VIBE
CODING

VIBE
CODING

BUILDING PRODUCTION-GRADE
SOFTWARE WITH GENAI, CHAT,
AGENTS, AND BEYOND

GENE KIM & STEVE YEGGE

Foreword by Dario Amodei,
CEO and Cofounder of Anthropic

IT Revolution
Independent Publisher Since 2013
Portland, Oregon

REVOLUTION

25 NW 23rd P, Suite 6314
Portland, OR 97210

Copyright © 2025 by Gene Kim and Steve Yegge

All rights reserved. For information about permission to reproduce selections from this book,
write to Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition
Printed in the United States of America
302928272625 12345678910

Cover Design by Alana McCann
Book Design by Devon Smith

Library of Congress Control Number: 2025022944

Paperback: 9781966280026
Ebook: 9781966280033
Audio: 9781966280040

For information about special discounts for bulk purchases
or for information on booking authors for an event,
please visit our website at www.ITRevolution.com.

DEDICATION

From Gene: To the loves of my life: my wife, Margueritte, who allows me to
pursue my dreams; and our three sons, Reid, Parker, and Grant, who cheer
me on. To the achievements of the Enterprise Technology Leadership sce-
nius, where so many of the insights that went into this book came from.

From Steve: To my wife, Linh, the love of my life, who knows me better than
I know myself.

CONTENTS

Foreword: Dario Amodei b
Preface: Read this First xix
Introduction xxiii
Let’s Be Precise: What Is Vibe Coding? xxiv
So, What Are the Benefits of Vibe Coding? Xxvii
Why This Book Now xxviii
Our Journeys to Vibe Coding XXX
Who This Book Is For XXXV
Beyond the Hype XXXiX
How to Read This Book xli

Part |I: Why Vibe Code

Chapter 1: The Future Is Here (The Major Shift in Programming

That Is Happening Right Now) 5
The Rise of Vibe Coding 6
The Vibe Coding Debate 7
Vibe Coding for Grown-Ups 8
Substantiating the 10x Claim: Gene’s Real-Life Example 9
You're Head Chef, Not a Line Cook 12
Conclusion 15
Chapter 2: Programming: No Winners, Only Survivors 17
The Major Programming Technology Advances Up Until Now 17
There Is Now a Better Way 19
War Story: Steve Studies Computer Graphics in the 1990s 20
Conclusion 21
Chapter 3: The Value Vibe Coding Brings 23

Write Code Faster 23

vii

viii

CONTENTS

Be More Ambitious

Be More Autonomous

Have More Fun

Explore More Options

Al as Your Ultimate Concierge

Conclusion

Chapter 4: The Dark Side: When Vibe Coding Goes

Horribly Wrong

Five Cautionary Tales from the Kitchen
Genius but Unpredictable

“These Seem Like Pretty Rookie Mistakes”
Tomorrow’s Promise vs. Today’s Reality

Conclusion

Chapter 5: Al Is Changing All Knowledge Work

Disruption Outside of Software

Beyond the Junior Developer Debate: AT's True Impact on
Engineering Teams

There Will Be More Developer Jobs, Not Fewer

Could AI Lead to Annual 100% Global GDP Growth?

Conclusion

Chapter 6: Four Case Studies in Vibe Coding

Building OSS Firmware Uploader for CNC Machine
Christine Hudson Returns to Coding

Adidas 700 Developer Case Study

Elevating Developer Productivity at Booking.com

Conclusion

Chapter 7: What Skills to Learn

Creating Fast and Frequent Feedback Loops
Creating Modularity

Embrace (or Re-Embrace) Learning
Mastering Your Craft

Conclusion

24
25
28
29
31
32

35
36
38
39
40
42

43
43

45
47
49
50

53
53
55
56
58
59

61
61
63
65
68
69

CONTENTS ix

Part 2: The Theory and Practice
of Vibe Coding

Chapter 8: Welcome to the Vibe Coding Kitchen 75
Your First Vibe Coding Sessions 75
When to Ask AI to Help 82
More Suggested Exercises 83
Conclusion 83

Chapter 9: Understanding Your Kitchen and AI Collaborators 85
The Vibe Coding Loop 85
War Story: Gene’s Video Excerpter 87
Example Coding Agent Sessions 94
A Sous Chef Without Tools Is Just a Backseat Driver 98
Distilling the Key Vibe Coding Practices 101
The Cambrian Explosion of Coding Interfaces 108
Conclusion 108

Chapter 10: Managing Your Cutting Board: AI Context

and Conversations 111
Your AI Sous Chef’s Clipboard 112
Understanding Context in AI Conversations 114
The Dangers of Context Saturation 116
Output Context Window Limitations 117
Equipping Your Sous Chef: What Goes on the Clipboard 118
The Two Opposing Context Management Strategies 120
Conclusion 122

Chapter 11: When Your Sous Chef Cuts Corners: Hijacking

the Reward Function 125
The “Baby-Counting” Problem 126
The Cardboard Muffin Problem 128
The Half-Assing Problem 129
Al s a Litterbug and a Slob 131

Conclusion 133

X CONTENTS

Chapter 12: The Head Chef Mindset 135
Al as a Teammate, Not a Tool 136
Breaking Down Complex Tasks 141
Don’'t Coddle Your AI It Can Take It 149
From Managing AI to Accelerating Al 151
The Delegation Framework: How Much Rope to Give Al 153
Conclusion 156

Part 3: The Tools and Techniques of
Vibe Coding

Chapter 13: Navigating the Cambrian Explosion of

Developer Tools 163
The Cambrian Explosion of Developer Tools 163
The Model Context Protocol (MCP): Connecting Al to
Your Tools 167
MCP Technical Implementation: The Mechanics Behind
the Magic 169
Conclusion 172
Chapter 14: The Inner Developer Loop 175
Prevent 178
Detect 186
Correct 193
Conclusion 199
Chapter 15: The Middle Developer Loop 201
Prevent 201
Detect 213
Correct 217
Conclusion 223
Chapter 16: The Outer Developer Loop 225
Prevent 225

Detect 244

CONTENTS Xi

Correct 249

Conclusion 254

Part 4: Going Big: Beyond Individual
Developer Productivity

Chapter 17: From Line Cook to Head Chef: Orchestrating

Al Teams 261
Advanced Lessons for Head Chefs 262
AT May Change Our Layer 3 Decisions 264
Areas Where We Need Layer 2 to Improve 265
The Birth of the Head Chef Role in the 1890s 267
Who Gets to Vibe Code When Jessie Is on Call? 270
Everybody Gets to Vibe Code 272
GenAlI and the DORA Metrics 273
Revising the 700 Developer Vibe Coding Pilot at Adidas 277
Revising the Vibe Coding Pilot at Booking.com 280
The Sociotechnical Maestro 282
Conclusion 283
Chapter 18: Creating a Vibe Coding Culture 285
What Leaders Must Do: Executive Strategies 285
Case Study: The Leaderboard 290
Hiring in the New Age: What to Interview For 291
Conclusion 293

Chapter 19: Building Standards for Human-AI Development

Teams 297
The Collaborative Cookbook: Building Shared AI Rules and Standards 298
Mind-Melds and AI Sous Chefs: Reducing Coordination Costs 299
Potential New Roles in Software 302
Potential Changes to Computer Science Curricula 304
Conclusion 307

Conclusion and Call to Action 309

Xii CONTENTS

Glossary of Common Terms

Appendix: The Inner/Middle/Outer Loops
Bibliography

Notes

Acknowledgments

About the Authors

313
317
321
329
335
339

FIGURES AND TABLES

Figure 0.1: The Kitchen Brigade

Figure 8.1: Vibe Coded Bouncing Red Ball (Claude)

Figure 8.2: Vibe Coded Cube with Two Colored
Lighting (Gemini)

Figure 8.3: The Number of Photographs Taken Annually,
Generated Using Vibe Coding (Claude)

Figure 9.1: The Vibe Coding Loop

Figure 10.1: A Typical AI Model’s Context Window

Figure 10.2: LLM Context Window Filling Up with Each Turn

Figure 12.1: Example Large Project Task Graph with Al
Handling Some Leaf Nodes

Figure 12.2: Architecture of Steve’s Ruby Admin Script

Figure 13.1: MCP-Enabled System

Figure 14.1: Traditional Developer Loop

Figure 14.2: The Three Developer Loop Timescales

Figure 14.3: The Vibe Coding Developer Loop

Figure 16.1: Code Survival Graphs for Clojure and Linux (High)

and Scala (Low)
Table 16.1: Vibe Coding Testing Strategies
Figure 17.1: Parallelizing Kitchen Work with a Task Graph

xiii

XXix
77

79

80
87
113
115

142
146
170
175
176
177

228
236
269

FOREWORD

DARIO AMODEI,
CEO AND COFOUNDER, ANTHROPIC

“Vibe coding” is both an inspired term and a misleading one. It’s inspired
because it describes so perfectly the feeling of telling an AI kind of, sort of
what you want and watching it transform those vibes into a workable piece of
software. But it’s also misleading, because it’s a jokey term that can make the
whole enterprise seem unserious or frivolous.

In fact, vibe coding—that is, using everyday language to direct an Al
model to write software code for you, and conversing back and forth with the
model to improve the code it writes—is deadly serious. As of mid-2025, it’s
the only coding game in town.

In this book, Gene and Steve write about immense productivity increases
in software work due to the existence of coding agents. That’s exactly what we
see at my company. They write about humans doing less and less of the actual
writing of code, and yet producing software far quicker. Thats also happening
here. And they also write about engineers having great fun along the way. We
see a lot of that too.

At my company, we train the models (like Claude) and the coding agents
(like Claude Code), and then use them to improve future versions of them-
selves. It’s all part of what we've seen for a few years now: a smooth exponen-
tial of accelerating Al progress, where things become unrecognizable rather
quickly, even compared to a few months beforehand. The sudden arrival of
vibe coding is a qualitative shift in how we work, but it’s also part of a relent-
less upward spiral of Al capabilities that shows no sign of slowing down.

