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Figure 0.1: �e Kitchen Brigade



Figure 8.1: Vibe Coded Bouncing Red Ball (Claude)



Figure 8.2: Vibe Coded Cube with Two-Colored Lighting (Gemini)



Figure 8.3: �e Number of Photographs Taken Annually,  

Generated Using Vibe Coding (Claude)
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Figure 9.1: �e Vibe Coding Loop
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Figure 10.1: A Typical AI Model’s Context Window



{

 "messages": [

  {"role": "system", "content": "You are a helpful coding 

   assistant..."},

  {"role": "user", "content": "How do I implement a 

   binary tree in Python?"},

  {"role": "assistant", "content": "Here's how you can 

   implement a binary tree:..."},

  {"role": "user", "content": "Now I'm getting this 

   error: TypeError: 'NoneType'..."}

 ]

}
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Turn 3 Turn 4 (Current)

LLM Context Window Filling Up

Current Turn

Previous Turns

Figure 10.2: LLM Context Window Filling Up with Each Turn
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Figure 12.2: Architecture of Steve’s Ruby Admin Script
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// from AI → MCP server

{ 

 "jsonrpc": "2.0",

 "id": 42, // request-id, which allows for async and parallel RPCs

 "method": "tools/call",

 "params": { "name": "fetch_weather", "arguments":  

 {"location": "San Francisco" } }

}

�e server translates fetch_weather into real operations (e.g., API calls to 

weather services or database queries), then replies:

{

 "jsonrpc": "2.0",

 "id": 42, // response-id 

 "result": { "ok": true }

}
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Figure 14.2: �e �ree Developer Loop Timescales
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Figure 16.1: Code Survival Graphs for Clojure  

and Linux (High) and Scala (Low)
Source: Rich Hickey, “A History of Clojure.” Proceedings of the ACM on Programming Languages, 2020. https://

dl.acm.org/doi/pdf/10.1145/3386321; SRC-d. “Hercules: Fast, Insightful and Highly Customizable Git History 

Analysis.” GitHub Repository, 2023. https://github.com/src-d/hercules.



Table 16.1: Vibe Coding Testing Strategies 

High Risk Low Risk
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box (exhaustive testing).

Light white-box, light 

black-box.
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Deep black-box, light 

human white-box (code 

spot-checks are all you can 

do), heavy AI white-box.

Black box only (let it write 

some tests, then verify 

that the overall outputs 

“look right”).
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Figure 17.1: Parallelizing Kitchen Work with a Task Graph



GLOSSARY OF COMMON TERMS

Agent: An AI system designed to perform tasks autonomously with directed 

intent, o�en handling multiple subtasks and steps. Unlike LLMs, agents 

maintain state and can work independently toward speci�c goals.

API: Application programming interface.

API Key: �is is your ticket for API access. It’s a sequence of characters gen-

erated by the API provider and should be kept secret.

ChatGPT: A conversational AI model developed by OpenAI, based on the 

GPT (generative pre-trained transformer) family of models. Available 

through both web interface and API, it’s widely used for code generation 

and explanation.

CHOP (Chat-Oriented Programming): A programming methodology 

where developers write code through natural language conversations 

with AI assistants, rather than writing code directly by hand.

Claude: An AI assistant developed by Anthropic, known for strong coding 

capabilities and detailed technical explanations. Available in several ver-

sions with varying capabilities and performance characteristics.

Code AI: An umbrella term encompassing all the ways people use Generative 

AI and LLMs to help their company’s engineers, including Chat-Oriented 

Programming (CHOP), API-based automation, AI agents, assistants 

with agentic behavior, LLM-produced code indexes, and many other 

approaches that people are using to bring AI to so�ware engineering.

Coding Assistant: A specialized AI tool designed to integrate directly into 

development environments (like VS Code or other IDEs), o�ering  

context-aware code suggestions, explanations, and modi�cations.

Context: In AI programming, the background information provided to AI 

about your code, requirements, and constraints. �is includes code snip-

pets, documentation, error messages, and previous conversation history 

that helps AI understand the current task.

Context Window: �e amount of text an AI model can consider at once 



when generating responses, typically measured in tokens. �is includes 

both the conversation history and any provided code or documentation.

Dynamic Context: Temporary, task-speci�c information that changes fre-

quently during development, such as current problem descriptions, 

intermediate code versions, and debugging information.

Foundation Model: A large AI model trained on vast amounts of data that 

serves as the base for various AI applications. Examples include GPT-4, 

Claude, and Llama.

Gemini: Google’s family of AI models, designed to work with multiple types 

of input including text and images. Available in di�erent sizes, o�ering 

various trade-o�s between capability and speed.

Generative AI (GenAI): AI systems that can create new content—including 

code, text, images, and more—based on training data and user prompts. 

Unlike traditional AI that focuses on classi�cation or prediction, GenAI 

can produce novel outputs that follow patterns learned from its training. 

In so�ware development, GenAI tools like LLMs can generate code, doc-

umentation, tests, and other artifacts while engaging in natural language 

dialogue with developers.

Hallucination: When an AI model generates incorrect or fabricated infor-

mation, such as referring to non-existent functions or APIs.

Inference Provider: A service or platform that hosts and runs AI models, 

handling the computational resources needed for AI operations. Exam-

ples include AWS Bedrock and Azure OpenAI Service.

