your agents busy when you’re busy

Detect

• Waking up to eldritch AI-generated horrors

• Too many cooks: detecting agent contention

Correct

• Kitchen line stress tests: using tracer bullets

• Sharpen your knives: investing in work�ow automation

• �e economics of optionality

Outer Developer Loop
(weeks to months)

Prevent

• Don’t let your AI torch your bridges

• Workspace confusion: avoiding the “stewnami”

• Minimize and modularize

• Managing �eets of agents: four and beyond

• Auditing through or around the kitchen

• Channel your inner product manager

• Making operations fast, ambitious, and fun

Detect

• When the AI throws everything out

• CI/CD in the age of AI

Correct

• Steve’s harrowing merge recovery tale

• When you’re stuck with awful processes and architecture

PREVENT

DE
TE

CT
CORRECT

Outer Loop: Weeks to Months

Middle Loop: Hours to Days

Inner Loop: Seconds to Minutes

THE THREE DEVELOPER LOOPS OF VIBE CODING

Checkpoint and save your game frequentlyGet AI to write specifications
Have AI write the tests

AI is a Git maestro

Writ
ten ru

les: because your sous chefs can’t read your mind � Design for AI manufacturingThe Memento method � Working with two agents at once, and more

Keeping your agents busy when you’re busy � Intentional AI coordination

Do
n’t

 le
t A

I t
or

ch
 yo

ur b
rid

ges �
Workspace confusion: avoiding Stewnami � Minimize and modularize � Channel your inner product m

anager M
an

ag
ing

 flee
ts

of a
gents: fo

ur and beyond � Making operations fast, ambitious, and fun � Auditing through or around the kitchen

Learn while
 w

atc
hi

ng
 �

 V
er

ify
 A

I’s
 c

la
im

s
y o

ur
se

lf

Always on w

at
ch

: k
ee

pi
ng

 A
I o

n
th

e
ra

ils

Tell your s
ous c

he
f w

he
re

 t
he

 f
re

ez
er

 is

Put your s
ous c

he
f o

n
cl

ea
nu

p
du

ty

Use
 T

DD

To
o m

an
y c

oo
ks

: d
et

ec
tin

g
ag

en
t c

on
te

nt
io

n

Waking up
 to

 e
ld

rit
ch

 A
I-

ge
ne

ra
te

d
ho

rr
or

s

CI/C
D in

 th
e a

ge
 o

f A
I

�
W

he
n

AI
 th

ro
w

s
ev

er
yt

hi
ng

 o
ut

W
hen things go w

rong: fix forward or roll back

Autom
ate linting and correction

W
hen to take back the wheel

AI as a rubber duck

Sharpen your knives: investing in workflow automation

Kitchen line stress tests: using tracer bullets

The econom
ics of optionality

Kitchen line stress tests: using tracer bullets � Sharpen your knives: investing in workflow automation

Development
Hub

BIBLIOGRAPHY

Acemoglu, Daron. “�e Simple Macroeconomics of AI.” Massachusetts Institute

of Technology, April 5, 2024. https://economics.mit.edu/sites/default/�les

/2024-04/�e%20Simple%20Macroeconomics%20of%20AI.pdf.

Aguinaga, Jose. “How It Feels to Learn JavaScript in 2016.” HackerNoon,

October 3, 2016. https://hackernoon.com/how-it-feels-to-learn-javascript

-in-2016-d3a717dd577f.

AI Engineer. “Building AI Agents with Real ROI in the Enterprise SDLC: Bruno

(Booking.com) & Beyang (Sourcegraph).” YouTube video, April 8, 2025.

https://www.youtube.com/watch?v=UXOLprPvr-0.

Andon, Paul. “Rage Against the Algorithm: Uber Drivers Revolt Against

Algorithmic Management.” Business�ink, October 29, 2023. https://www

.businessthink.unsw.edu.au/articles/uber-algorithmic-management.

Anthropic. “Claude Code: Best Practices for Agentic Coding.” Anthropic web-

site, April 18, 2025. https://anthropic.com/engineering/claude-code-best

-practices.

Anthropic. “Introducing Claude 4.” Anthropic website. Accessed May 30, 2025.

https://www.anthropic.com/news/claude-4.

Baldwin, Carliss Y. Design Rules, Volume 2: How Technology Shapes Organiza-

tions. �e MIT Press, 2024.

Ball, �orsten. “How to Build an Agent or: �e Emperor Has No Clothes.” Amp-

Podcast, April 15, 2025. https://ampcode.com/how-to-build-an-agent.

Banks, Rob. “Woman Crashed Motorhome Using Cruise Control While Making

Cup of Tea.” Su�olk Gazette, October 3, 2022. https://www.su�olkgazette

.com/motorhome-crash/.

Beane, Matt. �e Skill Code: How to Save Human Ability in an Age of Intelligent

Machines. Harper Business, 2024.

Beck, Kent. “Social AI Adoption: Lessons from Hybrid Corn.” Tidy First (Sub-

stack), April 9, 2025. https://tidy�rst.substack.com/p/�1a4d52-eee7

-484c-a3e9-9d6bfae8f7af.