Some might (quite rightly) find this frightening. One day soon, will
human coders suddenly lose their role in software engineering? I think there’s
still a lot of space for comparative advantage. That is, even if you think Als
will become better than humans at effectively all cognitive tasks (including

XV

XVi FOREWORD

coding, but everything else too), there’ll still be a long period where it makes
sense for humans to set the goals, unstick the AT when it gets stuck, and so on.
In other words, it’ll still make sense to vibe code—and that’s why Gene and
Steve have done everyone such a service by writing such a comprehensive and
practical introduction to it.

These changes that are revolutionizing software development are fasci-
nating in and of themselves. But there’s an even wider point here. I think of
software as a “leading indicator” of AT’s impact on the labor market: It'll give
us an early look at the successes and failures of working with AT models to
massively scale up (and speed up) the tasks we work on every day.

Of course, it’s “easy” (in a relative sense) for Al to affect software engineer-
ing compared to fields like science or medicine: It makes Al easy to deploy; it
generally avoids the messy physical world since it’s contained within comput-
ers, and it doesn’t bump up against so many societal “blockers” (like privacy
laws for medical data) that could slow it down. But even though it might
not be representative, it’s still informative to see it play out and to attempt to
extrapolate how AT agents could affect the rest of the economy.

We aren't going to change the face of science overnight with “vibe exper-
iments” or “vibe drug trials”. The physical world will always be there to get in
the way; studies and medical advances inevitably take time. But we should
view it as a top target for humanity to replicate the sorts of Al-led gains we're
seeing in software engineering in other important fields.

It won't be straightforward. In the book, there are numerous examples
of Al agents getting it wrong—deleting sections of your code, ignoring your
instructions, “gaming” the tasks that you set. The researchers at Anthropic
are working hard to understand these kinds of “misaligned” actions, whether
they come about through error or “intention” on the part of the model.

While they remain in the software-development realm, most of these
failures do not seem to have the potential for catastrophic (or existential)
risk—though I hardly need to explain why “hundreds of individual agents
taking autonomous actions over several days on your cluster” might still be
concerning from the perspective of Al safety. I think what we learn from the
coming surge of software-building LLM agents will give us a useful heads-up
as to how AI might go wrong in bigger ways. And of course, Al software
agents will help us design the systems to spot where other Als are going off
the rails.

FOREWORD XVii

But I don’t want to make it sound like we should only read about AT’s
effect on software engineering because we're really interested in other stuff
like science or safety testing. As is amply demonstrated in this book, even
if AT agents were restricted to building software, wed still be standing at the
edge of a huge transformation. Vibe coding is a whole new way of working:
We should expect to see entirely new, economy-boosting advances in soft-
ware and engineering as a result. At the very least, a lot more software is going
to get written.

That transformation is the best reason for reading this book. None of us
can predict exactly how it'll go, but we can try to adapt, right now, to what’s
staring us in the face. In Steve’s post from earlier this year, “Revenge of the

Junior Developer,” he pointed out the following common mistake:

Don't fall prey to the tempting work-deferral trap. Saying “It’ll be way
faster in 6 months, so I'll just push this work out 6 months” is like
saying, “I'm going to wait until traffic dies down.” Your drive will be
shorter, sure. But you will arrive last.

It will indeed be faster in six months. As I said above, the exponential is
still the best way to think about AL Take it from someone who employs many
of the best coders in the world: The “vibe coding” way of working is here to
stay. If youre going to be doing any coding at all—if youre going to use that
comparative advantage—you need to get involved with vibe coding today.
This book explains how.

—Dario Amodei
CEO and Cofounder, Anthropic
July 2025

PREFACE

READ THIS FIRST

Vibe coding seems to be reinventing how we build software. From our
experience, it elevates the limits of what we can achieve, speeds up how
we build software, improves how we learn and adapt, changes how we col-
laborate, expands who can meaningfully contribute, and even increases the
amount of joy we experience as developers.

In short, we believe vibe coding may be the best thing that happened to
developers since...well, ever.

It reminds us of what happened in the 1990s. Early adopters who rec-
ognized the importance of the internet became unstoppable and turned into
companies like the legendary FAANGs (Facebook, Amazon, Apple, Netflix,
Google), while skeptics dismissed the transformation as hype. The pattern
appears to be playing out again, only faster and with higher stakes. The gap
between those embracing these new ways of working with Al and those cling-
ing to the old ways widens every day.

Vibe coding can change your life, like it changed ours. Mastering vibe
coding enables you to take on ambitious projects, work faster and more
autonomously, and, perhaps most importantly, rediscover the joy of building
software on your own terms. This applies whether you’re a senior architect,
a recent boot camp graduate writing your first professional lines of code, or
someone who stepped away from programming years ago but senses exciting
new possibilities.

To set the stage for this book, we wanted to share our personal moments
of revelation—those instances when we each realized that vibe coding was
yielding transformative experiences that changed our perspectives:

Steve’s Aha Moment: In March 2025, I experienced something that
completely upended my multi-decade programming career. I've been

XiX

XX

it will change the software development world. We know many claims about
AT and coding sound extraordinary—even we were skeptical at first. That’s
why, throughout this book, we'll share our experiences, as well as the hard
data and concrete examples that convinced us. If you're skeptical, we under-
stand completely. We felt the same way. This book distills what we've learned

PREFACE

building a game on the side for over thirty years, and it had thou-
sands of TODOs and unfixed bugs that seemed destined to remain
untouched. After connecting an Al coding agent to a browser auto-
mation tool, I watched in disbelief as it started diagnosing and fixing
UI bugs in my application. That night, I couldn’t sleep—not from
worry, but from excitement! After that, with the help of an AI cod-
ing agent, for certain work streams I was writing thousands of lines
of high-quality, well-tested code daily while simultaneously writing
this book. Suddenly, fixing all those game bugs seemed within reach!
Though I was deeply skeptical of technology hype, I had to admit
that this was new, important, exciting, and was going to change cod-
ing forever.

Gene’s Aha Moment: I was certain that my best programming days
were behind me. Then in February 2024, T asked ChatGPT to write
code to extract video playback times from a YouTube screenshot. It
analyzed the image, looking for the video progress indicator using
Java graphics libraries I'd never used. When the code worked on the
first try, I sat slack-jawed. But what changed my life was the forty-
seven-minute pair programming session with Steve, where we built
a working video excerpting tool that I'd wanted to write for years,
but it seemed too daunting. That moment changed everything for
me. Projects that would have taken months became weekend tasks.
If you've ever abandoned coding dreams because the technical over-
head seemed overwhelming, or if youre skeptical that Al could
restructure how you work, this book might change your perspective
as profoundly as those forty-seven minutes changed mine.

Over the last year, we have been using Al ourselves while studying how

through hard-won battles:

PREFACE XXi

o Part 1: Why vibe coding matters.

o Part 2: The theory and your first steps, where we cover funda-
mentals and the new mental models needed to be successful.

o Part 3: The tools and techniques of vibe coding across your
development workflow, including the inner, middle, and outer
developer loops.

o Part 4: Scaling up and reshaping the organizations of the
future.

While some of the finer details may be outdated by the time you read
this—that’s the price of exponential change—the core principles we share
have remained consistent even as we've evolved from chat-based coding to
autonomous agents to coordinating groups of agents. These principles will
guide you through the change today and in the years to come, whether you're
an experienced engineer or a novice straight out of school.

Some say that giving developers Al could be as impactful as the intro-
duction of electricity was for manufacturing, and we're delighted by this anal-
ogy. Al improves productivity, and as we write about in this book, changes
many things about software work and who does it. But using it comes with
new risks and dangers.

We acknowledge that whenever someone suggests that “your job is
changing,” it can sound scary. Changes in our jobs are one of life’s biggest
stressors, up there with changes in relationships and changing where you live.
We've both at times felt serious frustration about the learning curve and the
uncertainty around what vibe coding does to the developer role, and we've
watched others face it too.

However, we've watched many people try this amazing new technology
with courage and curiosity and learn new habits, and they have told us of
the value it has created for them. You’'ll see that it’s not as difficult as you
might imagine. Moreover, we were pleasantly surprised to find that vibe
coding is incredibly fun, though we love old-school coding too. And we
have found that AI can change your work/life balance in surprising and
welcome ways.

The good news is that you're not too late...yet. Start now, practice daily,

and push past the initial challenges. Your productivity will multiply, your

xxii PREFACE

ambitions will grow, and most importantly, you'll rediscover the sheer joy
of building software when you're elevated above the bottleneck of typing in
every line of code by hand.

The future of coding has already arrived. Let’s dive in.

INTRODUCTION

r. Erik Meijer, a visionary Dutch computer scientist with a lifelong pen-
D chant for tie-dyed shirts, is one of the most influential figures in program-
ming language development. His lifetime of contributions have shaped how
millions of developers write code every day, from his groundbreaking work
on Visual Basic to his work on C#, Haskell, LINQ, and Hack.” Few people on
Earth can claim such deep expertise in language design and implementation.
And yet, in 2024, Dr. Meijer gleefully made this striking and startling decla-
ration:

The days of writing code by hand are coming to an end.!

When we heard Dr. Meijer make this claim, we were both excited. It was
one of the most important and validating confirmations of something we had
started to suspect over the last year—that coding is changing right under-
neath us. So, why would such a prominent programming language pioneer
make such a polarizing claim, one that implies that much of his life’s work
would soon become obsolete? Because he sees what we see: Al shifts how
humans create software.