Leaf Node: In the task graph model, a small, independent task that can be 

completed without breaking it down further. In vibe coding, these are 

typically tasks that AI can accelerate by 10x compared to manual imple-

mentation.

LLAMA (Large Language Model Meta AI): A family of open-source lan-

guage models developed by Meta (formerly Facebook). �ese models 

can be run locally and have spawned numerous derivatives and �ne-

tuned versions.

LLM (Large Language Model): An AI system trained on vast amounts of 

text data that can understand and generate human-like text, including 

code. Examples include GPT-4 and Claude.

Multi-Turn Conversation: A chat conversation with a model that involves 



multiple “turns” or round trips between the human or agent and the 

machine (LLM). Multi-turn interactions are a basic building block of 

agentic behavior because they enable planning and dynamic adaptation. 

Contrast this with a single-turn or “one-shot” conversation, in which the 

human sends one query, and the LLM sends one response. A few-shot 

query is similar to a one-shot because they’re both fast enough to operate 

in pair-programming mode.

Ollama: An open-source tool that simpli�es running various large language 

models locally on your computer. It provides an easy way to download, 

run, and manage di�erent open-source models like Llama.

One-Shot Query: �e simplest vibe coding operation. You send the LLM a 

question and some context and get the answer back in a single “turn,” 

meaning one human request followed by one machine response. Con-

trast this with few-shot queries and multi-turn conversations, which 

make more round trips, trading o� time for accuracy.

Prompt: �e input provided to an AI model to guide its response, including 

instructions, context, and any special requirements or constraints.

Prompt Engineering: �e practice of cra�ing e�ective inputs to AI models 

to get desired outputs, though becoming less critical with newer models 

that better understand natural language.

Prompt Library: A collection of reusable prompts and context snippets that 

can be applied across di�erent AI programming sessions to maintain 

consistency and e�ciency.

RAG (Retrieval Augmented Generation): A technique that enhances AI 

model responses by �rst retrieving relevant information from a knowl-

edge base, such as your code base, documentation, or other resources, 

and then using that information to generate more accurate and contextual 

responses. RAG typically involves indexing your code and documenta-

tion, capturing frozen semantic meaning, and then retrieving the most 

relevant pieces of content when AI needs to answer questions or generate 

code. �is helps AI maintain consistency with your existing code base and 

follow your team’s patterns and conventions. RAG is particularly import-

ant for enterprise development where AI needs access to proprietary code 

and documentation that wasn’t part of its training data.

Static Context: Stable, long-lived information about a project that remains 



relevant across multiple LLM sessions. Important because static context 

is o�en large and needs indexing. It includes all your relevant existing 

code, the vast majority of which never changes, and can also include 

coding standards, architecture documents, long-lived administrative 

prompts, API documentation, and large bodies of data such as issue 

trackers, databases, and logs. O�en retrieved via RAG.

Task Graph: A conceptual model representing a project’s work as intercon-

nected nodes, where each node is some task or challenge that can be 

handled by humans, AI assistants, or agents. �e connections between 

nodes represent dependencies and information �ow.

Token: �e basic unit of text that LLMs process, roughly equivalent to three-

fourths of a word in English. Token limits a�ect how much context can 

be provided to and generated by an AI model.

Token Window: �e maximum number of tokens an AI model can process 

in a single interaction, including both input context and generated out-

put.

V&V (Veri�cation & Validation): In the context of AI-assisted program-

ming, the process of ensuring generated code both meets technical 

requirements (veri�cation) and solves the intended problem (validation).

Workspace: A persistent environment for AI-assisted development that 

maintains context, conversations, and generated and/or uploaded arti-

facts across multiple sessions. Alternatively called a Project, for instance, 

in both Claude and Google AI Studio.



APPENDIX:  

THE INNER/MIDDLE/OUTER LOOPS

Inner Developer Loop  
(seconds to minutes)

Prevent

• Checkpoint and save your game frequently

• Keep your tasks small and focused

• Get the AI to write speci�cations

• Have AI write the tests

• AI is a Git maestro

Detect

• Verify AI’s claims yourself

• Always on watch: keeping your AI on the rails

• Use test-driven development

• Learn while watching

• Put your sous chef on cleanup duty

• Tell your sous chef where the freezer is

Correct

• When things go wrong: �x forward or roll back

• Automate linting and correction

• When to take back the wheel

• Your AI as a rubber duck



Middle Developer Loop  
(hours to days)

Prevent

• Written rules: because your sous chefs can’t read your mind

• �e Memento Method

• Design for AI manufacturing

• Working with two agents at once, and more

• Intentional AI coordination

• Keeping your agents busy when you’re busy

Detect

• Waking up to eldritch AI-generated horrors

• Too many cooks: detecting agent contention

Correct

• Kitchen line stress tests: using tracer bullets

• Sharpen your knives: investing in work�ow automation

• �e economics of optionality

Outer Developer Loop  
(weeks to months)

Prevent

• Don’t let your AI torch your bridges

• Workspace confusion: avoiding the “stewnami”

• Minimize and modularize

• Managing �eets of agents: four and beyond

• Auditing through or around the kitchen

• Channel your inner product manager

• Making operations fast, ambitious, and fun

Detect

• When the AI throws everything out

• CI/CD in the age of AI

Correct



• Steve’s harrowing merge recovery tale

• When you’re stuck with awful processes and architecture
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Outer Loop: Weeks to Months

Middle Loop: Hours to Days 

Inner Loop: Seconds to Minutes
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