Beck, Kent. Tidy First?: A Personal Exercise in Empirical So�ware Design.

O’Reilly Media, 2023.

Belsky, Scott. “Collapse the Talent Stack Every Chance You Get.” LinkedIn post,

December 20, 2024. https://www.linkedin.com/pulse/collapse-talent-stack

-every-chance-you-get-scott-belsky-srrye/.

Bhagsain, Anurag (@abhagsain). “Last week, we asked Devin to make a change.”

X, January 6, 2025. https://x.com/abhagsain/status/1876362355870994538.

Bland, Mike. “Goto Fail, Heartbleed, and Unit Testing Culture.” MartinFowler

.com (blog), June 3, 2014. https://martinfowler.com/articles/testing-culture

.html.

Borman, Frank. “A superior pilot uses his superior judgment to avoid situations

which require the use of his superior skill.” QuoteFancy. Accessed April 6,

2025. https://quotefancy.com/quote/1100682/Frank-Borman-A-superior

-pilot-uses-his-superior-judgment-to-avoid-situations-which.

Butler, Jenna, Jina Suh, Sankeerti Haniyur, and Constance Hadley. “Dear Diary:

A Randomized Controlled Trial of Generative AI Coding Tools in the

Workplace.” arXiv.org, October 24, 2024. https://arxiv.org/abs/2410.18334.

“Claude Code: Anthropic’s CLI Agent.” YouTube video, posted by Latent Space,

May 7, 2025. https://www.youtube.com/watch?v=zDmW5hJPsvQ.

Cohen, Dave. “I read a lot of headlines these days about AI replacing so�ware

engineers…” LinkedIn post, January 2025. https://www.linkedin.com

/posts/davemcohen_i-read-a-lot-of-headlines-these-days-about-activity

-7288623576113369088-cqfD/.

Cornago, Fernando. “Further Results of Our 500-Person GenAI and Developer

Pilot.” Presentation at Enterprise Tech Leadership Summit, IT Revolution,

February 2025. Video, 21:49. https://videos.itrevolution.com

/watch/1061198586.

Culver, Hannah. “PagerDuty Operations Cloud Spring 25 Release: Reimagining

Operations in the Age of AI and Automation.” PagerDuty (blog), February

25, 2025. https://pagerduty.com/blog/product-launch-enhancements

-to-pagerduty-operations-cloud-2025-h1/.

DeBellis, Derek, Kevin M. Storer, Daniella Villalba, Michelle Irvine, and Kim

Castillo. “�e Impact of Generative AI in So�ware Development Report.”

DORA Research, 2024. https://dora.dev/research/2024/dora-report/.

Delfanti, Alessandro. �e Warehouse: Workers and Robots at Amazon. Pluto

Press, 2021.

DeLong, J. Bradford. “�e Reality of Economic Growth: History and Prospect.”

In The Reality of Economic Growth: History and Prospect, 120–122. https://

www2.lawrence.edu/fast/�nklerm/DeLong_Growth_History_Ch5.pdf.

De Sousa Pereira, Vitor M. “�e Insanity of Being a So�ware Engineer.” 0x1

(blog), April 6, 2025. https://0x1.pt/2025/04/06/the-insanity-of-being

-a-so�ware-engineer/.

develoopest. “I Must Be the Dumbest ‘Prompt Engineer’ Ever, Each Time I Ask

an AI to Fix or Ev…” Hacker News, March 9, 2025. https://news.ycombin

ator.com/item?id=43307892.

Digital Workforce. “AI Agents.” Accessed April 19, 2025. https://digitalwork

force.com/ai-agents/.

Distefano, Dino, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.

“Scaling Static Analyses at Facebook.” Communications of the ACM 62, no.

8 (August 2019): 62–70. https://cacm.acm.org/research/scaling-static

-analyses-at-facebook/.

Eloundou, Tyna, Sam Manning, Pamela Mishkin, and Daniel Rock. “GPTs Are

GPTs: An Early Look at the Labor Market Impact Potential of Large Lan-

guage Models.” arXiv.org, March 17, 2023. https://arxiv.org/abs/2303.10130.

Ericsson, Anders, and Robert Pool. Peak: Secrets from the New Science of Exper-

tise. Mariner Books, 2016.

Ferriss, Tim. “�e Tim Ferriss Show Transcripts: Jerry Seinfeld — a Comedy

Legend’s Systems, Routines, and Methods for Success (#485).” �e Blog of

Author Tim Ferriss, July 20, 2021. https://tim.blog/2020/12/09/jerry

-seinfeld-transcript/.

Flowcon. “Keynote: Velocity and Volume (or Speed Wins) by Adrian Cock-

cro�.” YouTube video, December 18, 2013. https://www.youtube.com

/watch?v=wyWI3gLpB8o.

FooCafe. “Advancements and Future Directions in AI-Assisted Coding - Erik

Meijer.” YouTube video, October 19, 2023. https://www.youtube.com

/watch?v=SsJqmV3Wtkg.