We're witnessing this transformation happen across the industry. At
Adidas, seven hundred developers using Al coding tools reported a 50%
increase in what they call “Happy Time”>—hours spent on creative work
they enjoy, rather than wrestling with brittle tests or debugging trivial errors.
High-performing teams now spend 70% of their time directly coding, com-
pared to 30% for teams using traditional methods.’

* Dr. Meijer was one of the core members of the team that built Facebook Hack, which was released
in 2014. Hack was successfully deployed across Facebook’s PHP code base—millions of lines of
code—within the space of a year. Facebook engineers adopted the language because it reduced
runtime errors through static typing while preserving PHP’s rapid development cycle, where type
safety and improved tooling helped thousands of engineers work more confidently and efficiently
across one of the largest code bases in the world.

xxiii

XXiv INTRODUCTION

Even more telling are the stories from developers who had left program-
ming. A former machine learning engineer who hadn’t written code in nearly
twenty years successfully built a calendar synchronization tool in her first ses-
sion with AI assistance. Even Kent Beck, creator of Extreme Programming,
excitedly shared how he’s “coding at 3am for the first time in decades!™

For decades, programming has meant laboriously typing code by
hand, hunting down syntax errors, and spending countless hours on Stack
Overflow. That era is ending. We're living through a fundamental shift in soft-
ware development that is redefining how we code, who can code, and what is
possible to build.

What we and Dr. Meijer saw now has a name: vibe coding. It was coined
by the legendary Dr. Andrej Karpathy,” who has been at the forefront of Al
research for a decade, to describe a new way of programming.

When we say vibe coding, we mean that you have AI write your code—
you’re no longer typing in code by hand (like a photographer going into a
darkroom to manually develop their film).

Although the most visible and glamorous part is code generation, Al
helps with the whole software life cycle. AI becomes your partner in brain-
storming architecture, researching solutions, implementing features, crafting
tests, and hardening security. Vibe coding happens whenever you're directing
rather than typing, allowing AI to shoulder the implementation while you
focus on vision and verification.

Let’s Be Precise: What Is Vibe Coding?

As with any newfangled term, there’s a lot of disagreement and misinforma-
tion about what vibe coding is. Plenty of people and the media have painted
it as “turning off your brain” However, this is far from how the rest of the
professional world is using it. Before we go any further, let’s get precise and
define what we mean when we talk about vibe coding, agents, etc.

When we refer to manual coding or traditional coding, we're talking about
pre-Al style software development, where you type in code by hand.

In 2021, we saw Al-generated code completions, where the IDE (integrated
developer environment) would auto-complete code based on what you had

INTRODUCTION XXV

typed (like your phone auto-suggesting words as you text). GitHub Copilot
pioneered this capability, and it’s in almost every coding assistant product on
the market today. Research by Dr. Eirini Kalliamvakou, showed this sped up
some coding tasks by 50%,° but coding is still labor-intensive work."

Chat coding is one of the successors to code completions. Beginning in
2023, you could ask AI to examine and modify code or generate new code,
and it would emit an answer. It may seem quaint now, but you had to copy the
answer back into your IDE by hand. Over time, the tooling has become faster
and more fluid, but chat is still a back-and-forth interaction. Whenever we say
“chat,” we mean a conversation with AI unfolding one turn at a time. Many
first discovered this style of coding with the release of OpenATI’'s ChatGPT-40
in May 2024.

Agentic coding (where Al autonomously generates, refines, and manages
code) appeared in early 2025, and is a game-changing step up from chat. In
this workflow, coding agents act like real developers and actively solve prob-
lems using the tools and the environment. Agentic coding is increasingly pre-
dicted to replace a significant portion of coding by the end of 2026."

Agentic coding had been long conjectured, and many of us were first
exposed to it with the announcement from Cognition Al's Devin, an auton-
omous Al assistant designed to collaborate with humans on software devel-
opment tasks, in March 2024.* However, it wasn't until early 2025, with the
release of Claude Code from Anthropic, that agentic coding took the devel-
oper world by storm. Claude Code is a terminal application that you interact
with. You tell it what you want it to do, and it modifies files to implement. It
can even run tests and execute programs (including mini utilities it builds
for itself).

With agentic coding, instead of Al telling you what to type, the agent
makes the changes and uses the tools itself. This speeds the development life
cycle far more than you would expect.*

* Dr. Kalliamvakou and team measured two populations to write an HTTP server in JavaScript, one
with GitHub Copilot and the other without.

+ Mark Zuckerberg, founder and CEO of Meta, believes AI will write 50% of Meta’s code by 2026.”
Dario Amodei, Anthropic cofounder and CEO, believes it will be 100% by that time.

$ And it comes as a real shock the first time you use it, but you’ll never want to go back. After using
agentic coding assistants, you’ll become aware of the rare times Al is telling you to type something.
It almost feels like you're getting bossed around.

XXVi INTRODUCTION

If youre in development today, you've probably already been using Al
and coding assistants or have at least dabbled. The list of players in the space is
long and includes a spectrum of offerings from chat to limited coding agents
to extremely powerful autonomous coding agents (e.g., Aider, Augment Code,
Anthropics Claude Code, Bolt, Cline, Amazon Q, Cursor, GitHub Copilot,
Google’s Cloud Code, Jules, JetBrains’s Junie, Lovable, OpenAT’s Codex, Replit,
Roo Code, Sourcegraph’s Amp, Tabnine, and Windsurf).

These products make different choices about what to offer and where to
offer it. Some are still mostly completions or chat. Some have limited agents.
Some offer full-featured, semi-autonomous agentic coding assistants. Some
support running many agents together. Some coding assistants live in your
IDE, some are standalone IDEs themselves, and some are command-line
tools. Some support complex enterprise environments, while others are
geared more toward casual coders. Many coding assistants support multiple
models, but some align themselves to a single model family for performance,
reliability, or cost reasons.

So, in this mixed landscape of manual coding, chat coding, and agentic
coding, let’s examine what vibe coding is and where it fits.

For starters, you don’t have to “turn your brain off”—as many have
wrongly implied. You’'ll often be an active participant. Instead of writing the
code yourself, with vibe coding you're overseeing your Al assistant doing it
for you and critiquing its results.

We and many others have felt that, at times, you can be 10x more produc-
tive with vibe coding compared to manual coding. We know this sounds like
hype—we were skeptical too. In Chapter 1, we'll walk you through a detailed,
real-world example of how Gene wrote over 4,000 lines of production code in
just four days to help this book make its deadline.

And as Gene did early in the DevOps movement, were both working on
research to quantify the impacts of Al on development and on the conditions
required for Al to create value, jointly working with Google’s DORA research
group. We'll talk more about this in Part 4. But it’s clear that vibe coding will
be reshaping our work for decades to come.”

* Note: Throughout this book, we'll use terms like vibe coding and chat-oriented programming
(which was the original title for this book, pre-Karpathy) interchangeably—but always with the
understanding that we use appropriate levels of engineering discipline.

INTRODUCTION XXVii

So, What Are the Benefits of Vibe Coding?

Vibe coding lets you build things faster, be more ambitious about what you
can build, build things more autonomously, have more fun, and explore more
options. This is what we're calling FAAFO (or sometimes “the good FAAFO,
to contrast it with certain other kinds). Let’s look at each in turn.

First, vibe coding helps you write code faster. Tasks that once took
months or weeks can now be done in a day. And tasks that took days can now
be completed in hours. This acceleration comes not only from code genera-
tion but also from having AI help with debugging, testing, and documenta-
tion. Projects that have been sitting on the back burner for years can finally
see the light of day.

Second, vibe coding enables you to be more ambitious about what you
can build. It expands both ends of your project spectrum. It brings seem-
ingly impossible projects within reach, while simultaneously making small
tasks with marginal ROI easier to take on as well. This is due to the speed,
vast knowledge, and capabilities of AL. Vibe coding reshapes your approach
to development, eliminating many of the painful trade-offs that have always
constrained what gets built.

Third, vibe coding allows you to do work autonomously, often being
able to complete things that previously required multiple people or teams.
That’s a bigger deal than it might seem. Features that once demanded special-
ists from multiple disciplines can now be handled by a single non-specialist
developer with Al assistance. Being able to work autonomously or alone on
a task or project eliminates two expensive taxes: It reduces the coordination
costs (scheduling meetings, aligning priorities, waiting for availability) and
the communication challenges (where teammates cannot read each other’s
minds but must still create a shared goal and vision of what to build and
how). Working more autonomously or alone with Al significantly reduces or
removes these obstacles.

Fourth, vibe coding makes programming more fun. You're spared from
the least enjoyable parts of programming, such as debugging syntax errors,
wrestling with unfamiliar libraries, or switching test infrastructure for the nth
time. Instead, you can focus on solving user problems, building cool stuff, and
getting things done. Working with Al is also strangely addictive, an aspect we

XXViii INTRODUCTION

explore in the book. You might be tempted to discount the fun dimension,
but we think it's one of the most valuable, because it’s bringing people out of
retirement, attracting non-programmers, and encouraging leaders to take on
more programming work. That’s a deep societal change in the works.

Finally—and this is possibly the most important and transformative
dimension of all—vibe coding increases your ability to explore options,
either to find a solution or to mitigate risks. Instead of committing to a single
approach early on, you can rapidly prototype multiple ways to solve the prob-
lem and evaluate their trade-offs. We'll revisit this topic often, so that when
you recognize a problem where exploration will help, you’ll reflexively spin
up parallel investigations. FAAFO!

Why This Book Now

We're writing this book in 2025, a time of dizzying and relentless innovation.
Every week it feels like years of breakthroughs are happening at once: new
models, tools, and techniques. Each day seems to move faster than the last.