Forsgren, Nicole, Jez Humble, and Gene Kim. Accelerate: �e Science of Lean

So�ware and DevOps: Building and Scaling High Performing Technology

Organizations. IT Revolution, 2018.

Garret, Ron (a.k.a. Erann Gat). “Lisping at JPL.” 2002. Accessed April 28, 2025.

https://�ownet.com/gat/jpl-lisp.html.

Garret, Ron. “LISP in Space with Ron Garret.” CoRecursive #076. Accessed April

28, 2025. https://corecursive.com/lisp-in-space-with-ron-garret/.

Gazit, Idan. “Reaching for AI-Native Developer Tools.” Presentation at Enter-

prise Technology Leadership Summit, IT Revolution, Las Vegas, 2024.

Video. videos.itrevolution.com/watch/1002959470.

Google. “Google—GitHub Organization.” GitHub. Accessed March 5, 2025.

https://github.com/google.

“Google C++ Style Guide.” Accessed May 7, 2025. https://google.github.io

/styleguide/cppguide.html#Exceptions.

Grove, Andrew S. High Output Management. Vintage, 1995.

Guntur, Prabhudev. “Choosing Your AI Agent Framework: Google ADK vs.

Autogen, Langchain, & CrewAI—A Deep Dive.” Medium, April 15, 2025.

https://medium.com/@prabhudev.guntur/choosing-your-ai-agent

-framework-google-adk-vs-autogen-langchain.

Heavybit. “O11ycast | Ep. #80, Augmented Coding with Kent Beck | Heavybit.”

Heavybit Podcast, April 30, 2025. https://www.heavybit.com/library

/podcasts/o11ycast/ep-80-augmented-coding-with-kent-beck.

Heelan, Sean. “How I Used O3 to Find CVE-2025-37899, a Remote Zeroday

Vulnerability in the Linux Kernel’s SMB Implementation.” Sean Heelan’s

Blog, May 26, 2025. https://sean.heelan.io/2025/05/22/how-i-used-o3-to

-�nd-cve-2025-37899-a-remote-zeroday-vulnerability-in-the-linux-kernels

-smb-implementation/.

Hickey, Rich. “A History of Clojure.” Proceedings of the ACM on Programming

Languages, 2020. https://dl.acm.org/doi/pdf/10.1145/3386321.

Humphreys, Brendan. “No, you won’t be vibe coding your way to production.

Not if you prioritise quality, safety, security, and long-term maintainability

at scale.” LinkedIn post, April 2025. https://www.linkedin.com/feed/update

/urn:li:activity:7305080254417547264/.

Kalliamvakou, Eirini. “Research: Quantifying GitHub Copilot’s Impact on

Developer Productivity and Happiness.” �e GitHub Blog, May 21, 2024.

https://github.blog/news-insights/research/research-quantifying-github

-copilots-impact-on-developer-productivity-and-happiness/.

Karpathy, Andrej (@karpathy). “I just vibe coded a whole iOS app in Swi�

(without having programmed in Swi� before, though I learned some in the

process) and now ~1 hour later it’s actually running on my physical phone.

It was so ez… I had my hand held through the entire process. Very cool.” X,

March 22, 2025. https://x.com/karpathy/status/1903671737780498883.

Karpathy, Andrej (@karpathy). “Noticing myself adopting a certain rhythm in

AI-assisted coding (i.e. code I actually and professionally care about, con-

trast to vibe code)…” X, April 24, 2025. https://x.com/karpathy/status

/1915581920022585597.

Karpathy, Andrej (@karpathy). “�ere’s a new kind of coding I call ‘vibe coding’,

where you fully give in to the vibes, embrace exponentials, and forget that

the code even exists.” X, February 2, 2025. https://x.com/karpathy/status

/1886192184808149383.

Kersten, Nigel, Caitlyn O’Connell, and Ronan Keenan. 2023 State of DevOps

Report: Platform Engineering Edition. Portland, OR: Puppet by Perforce,

2023. https://www.puppet.com/system/�les/2025-03/report-puppet

-sodor-2023-platform-engineering.pdf.

Kim, Gene, Jez Humble, Patrick Debois, John Willis, and Dr. Nicole Forsgren.

�e DevOps Handbook: How to Create World-Class Agility, Reliability, and

Security in Technology Organizations. 2nd ed. IT Revolution, 2021.

Kim, Gene, and Steve Spear. Wiring the Winning Organization: Liberating Our

Collective Greatness through Slowi�cation, Simpli�cation, and Ampli�cation.

IT Revolution, 2023.

Kwa, �omas, Ben West, Joel Becker, et al. “Measuring AI Ability to Complete

Long Tasks.” arXiv.org, March 18, 2025. https://arxiv.org/abs/2503.14499v2.

Latent Space, “ChatGPT Codex: �e Missing Manual,” YouTube video, posted

May 16, 2025, https://www.youtube.com/watch?v=LIHP4BqwSw0.

Levy, Mosh, Alon Jacoby, and Yoav Goldberg. “Same Task, More Tokens: �e

Impact of Input Length on the Reasoning Performance of Large Language

Models.” arXiv.org, February 19, 2024. https://arxiv.org/abs/2402.14848.

Lo�us, Tom. “Google Engineer Goofs, Makes Google+ Criticism Public.” Wall

Street Journal, October 12, 2011. https://www.wsj.com/articles/BL-DGB

-23338.

Lopez, Linette. “�e White House Is Only Telling You Half of the Sad Story of

What Happened to American Jobs.” Business Insider Nederland, July 25,

2017. https://www.businessinsider.nl/what-happened-to-american-jobs

-in-the-80s-2017-7/.

Lutke, Tobi (@tobi). “Re�exive AI Usage Is Now a Baseline Expectation at

Shopify.” X, April 7, 2025. https://x.com/tobi/status/1909251946235437514.

MacroTrends. “Shopify Revenue 2013-2025 | SHOP.” Accessed March 28, 2025.

https://www.macrotrends.net/stocks/charts/SHOP/shopify/revenue.

Mauran, Cecily. “Mark Zuckerberg Wants AI to Do Half of Meta’s Coding by

2026.” Mashable, April 30, 2025. https://mashable.com/article/llamacon

-mark-zuckerberg-ai-writes-meta-code.

McCullough, David. Interview with the National Endowment for the Human-

ities, Je�erson Lecture, 2003. https://www.neh.gov/about/awards/je�erson

-lecture/david-mccullough-biography.

Meijer, Erik (@headinthebox). “Looks amazing! �anks for doing this. Feels

much faster to grasp than the watch the whole talk, even at 2x speed.” X,

September 9, 2024. https://x.com/headinthebox/status/183330412412

7121883.

Meijer, Erik. “What makes me most happy is that this decreased the #LOC of

Ruby and increased the #LOC of Kotlin.” Comments to LinkedIn post,

March 2025. https://www.linkedin.com/feed/update/urn:li:activity:7307

434087365943296?commentUrn=urn%3Ali%3Acomment%3A%28activity

%3A7307434087365943296%2C7307599768673820674%29&dash

CommentUrn=urn%3Ali%3Afsd_comment%3A%28730759976867382067

4%2Curn%3Ali%3Aactivity%3A7307434087365943296%29.

“Microso� Build 2025 | Day 2 Keynote.” YouTube video, posted by Replay, May

20, 2025. https://www.youtube.com/live/RbKyBbn1vkI.

Mollick, Ethan. Co-Intelligence: Living and Working with AI. Portfolio, 2024.

Montti, Roger. “Why Google May Adopt Vibe Coding for Search Algorithms.”

Search Engine Journal, April 4, 2025. https://www.searchenginejournal

.com/why-google-may-adopt-vibe-coding-for-search-algorithms/541641/.

Nolan, Beatrice. “AI Employees with ‘Memories’ and Company Passwords Are

a Year Away, Says Anthropic Chief Information Security O�cer.” Fortune,

April 23, 2025. https://fortune.com/article/anthropic-jason-clinton-ai

-employees-a-year-away/.

Nathani, Ronak, and Guang Yang. “LLMs Are Like Your Weird, Over-con�dent

Intern | Simon Willison (Datasette).” So�ware Misadventures Podcast

(blog), September 10, 2024. https://so�waremisadventures.com/p/

simon-willison-llm-weird-intern.

Olsson, Catherine (@catherineols). “4) If we’re working on something tricky

and it keeps making the same mistakes, I keep track of what they were in a

little notes �le.” X, February 24, 2025. https://x.com/catherineols/status

/1894105719953310045.

Osorio, Kevin Gargate, and PyCoach. “Codex Is Not Just Smarter. It’ll Reshape

So�ware Development.” Arti�cial Corner (blog), May 22, 2025. https://

arti�cialcorner.com/p/codex-is-not-just-smarter-itll-reshape.

Patel, Dwarkesh. “Is RL + LLMs Enough for AGI? – Sholto Douglas & Trenton

Bricken.” YouTube video, May 22, 2025. https://www.youtube.com/watch

?v=64lXQP6cs5M.

Patel, Nilay. “Microso� CTO Kevin Scott on How AI Can Save the Web, Not

Destroy It.” �e Verge, May 19, 2025. https://www.theverge.com/decoder-

podcast-with-nilay-patel/669409/microso�-cto-kevin-scott-interview

-ai-natural-language-search-openai.

Patel, Nilay. “UiPath CEO Daniel Dines on AI Agents Replacing Our Jobs.” �e

Verge, April 7, 2025. https://theverge.com/decoder-podcast-with-nilay

-patel/643562/uipath-ceo-daniel-dines-interview-ai-agents.

Paul, Gus. “Automated Change Management.” Presentation at the IT Revolution

Enterprise Summit Europe, 2022. Video. videos.itrevolution.com/watch

/708122268.

Programmers are also human. “Interview with Vibe Coder in 2025.” YouTube

video, April 1, 2025. https://www.youtube.com/watch?v=JeNS1ZNHQs8.