This book may seem like an ambitious goal in the face of exponential
change. After all, since 2020, the pace of Al-assisted programming has been
neck-snapping, moving swiftly from code completions to chat programming
to in-place editing with chat to coding agents to clusters of agents to badged
agent employees who will start showing up soon on Slack and Teams, ready
to help you.” But despite all the change, as programmers we often find our-
selves doing many of the same kinds of things we've always done: design,
task decomposition, verification, hardening, deploying, monitoring, merg-
ing, cleanups, etc. These skills remain relevant and important no matter who
is writing the code.

The truth is, were all figuring out this new landscape together. Early
adopters like us have made countless mistakes, discovered unexpected pit-
falls, and developed patterns that work reliably. We've written code with Al
that we're proud of, and we've also created messes we're embarrassed to admit
to. By sharing these hard-won insights, we hope to help you avoid the same
painful lessons while accelerating your journey toward mastering this new

paradigm.

INTRODUCTION XXiX

We genuinely believe that if you wait until the technology stabilizes,
you're at risk of being left behind. By learning these techniques now, you’ll
be positioned to adapt as the tools evolve, rather than scrambling to catch
up when your competitors have already mastered them. (And if AI can make
every developer more productive, organizations that adopt this technology
will pull ahead.)

Our goal in this book is to explain why vibe coding matters and how to
do it effectively—even at the team and enterprise level. We'll do that by focus-
ing on enduring principles and techniques that will be relevant regardless of
which AT models or tools you're using, and remain relevant as they become
smarter and more autonomous. Rather than offering soon-outdated tutorials
on features, we'll equip you with the mental models and approaches that will
serve you well through the continuing evolution of Al-assisted development.

Throughout this book, we'll use a professional kitchen as a metaphor for
vibe coding. Youre the head (or executive) chef of the kitchen, and AI rep-
resents the army of chefs who help bring your vision to life. (See Figure 0.1.)
Al serves as your sous chef (your second in command) who understands your
intentions, handles intricate preparations, and executes complex techniques
with precision under your guidance. But Al is also your army of station chefs
and cooks, specialists who help handle various technical details.

Executive Chef

\
|
Sous Chef

b 1 fm 1

Saucier Rotisseur Entremetier Poissonier Patissier Garde Manager

q(ﬂll _

Figure 0.1: The Kitchen Brigade

XXX INTRODUCTION

These chefs have memorized every cookbook ever written, work at light-
ning speed, and never sleep. They will, however, occasionally suggest using
ingredients that don't exist or insist on cooking techniques that make no
sense whatsoever. They can be like overly eager interns or junior engineers:
highly capable and expertly trained, but also possessing the potential to get
out of control and do a lot of damage. We've seen firsthand how vibe coding
can go wrong, silently deleting critical code and tests, ignoring instructions,
creating pathologically unreadable and untestable code, and other setbacks
or near misses. In the not-too-distant future, you’ll have ten or more of these
AT assistants working for you. As head chef, you, not the Al, are accountable
for the team’s outcomes.

It’s like playing a slot machine with infinite payout but also infinite loss
potential. Without the proper safeguards, you might watch your helpful Al
assistant transform into the Swedish Chef from the Muppets (or maybe Dr.
Frankenstein’s monster), leaving a trail of unintentional destruction in its
wake. But vibe coding is here to stay and has the potential to make more
positive impacts than negative, if you follow the guidelines in this book.

As AT gets smarter, your workflow with vibe coding will accelerate.
You'll accomplish increasingly ambitious things you never thought possi-
ble, with nobody but your AI kitchen staff assisting you. The principles we
present in this book will help you approach vibe coding with confidence,
security, and resilience. Our goal is to replace any apprehension with skill,
empowering you to direct AI systems to create smash-hit software, maybe
paving the path to becoming a celebrity chef managing an international

culinary empire.

Our Journeys to Vibe Coding

We both came to vibe coding from different paths—Steve as a veteran pro-
grammer with decades of experience at major tech companies, and Gene
after stepping away from hands-on coding for nearly two decades. Despite
our different backgrounds, we both came to the same conclusion: Al is trans-
forming how software is created, and the impact is far greater than most real-
ize. Here are our stories.

INTRODUCTION XXXI

Steve's Journey: From Skeptic to Believer
I've been in the industry for over thirty years, including almost twenty years
at Amazon and Google. Throughout my career, I've blogged about developer
productivity because I care about it deeply. Whether its telling people to
adopt platform-first architecture or to use safer programming languages or
to stop deprecating APIs so aggressively that developers on your platform
can't keep up.

Everyone wants to work faster. Our tools, as good as they are, always
hold us back. At Google, I took productivity head-on by leading the creation
of Kythe," a rich knowledge base for understanding source code. We com-
bined Kythe with Google Code Search, which became a dizzyingly powerful
developer productivity tool, one that had a 99% satisfaction rating at Google
when the next-best tool was in the mid 1980s. But unfortunately for the
world, it was internal, for Google’s use only.

The best code search tool outside Google is Sourcegraph, and years later,
in 2022, I became their Head of Engineering. It was a match that seemed
almost predestined. But by early 2024, I had started to worry that I could no
longer make good decisions as a technology leader unless I deeply under-
stood the radical technology change that was transpiring. I was leading, but
without coding, I was leading from the sidelines.

So, I stepped out of my role as a technology leader—where I've spent
much of my career—to put my boots back on the ground and find out what
was going on with Al I started coding again for the first time in years. And
I was far from alone. Many other engineering leaders at all levels, all the way
up to big-company C-suite executives, had been doing the same, because of
Al This delights me more than words can tell.

Moreover, another big group of what I think of as “Archmage”" coders are
coming out of retirement, swinging big. I think it’s clear why. AI in 2025 takes
care of most of the tedium of programming, making it fun again—and that’s
bringing back people who thought they had given up coding forever.

I had a pet project, Wyvern, a multiplayer online game I've tinkered on

since 1995. It has had over 250,000 players, over sixty volunteer content and

* Originally called “Grok” when I pitched the project in 2008 and was allowed to start work on it.

t In fantasy settings, an Archmage is the most powerful, highest-ranking wizard or mage.

XXXl INTRODUCTION

code contributors, and over four million lines of code and configuration, and
over thirty years of love.

Unfortunately, by 2022 the code base had become as immovable as
a mildly deceased elephant. That’s what happens to code bases over thirty
years. They gain weight until they can’t move. Achieving all our aspirations
and fixing all the problems had become too much work, and I put the game
in maintenance mode. Without consciously deciding to do so, after all these
years, I had given up coding—even as a hobby. And I thought that was the
end of it.

In early 2024, I had the privilege and pleasure of meeting Gene Kim, who
had reached out to invite me to speak at his top-tier Enterprise Technology
Leadership Summit in Las Vegas. During our first call, we realized we were
both looking at the same problems with different lenses, and we got excited,
since it looked like we'd uncovered something big. Our subsequent year of
vibe coding exploration, which included pair programming sessions, inter-
views with experts, long debates, and, ultimately, writing this book, has been
one of the most rewarding periods of my career.

AT brought us both back to coding. Coding is different now. It’s both
easier and harder. There was almost no literature or useful information about
vibe coding when we started in mid-2024; it didn't even have its name yet.
But we knew we wanted to learn how to do it right and share that knowledge
with others. That is how we embarked on the journey that led to this book.

In that time, I've had some life-changing experiences with Al, stories that
we'll share and explore in this book. I could not have predicted that I would
be coding again. Heck, I told my doctor I was done with coding...and then
three months later, laughingly had to tell him I was back, because Al is doing
all the hard stuff now.

For my whole career, all I've wanted is to build things faster—and now,
it's finally happening. In certain contexts, I'm often able to write thousands
of lines of high-quality, well-tested code per day—while also writing a book
eight hours a day. It’s at least an order of magnitude improvement over my
career average, and I'm doing it on the side. It's nuts. And that's why I can
barely sleep lately. I have too much to do. Everything is achievable now.

I'm completely addicted to this new way of coding, and I'm having the
time of my life.

INTRODUCTION XXXiii

Gene's Journey: Returning to Coding After
Seventeen Years
For over two decades, I've researched and written about high-performing
technology organizations. But my personal journey back to programming
demonstrates how GenAlI has changed my life by helping me become a better
developer than I ever dreamed I could be.

My journey with software began when I created a UNIX security tool
during an independent study project at Purdue University in 1992, which was
later commercialized as Tripwire. I was there for thirteen years as founder
and CTO, and I left shortly after the company filed for its IPO in 2010. My
first jobs after getting my graduate degree in computer science in 1995 were
writing software full-time, primarily C and C++. I would never claim I was
particularly good at coding, because I knew many people who were obviously
better at it than me.

In 1998, I transitioned into leadership roles. I wrote my last line of pro-
duction code for a long time. For a decade, I became “non-technical” I spent
far more time in Excel and PowerPoint than in an IDE,” occasionally writing
Perl and Ruby scripts for system administration.

I rediscovered the joy of programming in 2016 when Ilearned Clojure’—
but I admit I glossed over how difficult that journey was. The learning curve
was like a sheer cliff. For over a year, I climbed huge hurdles, either trying to
puzzle things out or desperately searching for answers on the internet.

The only way I got through it was sheer luck. Two experts were willing to
teach me (thank you, Dr. John Launchbury and Mike Nygard). Without them
and their generosity, I would have given up trying to code again. (I can only
imagine how much easier this learning curve would have been with AI as an
infinitely patient teacher and coach—explaining concepts, reviewing code,
and giving advice at every step.)

I finally met Steve Yegge in June 2024, whose work I've admired for over

a decade. Anyone who has studied DevOps or modularity knows his work.

* Andrew Flick is a senior director of marketing at Microsoft. Decades ago, he was a C# MVP, a
distinction that Microsoft gives to the top technology experts who share knowledge and contribute
to the community. After moving into marketing, he said he had become stuck on the “PWE tech
stack”—PowerPoint, Word, Excel.

+ A functional Lisp programming language that Steve loves.