Shopify. “Shopify for Executives - CTOs.” Shopify website. Accessed March 28,

2025. https://www.shopify.com/toolkit/cto.

SRC-d. “Hercules: Fast, Insightful and Highly Customizable Git History Analy-

sis.” GitHub Repository, 2023. https://github.com/src-d/hercules.

“Steve Yegge/Gene Kim: Pair Programming Session (Sept 2024).” YouTube

video, Posted by IT Revolution, November 2024. https://www.youtube.com

/playlist?list=PLvk9Yh_MWYuzptetZDa0KxM-ahjQgctHS.

Sturtevant, Daniel J. “System Design and the Cost of Architectural Complexity.”

MIT �esis, 2013. https://dspace.mit.edu/handle/1721.1/79551.

Tan, Garry (@garrytan). “For 25% of the Winter 2025 batch, 95% of lines of

code are LLM generated. �at’s not a typo. �e age of vibe coding is here.”

X, March 5, 2025. https://x.com/garrytan/status/1897303270311489931.

Unwrap. “How GitHub’s Copilot Team Automated �eir Entire Customer Feed-

back Analysis Process.” Case Study, August 5, 2024. https://unwrap.ai

/case-studies/github-copilot.

Varanasi, Lakshmi. “AI Won’t Replace Human Workers, but ‘People �at Use

It Will Replace People �at Don’t,’ AI Expert Andrew Ng Says.” Business

Insider, March 16, 2025. https://www.businessinsider.com/andrew-ng-ai

-jobs-workers-optimist-economy-2024-7.

Vas (@vasumanmoza). “Claude 4 just refactored my entire codebase in one

call…” X, May 24, 2025. https://x.com/vasumanmoza/status/19264872

01463832863.

Wickett, James. “�e AI Future of Information Security.” Presentation at the

Enterprise Technology Leadership Summit, IT Revolution, Las Vegas, 2024.

Video. https://videos.itrevolution.com/watch/1003869130.

Wikipedia contributors. “Auguste Esco�er.” Wikipedia. Last modi�ed March

28, 2025. https://en.wikipedia.org/wiki/Auguste_Esco�er.

Willison, Simon. “Here’s how I use LLMs to help me write code.” Simon

Willison’s Weblog (blog), March 11, 2025. https://simonwillison.net/2025/

Mar/11/using-llms-for-code/#context-is-king.

Wu, Scott. “Introducing Devin, the First AI So�ware Engineer.” Cognition

(blog), March 12, 2024. https://cognition.ai/blog/introducing-devin.

Yegge, Steve. “Dear Google Cloud: Your Deprecation Policy Is Killing You.”

Medium, August 14, 2020. https://steve-yegge.medium.com/dear-google

-cloud-your-deprecation-policy-is-killing-you-ee7525dc05dc.

Yegge, Steve. “Stevey’s Google Platforms Rant.” GitHub Gist, posted by chitch-

cock, 2011. Accessed May 28, 2025. https://gist.github.com/chitchcock

/1281611.

Yegge, Steve. “�e Death of the Junior Developer.” Sourcegraph (blog), June 24,

2024. https://sourcegraph.com/blog/the-death-of-the-junior-developer.

Zavřel, Roman. “�is Year, 94% of All Photos Will Be Taken on Smartphones—

How Many Photos Does the Average American Take per Day?” Letem

Svetem Applem, April 19, 2024. https://www.letemsvetemapplem.eu/

en/2024/04/19/v-letosnim-roce-bude-94-vsech-fotogra�i-porizeno

-pomoci-smartphonu-v-usa-prumerne-vyfoti-clovek-20-fotek-denne/.

NOTES

Introduction

1. FooCafe, “Advancements and Future Directions in AI-Assisted Coding -

Erik Meijer.”

2. Cornago, “Further Results of Our 500-Person GenAI and Developer

Pilot.”

3. Cornago, “Further Results of Our 500-Person GenAI and Developer

Pilot.”

4. Beck, “Social AI Adoption: Lessons from Hybrid Corn.”

5. Karpathy, “�ere’s a new kind of coding I call ‘vibe coding’.”

6. Kalliamvakou, “Research: Quantifying GitHub Copilot’s Impact on

Developer Productivity and Happiness.”

7. Mauran, “Mark Zuckerberg Wants AI to Do Half of Meta’s Coding by

2026.”

8. Wu, “Introducing Devin, the First AI So�ware Engineer.”

9. Nolan, “AI Employees With ‘Memories’ and Company Passwords Are a

Year Away.”

10. Yegge, “Stevey’s Google Platforms Rant.”

11. Lo�us, “Google Engineer Goofs, Makes Google+ Criticism Public.”

12. Yegge, “�e Death of the Junior Developer.”

13. Kent Beck, personal conversation with the authors, April 2, 2025.

Chapter 1

1. Karpathy, “�ere’s a new kind of coding I call ‘vibe coding.’”

2. Karpathy, “�ere’s a new kind of coding I call ‘vibe coding.’”

3. Karpathy, “�ere’s a new kind of coding I call ‘vibe coding.’”

4. Tan, “For 25% of the Winter 2025 batch, 95% of lines of code are LLM

generated.”