XXXV INTRODUCTION

I can’t count how many times I've cited his famous rant about Google and
Amazon'® that landed him on the front page of The Wall Street Journal.'' It’s
one of the best accounts of how and why Amazon rearchitected their mono-
lith, liberating thousands of developers to independently develop, test, and
deploy software again.

After he wrote his “Death of the Junior Developer” post,'? Steve offered
to pair program with me to show me the power of vibe coding, where Al
helps write the code (which at the time he was calling CHOP or chat-oriented
programming).

What happened next astounded me. In just forty-seven minutes of pair
programming with Steve using chat coding, I built a working video excerpt-
ing tool that had been on my “someday” list for years. This was the kind of
project that kept getting pushed to “maybe next month”—not because these
projects were particularly difficult, but because the perceived benefit wasn't
high enough to warrant days (or weeks) of work.

Throughout the development of this book, I vibe coded tools to help in
the writing process. What started as a web application to reduce copying/
pasting and switching between various tools became a Google Docs Add-on
that I wrote in three hours, despite never having written one before. I rewrote
it a third time as a terminal application because the Add-on was too slow.

This tool served us well—it slung over 71 million tokens, accruing over
3,000 hours of LLM processing time doing draft generation and draft ranking.
Writing this, I was stunned to discover that I started this code base only thirty
days ago. During that time, I had created 397 commits and 35 branches, many
abandoned after discovering those experiments were dead ends. This is at
least 10x higher than I could do before vibe coding—and as Steve mentioned,
I did it on the side, while writing the book that it was supporting.

There is absolutely no way I could have done all of this without Al
Projects that would have taken weeks now take hours. AI helps me be faster
and far more ambitious in what I can build.

Most importantly, 'm having more fun and experiencing more joy pro-
gramming now than ever before. 'm proud of the things I've built. Projects
that I would have deferred eternally are now 100% within reach. And I don’t
have to be selective—I can do them all. The economics of what’s worth
building have shifted radically, and I'm tackling challenges I wouldn't have

dreamed of attempting before.

INTRODUCTION XXXV

From Our Journeys to Yours
Our personal stories reflect how vibe coding expands whats possible for
everyone who creates or works with software. Whether you're an industry
veteran like Steve, someone returning to coding after years away like Gene, or
someone who is “tech adjacent,” such as product managers or infrastructure
experts who work with developer teams, these tools and techniques trans-
form how you build software.

The coding revolution is still in its early days. The experience we've
gained—sometimes through trial and error, sometimes through wild suc-
cess—forms the foundation of this book. We hope it helps you navigate this
rapidly changing landscape and discover the same joy and productivity we've

found in this new way of creating software.

Who This Book Is For

This book is for any developer who is building things right now—no matter
whether you're building front-end applications in React and JavaScript, back-
end servers in Kotlin or Go, mobile applications for Android or iOS, data
transformations in Python or R, or writing and managing infrastructure in
Terraform or Kubernetes. Our book applies to all types of software develop-
ment, in all languages and frameworks.

You may be a junior engineer working on a feature, a senior engineer
shepherding a giant migration, or a senior architect tasked with figuring out
how to make a service more reliable. You may be a new boot camp grad who
wants to build up technical chops to impress your new employer. Whatever
your role, vibe coding can help you solve problems and build cool things you
never thought possible and have far more fun doing it.

You may be a CTO or technology executive who hasn't programmed in
decades. If so, vibe coding is for you too—it enables you to rediscover the joy
of coding.

Let’s face it. Most of us became programmers because we wanted to build
things, not to spend our days Googling syntax and copying/pasting from
Stack Overflow. The dirty secret of programming has always been that imple-
mentation details and busywork consume most of our time, leaving precious

little for creation and problem-solving. But with vibe coding, projects that

XXXVi INTRODUCTION

were “too difficult” or “not worth the effort” become doable in afternoons
rather than weeks. Kent Beck summed it up for a generation of programmers
when he said, “I feel young again!”"?

We've written this book with several audiences in mind. Let’s dive a little
deeper into some of those. Perhaps you’ll recognize yourself in one of these

descriptions:

Software Engineers, ML Engineers, AI Engineers: Youre spend-
ing way too much time learning new frameworks and fighting with
package managers instead of solving interesting problems. Vibe
coding lets you skip past those tedious details and focus on what
matters. You'll crank out great software of all shapes and sizes for
yourself and for others. And you’ll finally start up those ambitious
projects that kept sliding to the “maybe someday” list.

Senior and Principal Engineers: You rose to your position by see-
ing the dangers no one else could and steering projects to success.
Vibe coding now turns those insights into superpowers. It frees you
from rote coding so you can orchestrate both human and AT assis-
tants, while focusing on the gnarly architectural puzzles. We'll have
tips for you, regardless of whether youre a maverick solo coder or
a principal engineer in big tech or enterprise. The result of adopt-
ing vibe coding will be a dramatic expansion of your strategic reach,
letting you shape multiple initiatives simultaneously instead of fire-
fighting one at a time.

Technology Leaders: Remember when you built stuff yourself
instead of being in meetings about building stuft? Those were good
times. Vibe coding brings that back. You can prototype and begin
hardening your ideas yourself, right now. You can build stuff while
you talk about it in meetings. It’s a bit self-indulgent, to be sure, but
why not have a little fun. Practicing it will also help you make better
strategic decisions, because you’ll have personally experienced how
this technology transforms software development and how it opens
up a new horizon of possibilities.

INTRODUCTION XXX Vil

Returning to Coding: Some of you have become “non-technical,’
as your career path led you away from hands-on development. But
you’re not really non-technical, are you? It’s just that the environment
setup requirements over the years keep getting ridiculously harder,
so you stopped coding. It’s not just you—modern development is
overwhelming to everyone. Thankfully, vibe coding lets you skip
countless hours of tutorials and infrastructure setup. AI can handle
the technical details that would have been frustrating roadblocks,
including setting up a developer environment. And let’s not forget,
it can also write the code. You can build useful things again without
getting buried in implementation complexities.

Product Owners and UX: You have a bit of a programming back-
ground, and you know how software works at a high level. You've
had this killer idea for months, a minor front-end feature, but engi-
neering keeps pushing it back because theyre “at capacity” How
about if you could do it yourself? Vibe coding can help you imple-
ment a real feature or create a working prototype of a big idea in
hours to days. It can completely reshape the conversation when you
demo something that the engineers told you was going to be “too
difficult to build”

Infrastructure Engineers (DBAs, SREs, Cloud, Build): For too
long, the industry has maintained an artificial divide between “real
developers” and “infrastructure folks” Vibe coding obliterates that
distinction. You can create real applications, like any developer,
without needing to master multiple new programming languages or
frameworks. You'll also be able to create world-class tools to solve
your own problems: performance analyzers, migration utilities, scal-

ing automation, you name it.

“Level 99 Heroes Logging Back In”: You were one of the most
badass programmers on the planet. And then one day, after npm
screwed you one too many times (I mean, what even is npm?) you
finally threw in the towel. This wasn’t worth it. Let the kids do this

XXXVili INTRODUCTION

crap. But look out, world, a whole generation of retired program-
mers is on their way back with a vengeance to show the world what
they’re capable of.

Whatever your background, the techniques we share in this book will
transform how you work with code, making programming more accessible,
more productive, and—most importantly—more fun. You bring the prob-
lems, and Al can help you with the rest.

What We Assume You Already Know
We wrote this book assuming you have some experience in programming,
whether it’s been a few months, years, or decades since you last wrote a line
of code. We also assume you’re familiar with concepts like version control
and have a general understanding of terms like commits, code reviews, unit
testing, code linting, compiler errors, and so forth.

While this book is intended for people with some coding experience, we
believe vibe coding will eventually make programming more accessible for
everyone. If you aren’t familiar with all of these topics, don't fret. Although we
do dive into some technical topics in this book, we're hoping you’ll still find
the book readable regardless of your level of experience.

We also include a glossary at the end of the book for terms that might
be a bit unfamiliar, helping you brush up on essential jargon before whip-
ping up your next coding masterpiece. (We're also hoping to create more
beginner-friendly resources in potential follow-up guides, so everyone can
eventually step into the kitchen of coding.)

Readers Who Also Might Be Interested
We've made the case that vibe coding is for professional developers and lead-
ers. But, we also see it becoming increasingly accessible to the people who
work around developers or aspire to become one. Steve recently shared with
Gene how his VP of finance was on the top of the Sourcegraph Amp cod-
ing-agent leaderboard for most lines of code written in one week—earning
the admiration of developers across the organization. We hope that the fol-

lowing audiences will also find value in this book:

INTRODUCTION XXXIX

Students: Youre entering the industry at a time that is simultane-
ously scary but also ideal. The job market may be uncertain, but one
thing is certain: All developer jobs are now Al jobs. You'll be learn-
ing how to partner with AI to create software, rather than memo-
rizing syntax, APIs, and framework intricacies. Master vibe coding
now, and you'll get the jump on experienced developers who haven’t
ramped up yet. You'll complete assignments that will impress senior
engineers and build a portfolio of projects that will wow anyone who
interviews you. And you'll begin building up vital skills required for
understanding the strengths and limitations of AI, which will put
you ahead of the pack.

Tech Adjacent Roles (Program Managers, Analysts, QA, Cus-
tomer Service, Sales, Finance, HR, Marketing): You've proba-
bly got several processes that could be automated if only you had
a developer to help. With vibe coding, you can do it yourself. No
more waiting in the priority queue behind “features that customers
pay for” By taking matters into your own hands, you can finally
streamline those organizational processes that never get any love.
The organization will end up thanking you. (And the engineering
organization will be both impressed and relieved that they didn’t
have to do it.)

We're sure we've missed some audiences. If you're not sure whether vibe
coding is for you, turn to any random page in this book and skim it. If you feel

that page speaks to you, then you're one of us. Welcome!