5. “Claude Code: Anthropic’s CLI Agent.”

6. MacroTrends, “Shopify Revenue 2013-2025 | SHOP.”

7. Shopify, “Shopify for Executives - CTOs.”

8. Lutke, “Re�exive AI Usage Is Now a Baseline Expectation at Shopify.”

9. Humphreys, “No, you won’t be vibe coding your way to production.”

10. Jessie Young, personal conversation with Gene Kim, February 29, 2025.

11. Montti, “Why Google May Adopt Vibe Coding for Search Algorithms.”

12. Montti, “Why Google May Adopt Vibe Coding for Search Algorithms.”

13. “Microso� Build 2025 | Day 2 Keynote.”

Chapter 2

1. Aguinaga, “How It Feels to Learn JavaScript in 2016.”

2. De Sousa Pereira, “�e Insanity of Being a So�ware Engineer.”

3. Borman, “A superior pilot uses his superior judgment.”

Chapter 3

1. “Claude Code: Anthropic’s CLI Agent.”

2. Kim and Spear, Wiring the Winning Organization, xxvii.

3. Dr. Daniel Rock, personal conversation with the authors, April 23, 2025.

4. Belsky, “Collapse the Talent Stack Every Chance You Get.”

5. Butler et al., “Dear Diary: A Randomized Controlled Trial of Generative

AI Coding Tools in the Workplace.”

6. Cornago, “Further Results of Our 500-Person GenAI and Developer

Pilot.”

Chapter 4

1. DeBellis et al., “�e Impact of Generative AI in So�ware Development

Report.”

2. Kwa et al., “Measuring AI Ability to Complete Long Tasks.”

3. Patel, “Is RL + LLMs Enough for AGI? – Sholto Douglas & Trenton

Bricken.”

4. Kwa et al., “Measuring AI Ability to Complete Long Tasks.”

Chapter 5

1. Eloundou et al., “GPTs Are GPTs.”

2. Brendan Hopper, personal communication with Gene Kim, April 2025.

Hopper was referencing Dr. Nicholas Negroponte, founder of the MIT

Media Lab, for framing this as “move bits, not atoms.”

3. Lopez, “�e White House Is Only Telling You Half of the Sad Story of

What Happened to American Jobs.”

4. Varanasi, “AI Won’t Replace Human Workers, but ‘People �at Use It

Will Replace People �at Don’t,’ AI Expert Andrew Ng Says.”

5. FooCafe, “Advancements and Future Directions in AI-Assisted Coding -

Erik Meijer.”

6. Yegge, “�e Death of the Junior Developer.”

7. Cohen, “I read a lot of headlines these days about AI replacing so�ware

engineers…”

8. Zavřel, “�is Year, 94% of All Photos Will Be Taken on Smartphones.”

9. Acemoglu, “�e Simple Macroeconomics of AI.”

10. DeLong, “�e Reality of Economic Growth: History and Prospect.”

11. Matt Velloso, personal correspondence with Gene Kim, March 2025.

12. Velloso, personal correspondence with the authors, 2025.

Chapter 6

1. Cornago, “Further Results of Our 500-Person GenAI and Developer

Pilot.”

2. AI Engineer, “Building AI Agents with Real ROI in the Enterprise SDLC.”

Chapter 7

1. Forsgren, Humble, and Kim, Accelerate.

2. Sturtevant, “System Design and the Cost of Architectural Complexity.”

3. Forsgren, Humble, and Kim, Accelerate.

4. Latent Space, “ChatGPT Codex: �e Missing Manual.”

5. Ericsson and Pool, Peak.

Chapter 9

1. If you’re interested, you can watch each step in this YouTube playlist:

“Steve Yegge/Gene Kim: Pair Programming Session (Sept 2024).”

2. Meijer, “Looks amazing! �anks for doing this. Feels much faster to grasp

than the watch the whole talk, even at 2x speed.”

3. Erik Meijer, personal correspondence with Gene Kim, May 14, 2025.

4. Karpathy, “I just vibe coded a whole iOS app in Swi�…”

5. Gazit, “Reaching for AI-Native Developer Tools.”

Chapter 10

1. Willison, “Here’s how I use LLMs to help me write code.”

2. Karpathy, “Noticing myself adopting a certain rhythm in AI-assisted

coding (i.e. code I actually and professionally care about, contrast to vibe

code)…”

3. “Claude Code: Anthropic’s CLI Agent.”

Chapter 11

1. Jason Clinton, personal conversation with the authors, April 2, 2025.

2. Anthropic, “Introducing Claude 4.”

Chapter 12

1. Vas (@vasumanmoza), “Claude 4 just refactored my entire codebase in

one call…”

2. Gazit, “Reaching for AI-Native Developer Tools.”

3. Mollick, Co-Intelligence, 46.

4. develoopest, “I Must Be the Dumbest ‘Prompt Engineer’ Ever.”