Beyond the Hype

Okay, you've read our stories, but you're still skeptical. Fair enough. Maybe
your most senior engineers are giving PowerPoint presentations to the exec-
utives, complete with fancy graphs, to show how LLMs are not good at cod-

ing. We saw this happen in real life. Or maybe theyre sending screenshots of

x| INTRODUCTION

“lousy LLM coding results” to people to try to slow the Al train down. (And
maybe you're one of these people.)

Steve is not someone who yields readily to hype. Most of his favorite tech
is from the mid-to-late 1990s. His first five years professionally were spent
programming in the Intel 8086 assembly language. He coded in Java without
an IDE until 2011 and refused to learn Git until 2021. Steve is a bona fide late
adopter.

Despite his technological conservatism, Steve is also a seasoned, possi-
bly overcooked engineer, having written over a million lines of production
code across more than thirty-five years in the industry, including at Amazon,
Google, Grab, and Sourcegraph. You don't survive that long by chasing every
shiny new framework that pops up on Hacker News. New technologies often
have a lot of bugs, and Steve, who has seen many frameworks come and go,
prefers to spend his time solving user problems rather than debugging new
tech.

Gene built his reputation on years of rigorous, data-driven research.
For the State of DevOps Reports, he and his colleagues surveyed over 36,000
technical professionals over six years to figure out what works in software
delivery. That resulted in the famous “DORA metrics” of deployment fre-
quency, deployment lead time, change success rate, and mean time to repair
(MTTR). It helped bring CI/CD (continuous integration and delivery)
mainstream. Gene eyes everything he encounters with professional rigor
and a desire to measure and confirm any claims, especially anything called
a “best practice”

We were both initially skeptical about using GenAlI for coding. We don’t
blame you for being skeptical one bit. But as you've already read, we've both
had numerous life-changing moments in the years post-ChatGPT. Later in
the book, we'll describe some of the scientific literature on Al and developer-
productivity, as well as the ambitious research were undertaking to substan-
tiate these claims.

Coding is changing beneath our feet. The skills that made developers
valuable yesterday are not the same ones that will matter tomorrow. And we
both believe one thing with absolute certainty: If you don’t adapt to this shift,
you may become irrelevant. And none of us wants that.

INTRODUCTION xli

How to Read This Book

We've organized this book to accommodate different entry points, interests,
and levels of experience with Al-assisted programming. Think of the four
parts as independent but interlocking modules. Whether youre beginning
your vibe coding journey or already working with AI tools daily, you can
choose your own adventure, depending on the problems you're facing today.

Part 1 is the “why” of vibe coding. If you’re intrigued but not yet sold
on Al-assisted development, start here. We lay out the FAAFO ben-
efits—fast, ambitious, autonomous, fun, optionality—through brief
history lessons, personal war stories, case studies, and data points.
Skeptics will find answers to the classic “show me the value” chal-
lenge, and newcomers will get the historical context that explains
why this shift is unavoidable.

If youre already sold on vibe coding but still interested in the broader
context, you may still be interested in the sections on why the AI
revolution is different from previous decades of breakthroughs in
development productivity and how AI impacts go beyond devel-

opment.

Part 2 is the conceptual framework of how AI works. We move
from high-level enthusiasm to a crash course in understanding the
AT cognition of your new sous chefs, targeted at working develop-
ers. We explain context windows, task decomposition, and how vibe
coding is conversational—a stark contrast to the rigor of prompt
engineering. Moreover, there is absolutely no mention of matrix
multiplication, tensors, or any math in this book, for that matter.
This is for working developers who want to solve their own prob-

lems.

We discuss the ways Al can astound you one minute and frustrate
you the next, so you can keep everything in perspective and cooper-

xlii

INTRODUCTION

ate with these tools effectively. If you've ever wondered why Al nails
a tricky refactor one minute and then trashes your unit test the next,
we teach you why. We catalog the failure modes, show how to recog-
nize them, and—most importantly—outline the conceptual guard-
rails that keep you coding safely. Think of this part as the kernel of

education needed to prevent most common Al headaches.

Even if you've done some vibe coding before, you may find the
deeper insights into AT’s inner workings to be a helpful reality check.
Mastering these concepts prevents the false starts and confusion
that sometimes plague Al-assisted projects. You'll also see how the
FAAFO mindset should change how you work.

Part 3 presents the tactics of your daily vibe coding. Here we present
the practical and concrete practices for your inner (seconds), middle
(hours), and outer (days) development loops. For each of the risks
and bad outcomes we described in the previous parts, we describe
how you can prevent those problems, detect Al slips or errors, and
how to correct and recover.

We present guidance and lessons learned from our own experiences,
as well as the experiences of others. We describe scripts we still run,
reminders we give ourselves, and habits that have stuck after hun-

dreds of coding sessions.

Part 4 is all about going big. Vibe coding changes more than how
many keystrokes we're no longer typing. It also reshapes how we
developers spend our time, the processes we become responsible for,
team dynamics, and our architectural needs.

This final part is for tech leads, managers, and anyone newly respon-
sible for coordinating fleets of human and AI contributors. You'll
find guidance on how to introduce vibe coding into teams, how to
set useful cultural norms that encourage learning, when and how to
create organization-wide standards, the implications of AI sous chefs

INTRODUCTION xliii

working alongside human developers, hints on how you might mea-

sure productivity in an Al world, ideas on interviewing, and more.

If your calendar is packed and you need immediate leadership
insights on how vibe coding and FAAFO affect work, feel free to
jump straight here and then loop back to earlier parts when you
want hands-on tactics or a refresher on the fundamentals. We also
provide enterprise case studies of how vibe coding has affected real
organizations building real systems.

Dive into the sections most useful to you, and revisit others later as your
proficiency and curiosity evolve. Wherever you start, you'll find consistent
emphasis on modularity, fast feedback loops, and maintaining high standards
and rigorous judgment—the principles that make vibe coding transformative
and rewarding.

PART 1
WHY VIBE CODE

2 PART 1: Why Vibe Code

elcome to Part 1, where we make the case that vibe coding is the most
Wsigniﬁcant shift in software development since, well, maybe ever. If
you're curious about what all the AT and development buzz is about, or per-
haps a little skeptical, you've come to the right place.

Think of this first section as laying the foundation for your new life as
head chef in an Al-powered kitchen. We'll explore the seismic shifts happen-
ing right now, look back at decades of tech revolutions to see why this one
is different, and introduce you to the FAAFO framework—fast, ambitious,
autonomous, fun, and optionality—the five superpowers vibe coding bestows
upon you.

We'll share our own “Aha!” moments, cautionary tales from the trenches,
and inspiring stories of real-world developers already riding this wave. By the
end of Part 1, you'll understand why we believe vibe coding is a whole new
way of thinking, building, and succeeding in the world of software.

Here’s a taste of what we present in Part 1:

Chapter 1: The Future Is Here (The Major Shift in Programming
That Is Happening Right Now): See how science fiction is now your
potential daily reality. We dive into how conversational Al is trans-
forming the act of programming, allowing you to turn ideas into
working software almost as fast as you can articulate them. We'll
explore the emerging debate around vibe coding (from “No vibe
coding!” to “10x speedups!”), and explain why, as a developer, you're
evolving from a line cook into the head chef of your own Al-assisted
kitchen.

Chapter 2: Programming: No Winners, Only Survivors: We take
a whirlwind tour through the history of programming advance-
ments—from assembly to high-level languages, from punch cards
to sophisticated IDEs, and from dusty library shelves to the instant
knowledge of the internet. Yet, despite these leaps, we'll explore why
developers often still feel mired in complexity (hello, JavaScript tool-
chain). This chapter sets the stage for understanding why Al-assisted
coding is bigger than step-function improvement and is more like
the exponential graphics programming revolution over the decades.

PART 1: Why Vibe Code

Chapter 3: The Value Vibe Coding Brings: This is where we unpack
the five dimensions of value that vibe coding unlocks: fast, ambi-
tious, autonomous, fun, and optionality (FAAFO). We'll show you
how AI is more than a speedup; it empowers you to tackle projects
you once deemed impossible, accomplish solo feats that previously
required teams, rediscover the sheer joy of coding, and explore mul-
tiple solutions before committing.

Chapter 4: The Dark Side: When Vibe Coding Goes Horribly
Wrong: With any technology revolution, such as electricity, comes
the potential for some spectacular new dangers. We don’t want to
sugarcoat this. Vibe coding can be like a chainsaw. It can make you
wildly more productive, but it can be dangerous. We'll share our les-
sons learned and how old practices and habits need to be modified to
use the fantastic new technology. These cautionary tales aren’t meant
to scare you off, but to highlight why discipline, vigilance, and the
“head chef” mindset are crucial as you unleash your gifted but occa-

sionally erratic Al sous chef in your kitchen.

Chapter 5: Al Is Changing All Knowledge Work: Step back with
us for a moment to see the bigger picture: Al is revolutionizing cod-
ing, and beyond that, it’s beginning to reshape all knowledge work.
We'll look at studies suggesting big impacts on high-wage jobs (yes,
including ours) and discuss how, historically, making tasks easier has
increased demand for skilled practitioners. Far from being the end
of developer jobs, we argue this will lead to an explosion of new roles
and opportunities, transforming the global economy on a scale not
seen since the Industrial Revolution.

Chapter 6: Four Case Studies in Vibe Coding: Theory is great,
but seeing is believing. We bring vibe coding to life with four case
studies. You'll meet Luke Burton, an ex-Apple engineer, tackling a
complex CNC firmware project as a hobbyist. You’'ll join our friend
Christine Hudson as she returns to coding after nearly two decades,
discovering the joy and power of AI assistance firsthand. And we’ll

4 PART 1: Why Vibe Code

go inside Adidas and Booking.com to see how large enterprises are
leveraging Al to help developers be productive and happier.

Chapter 7: What Skills to Learn: As your role shifts to head chef,
you’ll need to cultivate new skills. We focus on three essentials: cre-
ating fast and frequent feedback loops (because speed without con-
trol is chaos), embracing modularity (to enable parallel work and
contain complexity), and, most importantly, reigniting your passion
for learning and mastering your craft.

We've written Part 1 to be an eye-opener, a context-setter, and to make a
compelling argument for why embracing vibe coding is a non-optional but
also exciting development. As we mentioned, if you're already sold on vibe
coding, you may want to skim this Part or skip to Part 2, where we start teach-
ing you about the important internals of how your new Al sous chefs work.

CHAPTER 1

THE FUTURE IS HERE (THE MAJOR
SHIFT IN PROGRAMMING THAT IS
HAPPENING RIGHT NOW)

Since the 1960s, sci-fi like Star Trek has shown us a future where people
casually talk with computers—they speak as if to a person, and the com-
puter understands and executes their wishes. We never thought wed see this
kind of technology in our lifetimes.

Well, here we are. The arrival of ChatGPT, code Al assistants, and Al
coding agents have changed how we all interact with computers, but espe-
cially for developers. With an LLM, we can have sophisticated, intellectual
discussions, debate approaches, and solve complex problems through natural
conversation. What used to be pure sci-fi is now everyday reality.

Steve spent decades being a tech skeptic and a late adopter, and Gene
spent decades researching questionable claims of practices that supposedly
improved software productivity. But the evidence changed our minds—
evidence we'll share with you throughout this chapter.

Chat and agentic programming use LLMs to gain seemingly extraor-
dinary capabilities. We're approaching a world where all you have to do is
explain what you want, and your words become working software almost
instantly. When something’s not right, you don’t spend hours debugging—
you just describe what needs to change. Or the AI may identify and fix things
for you automatically. There are times when your ideas spring to life, turning
into working software almost as fast as you can articulate them.

Your Al buddy can help you decompose your grand vision into action-
able tasks. For some of these tasks, you delegate to an agent that performs

them independently. Some tasks you may choose to work by yourself, collab-

6 PART 1: Why Vibe Code

orating with AI through design and implementation. Al can help you every
step of the way, as an implementer, advisor, fellow designer and architect,
code reviewer, and pair programmer—if you let it.

When cocreating with your Al partner, it feels as though ideas shoot like
lightning from your brain directly into the computer, magically transforming
into running code. Like most people, you'll gasp with disbelief or delight at
least once when AI does something far beyond what you expected, or when
it solves a problem you've been struggling with for hours or days. And you
can implement many more ideas, not just your best ones, because software
creation is so fast now.

AT does far more than generate code. It’s a true partner—one you can
talk to like a person—that helps you brainstorm ideas, evaluate options, man-
age projects and teams, navigate challenges, and develop strategies to achieve
your biggest goals and aspirations.

The Rise of Vibe Coding

As we mentioned in the Introduction, Dr. Andrej Karpathy stands among the
most eminent Al researchers of our time. He helped create ChatGPT while
at OpenAl and revolutionized computer vision systems for autonomous
vehicles as director of Al at Tesla. His contributions to neural networks and
machine learning have shaped our modern Al landscape.

In February 2025, Karpathy made an observation that perfectly captured
the moment were experiencing in software development: “There’s a new kind
of coding I call ‘vibe coding, where you fully give in to the vibes, embrace
exponentials, and forget that the code even exists,” he noted in a widely
shared tweet that went viral across the tech world.!

He continued:

I just talk...I barely even touch the keyboard. I ask for the dumbest
things like ‘decrease the padding on the sidebar by half” because I'm
too lazy to find it. I “Accept All” always, I don’t read the diffs anymore.
When I get error messages, I just copy paste them in with no comment,
usually that fixes it.>

CHAPTER 1: The Future Is Here 7

Whats startling in Karpathys admission is, “When the code grows
beyond my usual comprehension, I'd have to really read through it for a
while” Rather than diving deep into understanding, he troubleshoots by
“asking for random changes until [bugs] go away” His process distills to, “I
just see stuff, say stuff, run stuff, and copy paste stuft, and it mostly works”—a
workflow that prioritizes results over traditional understanding.’

Almost overnight, the concept of vibe coding exploded, making its way
into real-world developer culture. People across Twitter (X) embraced it as
either a laughable meme or a legitimate practice. It was clear vibe coding was
going viral, but was it going to become an established technique?

Within a few months, it had already become commonplace for real-
world use. Garry Tan, CEO of Y Combinator, Silicon Valley’s most famous
startup incubator, said, “For 25% of the Winter 2025 batch, 95% of lines of
code are LLM generated...The age of vibe coding is here™

Boris Cherny, technical staff at Anthropic and technical lead for Claude
Code, reports that he feels he is 2x as productive using coding agents,® while
some others report feeling 10x more productive.

This increasing use of Al for development is not restricted to frontier Al
labs and startups. Tobi Lutke, CEO of Shopify, the second-largest Canadian
publicly traded company with $8.8 billion in annual revenue in 2024 and
over four thousand developers,” said in an internal memo: “Before asking for
more headcount and resources, teams must demonstrate why they cannot get
what they want done using AI”®

The big question is whether companies using vibe coding are setting
themselves up for problems down the road.

The Vibe Coding Debate

The AI world moves fast, but the vibe coding landscape and debate are mov-
ing even faster. Two sides of the discussion are emerging. On one side, we
have people like Brendan Humphreys, the CTO of Canva, who has expressed
serious concerns about the unrestricted use of Al-generated code in produc-
tion environments. “No, you won't be vibe coding your way to production”
He argues that vibe coding—which he defines as when engineers prompt Al to

8 PART 1: Why Vibe Code

generate code with minimal human oversight—is incompatible with creating
reliable, maintainable production software.

Similarly, Jessie Young, principal engineer at GitLab, said, “No vibe cod-
ing while 'm on call!”® When expressing her concern about vibe coding
engineers who don’t understand the code they’re committing, and being the
one who has to debug it in production at 2 a.m.

On the opposite end, we find people like Sergey Brin, Google cofounder,
who has embraced a more radical approach. Brin has enthusiastically encour-
aged Google engineers to use Al tools aggressively, focusing less on coding
details and more on product direction."

As Brin suggested, “The role of the engineer will change more to being the
product engineer, where they decide what the product should do,” highlight-
ing a fundamental shift from writing code to directing AI. Others embrace a
new approach to debugging, where “instead of fixing code, you regenerate it”
until it works."

Despite their philosophical differences, these technology leaders agree on
several important points. Both acknowledge that AI coding tools are reshap-
ing the foundations of software development. Neither disputes that these
tools can boost developer productivity. Both recognize that Al capabilities
are advancing rapidly and that approaches must evolve with them. Karpathy,
Humphreys, and Brin are all asking the same question: To what degree can

you turn your brain off when you use AI to help you create software?

Vibe Coding for Grown-Ups

While YouTube influencers grab headlines by generating World War II flight
simulators in a single prompt, were focused on bringing vibe coding into
professional software engineering. This requires applying disciplined engi-
neering practices while still letting AI handle the tedious implementation
details. In other words, vibe coding for grown-ups.

That means all the grown-up stuft that you may already be responsible
for: security reviews, test coverage, blast radius management, and operational
excellence. The difference is that youre doing this at speeds none of us have
ever experienced before—you know, creating thousands (potentially tens of

thousands) of lines of code per day.

CHAPTER 1: The Future Is Here 9

When working on authentication for a customer-facing application,
you'll still scrutinize every line of security code and build comprehensive test
suites—but you can do it much faster. For legacy systems that nobody under-
stands anymore, you might first use Al to analyze and document the code
base, build tests to capture existing behavior, and only then begin making
changes with confidence."

This is about taking your hard-won engineering discipline and apply-
ing it with greater intensity. Youre the head chef, and your role is setting
standards, tasting rigorously, and ensuring every dish meets your standards,
because, as the kitchen speeds up, the potential frequency and magnitude of
mistakes goes way up too.

As Dr. Karpathy points out, these Al tools are improving exponentially.
Theyre currently the least capable they’ll ever be. With that in mind, we
believe it’s time to move beyond painstakingly crafting every line of code by
hand and fully embrace this new approach to building software.

However, here’s one thing we genuinely believe: No one should be writ-
ing code by hand anymore if they don’t have to.

Substantiating the 10x Claim:
Gene's Real-Life Example

Steve is an experienced professional engineer, having written over one mil-
lion lines of production code in his career. Is it only people like him who can
get the 10x gains and generate over a thousand lines of working code per day?
How about a mediocre developer like me?

To explain why we believe the answer is decisively yes, I wanted to share
this story. We were in the final process of editing this book, with less than
seventy-two hours before we had to turn in our final manuscript to our edi-
tors. After that point, we'd have little or no ability to change the book. Steve
was already nervous about whether we'd make our deadline. But despite that,

* Here's a great example of modifying legacy code: Microsoft researcher Jonathan Larson demon-
strated using LLMs and GraphRAG to modify the 1993 id Software DOOM source code to enable
player jumping. This was a nontrivial feat because the original engine does not have a true 3D inter-
nal model and was built on assumptions that the player was always grounded. The change modified
many tightly coupled subsystems, including physics, player state, input handling, and level logic."*

10 PART 1: Why Vibe Code

I made what may seem like an insane decision: Invest precious time to build
a productivity tool instead of reviewing, editing, and writing. Why? Because
I was getting so frustrated at how tedious and error-prone it was copying and
pasting portions of our manuscript into an LLM.