5. Banks, “Woman Crashed Motorhome Using Cruise Control While Mak-

ing Cup of Tea.”

6. Bhagsain (@abhagsain), “Last week, we asked Devin to make a change.”

7. Erik Meijer, personal communication with the authors, May 14, 2025.

8. Meijer, “What makes me most happy is that this decrease the #LOC of

Ruby and increased the #LOC of Kotlin.”

9. Flowcon, “Keynote: Velocity and Volume (or Speed Wins) by Adrian

Cockcro�.”

10. Grove, High Output Management.

Chapter 13

1. Patel, “Microso� CTO Kevin Scott on How AI Can Save the Web, Not

Destroy It.”

Chapter 14

1. Bland, “Goto Fail, Heartbleed, and Unit Testing Culture.”

2. Distefano et al., “Scaling Static Analyses at Facebook.”

3. Kersten, O’Connell, and Keenan, 2023 State of DevOps Report.

4. Nathani and Yang, “LLMs Are Like Your Weird, Over-con�dent Intern |

Simon Willison (Datasette).”

Chapter 15

1. “Google C++ Style Guide.”

2. Google, “Google—GitHub Organization.”

3. Olsson, “4) If we’re working on something tricky and it keeps making the

same mistakes…”

4. Anthropic, “Claude Code: Best Practices for Agentic Coding.”

5. Osorio and PyCoach, “Codex Is Not Just Smarter. It’ll Reshape So�ware

Development.”

6. Ferriss, “�e Tim Ferriss Show Transcripts: Jerry Seinfeld — a Comedy

Legend’s Systems, Routines, and Methods for Success (#485).”

7. Kent Beck, personal conversation with Gene Kim, January 2025.

8. Baldwin, Design Rules, 78.

Chapter 16

1. Yegge, “Dear Google Cloud.”

2. Wickett, “�e AI Future of Information Security.”

3. Heelan, “How I Used O3 to Find CVE-2025-37899.”

4. Heelan, “How I Used O3 to Find CVE-2025-37899.”

5. Paul, “Automated Change Management.”

Chapter 17

1. Wikipedia contributors, “Auguste Esco�er.”

2. Kim, Humble, Debois, Willis, Forsgren, �e DevOps Handbook, 104.

3. DeBellis et al., “�e Impact of Generative AI in So�ware Development

Report.”

4. Cornago, “Further Results of Our 500-Person GenAI and Developer

Pilot.”

5. Ken Exner, Director of Dev Productivity, 2015, tktk.

Chapter 18

1. Heavybit, “O11ycast | Ep. #80, Augmented Coding With Kent Beck |

Heavybit.”

Chapter 19

1. Dr. Daniel Rock, personal conversation with the authors, May 2025.

2. Dr. Matt Beane, personal conversation with the authors, May 2025.

3. McCullough, Interview with the National Endowment for the Human-

ities.

ACKNOWLEDGMENTS

W
e want to thank Dr. Andrej Karpathy for coining the phrase vibe cod-

ing and Dr. Erik Meijer for giving us such an inspiring vision of where

vibe coding will take our profession.

We are also grateful to Dario Amodei for writing a powerful and vision-

ary foreword for our book, and for all that Anthropic is doing for society.

�ank you to Dr. Carliss Baldwin (Harvard Business School) and Dr.

Steve Spear (MIT Sloan) for teaching us about modularity and option value.

(And Dr. Daniel Rock for all the a�er-school tutoring sessions we needed

a�erward!)

Our heartiest thanks to Simon Willison for his brilliant characterization

of AI as the “crazy summer intern, who also believes in conspiracy theo-

ries,” and his amazing llm utility, which became the heart of Gene’s Writer’s

Workbench, because of the modularity it enabled (hello NK/t and σ!).

And thank you to all our manuscript reviewers, who went to outra-

geous lengths to help improve our book—your long letters to us gave us a

lot to think about, and we hope you see how your feedback shaped the �nal

book: Dr. Matt Beane (MIT and UCSB), Adam Gordon Bell (CoRecursive),

JD Black (Northrop Grumman), James Cham (Bloomberg Beta), Mike Carr

(Vanguard), Sean Cor�eld (World Singles Networks), Jason Cox (Disney),

Cornelia Davis (Temporal Technologies), Derek DeBellis (Google), Richard

Feldman (zed.dev), Ben Grinnell, Je� Gallimore (Excella), Nathen Harvey

(DORA and Google Cloud), Mitchell Hashimoto, Elisabeth Hendrickson

(Curious Duck), Christine Hudson (�e Welcome Elephant), Christofer Ho�

(LastPass), Tom Killilea, Dr. Mik Kersten (Planview), Kerrick Long (Over �e

Top Marketing), Ryan Martens (Manifest), Dr. Erik Meijer, Kyle Moschetto

(KMo), Stuart Pearce (Hg), John Rauser (Cisco), Matt Ring (John Deere),

Richard Seroter (Google Cloud), Randy Shoup (�rive Market), Steve Smith

(Equal Experts), Laura Tacho (DX), Mat Velloso (Meta), Prashant Verma

(DoorDash), Steve Wilson (Exabeam), Adam Zimman.

Gene

�ank you to everyone who has helped me learn about how to use AI to

become a better developer, listed in roughly chronological order: Mitesh

Shah (Gaiwan), Patrick Debois, Jason Cox (Disney), Je� Gallimore (Excella),

Brian Scott (Adobe), Joseph Enochs (EVT), Paige Bailey (Google), Idan Gazit

(GitHub), Dr. Eirini Kalliamvakou (GitHub), Luke Burton (NVIDIA), Kent

Beck (KentBeck.com), and Adrian Cockcro�.

I am so grateful to everyone who helped me better understand the impact

of AI on technology organizations and society by sharing their expertise

and experiences, including Dr. Matt Beane (UCSB and MIT), Jason Clinton

(Anthropic), Fernando Cornago (adidas), Jason Cox (Disney), Dr. Joe Davis

(Vanguard), Dr. Nicole Forsgren (Microso�), Andrew Glover (OpenAI),

Brendan Hopper (CBA), Timothy Howard (UK Defra), Dr. Tapabrata Pal

(Fidelity Investments), Bruno Passos (Booking.com), John Rauser (Cisco),

Dr. Daniel Rock (Wharton and Workhelix), Ryan Sikorsky (Equal Experts),

Amy Willard (John Deere), and Jessie Young (GitLab).

And to my coauthor Steve Yegge, whose work I’ve admired for over a

decade. I never would have believed that we’d get to work on something

together, let alone something that would lead to so many exciting adventures.

I so much appreciated your love of coding, high energy and standards, com-

passion, and desire to improve our profession.

Steve

�ank you to Dominic Cooney (Anthropic) for validating my crazy ideas

early on, leading to my “Death of the Junior Developer” post, which got this

whole ball rolling. And thank you to Dominic Widdows (AMD) for our

thoughtful early conversations in this space and for being the �rst to realize

we’re turning into AI nannies.

�ank you to Quinn Slack (CEO Sourcegraph), whose support and bril-

liant ideas made this book possible. And I thank everyone at Sourcegraph, an

amazing and vibrant company, for cheering me on while Gene and I slogged

through this instruction manual for the agentic coding age.

I am so grateful to everyone who helped me better understand vibe cod-

ing, agents, LLMs, and AI in the enterprise, leading to this being a much more

useful book: Beyang Liu (CTO Sourcegraph), Chris Sells (Sourcegraph),

Dr. Eric Fritz (Sourcegraph), Erika Rice Scherpelz (Sourcegraph), Gergely

Orosz (�e Pragmatic Programmer), Mike Schiraldi (Anthropic), Oscar

Wickström (Sourcegraph), Prashant Verma (DoorDash), Rik Nauta

(Sourcegraph), Rishabh Mehrotra (Sourcegraph), Robert Lathrop (Ghost

Track, the man who �rst spotted Godzilla), and �orsten Ball (Sourcegraph).

Finally, thank you, Gene, for coming along on this amazing adventure

we’ve been on, and for always being inspiring and encouraging. �e book is

great because of you, and also it’s �nished because of you: you dragged us to

the �nish line through sheer willpower and a world-class Writer’s Workbench

that you vibe coded along the way. What an e�ort! We’ll be sharing stories

from this adventure for years to come.

ABOUT THE AUTHORS

Gene Kim has been studying high-performing technology organizations

since 1999. He was the founder and CTO of Tripwire, Inc., an enterprise secu-

rity so�ware company, where he served for thirteen years. His books have

sold over 1 million copies—he is the Wall Street Journal bestselling author

of �e Unicorn Project, and co-author of Wiring the Winning Organization,

�e Phoenix Project, �e DevOps Handbook, and the Shingo Publication

Award-winning Accelerate. In 2025, he won the Philip Crosby Medal from

the American Society for Quality (ASQ) for his work on the book Wiring

the Winning Organization. Since 2014, he has been the organizer of DevOps

Enterprise Summit (now Enterprise Technology Leadership Summit), study-

ing the technology transformations of large, complex organizations.

Steve Yegge began his career as a computer programmer at GeoWorks in

1992. He worked at Amazon from 1998 to 2005 as a senior engineer and

senior manager. �ere he led the transition from 2-tier to N-tier service archi-

tecture, then led Customer Service Tools. From 2005 to 2018, Yegge worked

at Google as a senior sta� engineer and senior engineering manager. �ere,

he built a knowledge engine called Grok, wired into Google’s internal Code

Search system, which had a 99% satisfaction rating within Google (soundly

beating the next-best tool by double digits). He went on to be Head of Engi-

neering at Grab, a ride-share and payments company based in Singapore.

Beginning in 2022, he helped lead the development of the Cody AI assistant

at Sourcegraph (which commercialized the Code Search system that Steve

built at Google) and wrote the infamous “Yegge Rant” in 2011 and the “Death

of the Junior Developer” post in 2024.