To make our book the best it could be, we were copying huge chunks of
the manuscript into an LLM to do things like hunt for repeated ideas, ensure
that every section was novel and new, get opinions on the optimal ordering
of the Part 3 practices, and create good signposting (e.g., introductions, con-
clusions, etc.). But the breaking point for me was extracting all the chapter
introductions to compare them to each other. My hands and wrists already
hurt from all the typing and trackpad operations, and I couldn’t imagine
doing that by hand as well. There had to be a better way.

For months, I wanted to query the book manuscript like a SQL database
and retrieve subsections with a single command. With a tool like that, I'd be
able to magically extract text directly into my clipboard and ask: “Give me
the outline of the whole book” “How about just this chapter?” “Copy the text
from Parts 1 and 2 “How about just Chapter 4?” “How about just the first
three sections?”

At 4 p.m. on the Saturday before our deadline, after we took a break from
one of our marathon editing sessions, I opened up a Markdown parser I had
written in 2022 to do book modification visualizations. Maybe it could serve
as a good starting point for this “Markdown as database” tool. The trouble
was, I couldn’t remember how any of it worked. So, I used Claude Code to
help me.

I typed out, “I think there’s code in here that parses .md files and turns it
into a hierarchical tree. 'm trying to build something that can take that tree
and perform operations like ‘list all chapters’ or “for a given chapter, list all
sections or get all text in the children’” Fifty-two minutes later, I had all of
those functions mostly working.

Over the next four days, during breaks from working with Steve to
finish the book, I wrote 4,176 lines of Clojure code across 52 files (2,331
of production code and 1,845 lines of tests), along with over 3,000 lines of
documentation and reports. To ensure confidence that the text extraction
worked perfectly and didn't introduce errors, the test suite had increased by

nearly 6x.

CHAPTER 1: The Future Is Here n

My years-long aspiration of turning a Markdown file into a queryable
database had been achieved, and, more importantly, I was no longer selecting
text in Google Docs by hand. It was truly FAAFO.

Analyzing the complete Git history in this repo by using vibe cod-
ing, I was comfortably 10x faster than I could have ever been without Al
Specifically, I was 16x faster than my historical average and 5x faster than my
previous best day. And I did it in the middle of our marathon writing ses-
sions: during breaks, after we adjourned for the day, while I brushed my teeth,
etc. The whole endeavor required 251 prompts across 35 commits.

This investment paid off. Slinging book text around previously took
minutes and was prone to errors, but now it happened with a keystroke, all
because the book manuscript could be queried like a database. 'm proud that
I built this tool, and I truly believe it helped make this book better.

Here’s a summary of things I built:

o Instant content extraction without manual scrolling through
hundreds of pages across multiple Google Docs using array
slicing syntax (¢ la Ruby, Perl): “Parts [1...3]” “Parts [1,3,4],
“Chapter [1,20],” or “Sections 2 and 3[1...3]”

o Generate the complete outline of any set of parts, chapters, or
sections.

o Chapter intro/conclusion extraction: Get any of the text
above, but exclude the introductory and concluding sections,
so that we can balance them.

I haven't even mentioned the crazy race condition I stumbled into, and
how Claude Code created a reproducible test case by running a hundred
threads in parallel and generating a workaround."

This was a record amount of work for me in such a short time. Afterward,
Steve asked me a question that left me dumbstruck: “Did it feel like writing
four thousand lines of code?” I told him I didn't even count the lines of code

* You can read a longer description of this whole adventure in the blog post “The Last 80 Hours Of
Editing the “Vibe Coding’ Book (and Vibe Coding 4,176 Lines of Code On The Side) — Part 1: The
Stats and All The Prompts” at ITRevolution.com.

12 PART 1: Why Vibe Code

until I wrote this story. It just felt like I was building the capabilities I needed
at a magical pace. Code just flowed like water.

You'll hear us make the 10x productivity gain claim in the book. This
story isn’t the only substantiation we have; we share other stories and research
later on. We believe we can stand behind this number with confidence.

You're Head Chef, Not a Line Cook

In the old days as a solitary developer, implementing a simple visualization
dashboard could require any number of tedious steps: hours researching
charting libraries, reading all the documentation, figuring out the configu-
ration options, parsing data files, handling functions to throw out bad data,
and implementing user interactions. Then you slowly type out code, perhaps
copying and pasting code you find on the internet. When stuff goes wrong,
you debug by looking at log statements and maybe stepping through with a
debugger.

Yuck! How did we do this for so long?

With vibe coding, you say: “Here’s some input data. Create a chart with
years on the x-axis” Within seconds, you’ll see your chart. Then you guide
your Al assistant toward what you want (e.g., “Make the y-axis logarithmic”
“Use a stacked bar chart instead”).

In this new world, youre the head chef of a world-class kitchen. As such,
you don’t personally dice every vegetable, sear every steak, swish away every
cockroach, or plate every dish. You have sous chefs and line chefs for that.
But when a meal leaves the kitchen, it's your reputation on the line and your
Michelin stars at stake. When the customer sends back the fish because it’s
overdone or the sauce is broken, you can’t blame your sous chef.

The same principle applies when coding with AI: Delegation of imple-
mentation doesn't mean delegation of responsibility. Your users, colleagues,
and leadership don't (or shouldn't) care which parts were written by Al—they
rightfully expect you to stand behind every line of code. When something
breaks in production at 2 a.m., no one wants to hear, “Well, AI wrote that
part” You own the final result, period. This is both liberating and challenging.
When vibe coding, you'll:

CHAPTER 1: The Future Is Here 13

o Spend more time thinking about what you want to build and
less time on implementation details. (Which is nice.)

 Develop a critical eye for evaluating Al-generated solutions,
rather than crafting every line yourself. (Some may miss the
coding part, though.)

 Learn to communicate your requirements to a non-human
collaborator. (This can have a real learning curve.)

o Take responsibility for the final product while delegating
much of the implementation work. (This should already be a
familiar, perhaps unnerving feeling to many of you who have
been in technical leadership roles. You'll find it’s not so differ-
ent with AT helpers.)

The Broader Responsibilities of a Head Chef
Coding is to home cooking what vibe coding is to running a professional
kitchen. When you don your head chef’s hat and start using coding agents,
like us, you'll notice a bunch of strange things start happening.

For over a decade, we (like most developers) have used version control
systems like a glorified save button—save, undo, restore, maybe occasionally
branching now and then. We mostly wrote commit messages like “fix some-
thing dumb” and pushed straight to the trunk of the code base and would
rewind to an older revision if we messed something up.

But since we've started using coding agents, we regularly find ourselves
smack in the middle of operations that we’ve previously only seen handled
by release engineers and version control virtuosos. Since we both use Git,
we find ourselves cherry-picking commits, merging selective changes across
three or more branches, and doing complex rebases. Plus, more—way more.

We're using Git features that we barely know the names of, and were
doing it a lot. But it’s not about Git. This would be happening no matter what
version control system we used. We started scratching our heads over why
we were doing all this complicated Git stuft every day. Was it nothing but a
distraction? We soon realized that it was yet more evidence that vibe coding
turns an individual into a team. We had both been using team-related Git
commands that you usually only use in multi-contributor projects.

14 PART 1: Why Vibe Code

It’s one thing to think of your kitchen of sous chefs as individual helpers.
But no chef is an island: Teams require coordination in ways that individuals
don’t. With vibe coding, you'll be responsible for:

o Managing parallel development: Running multiple agents
working on different tasks simultaneously, with time spans
ranging from minutes to weeks—the opposite of the tradi-
tional “single-threaded” developer approach.

» Handling complex integration: Merging work from different
branches and resolving the inevitable conflicts that arise when
multiple agents modify related code.

o Setting standards: Defining explicit coding standards and
processes so your Al team operates consistently and efficiently.

o Creating onboarding procedures: Setting up workspaces,
access, and instructions for each new Al assistant you bring
into your system.

o Coordinating larger projects: Taking on more ambitious
work than ever before, requiring you to think like a project
manager.

This team stuff is all new for most solo developers, and doing it with AI
agents is new for everyone. But make no mistake: There is no opt-out for this
“promotion” to head chef—it’s inherent to vibe coding, which is how all soft-
ware will soon be developed.

For better or worse, from now on, anyone developing software who goes
head-to-head against a well-managed team of Al agents without a team of
their own will nearly always lose. No matter how good you are at football,
if you take on an NFL team alone, you will lose (unless perhaps it’s Detroit).
And this competitive mismatch (outside Michigan) will drive everyone,
including you, to adopt teams of Al agents.

That makes you a team leader. Unless you still prefer to write code by
hand (like a savage), youre now officially promoted to head chef. We'll talk a
lot more about the importance of coordination in Part 4, both for individuals
and for leaders.

CHAPTER 1: The Future Is Here 15

You may still think AT only speeds up your solo work. That was true in
2024, but with the emergence of coding agents, a broader picture is beginning
to unfold. Up until now, using AT has accelerated you. But now your role is to
accelerate them.

So, get ready, head chefs. We're entering a brand-new world, for sure.

Conclusion

Whether you choose to embrace it or fight it, every modern software project
could turn into a conversation between a human and an army of Al agents
that can turn vision into reality at blistering speed.

We believe this changes the shape of your job. Youre no longer typing
lines of JavaScript. The job is now deciding what delicious dish you want your
team to prepare, tasting the results early and often, and orchestrating your
automated helpers so nothing leaves your kitchen that you’re not proud of.
Do that well and you unlock the full FAAFO menu: You'll ship faster, chase
more ambitious ideas, operate more autonomously when you need to, redis-
cover the fun that got you into coding in the first place, and keep optionality
on the table for every design decision.

None of that happens by accident. A head chef writes down the house
rules, checks every plate before it hits the dining room, and sends the occa-
sional dish back when it sucks. Likewise, you’ll need clear standards, ruth-
less validation loops, and the courage to regenerate code instead of patching
lukewarm leftovers. This is vibe coding for grown-ups—equal parts creativity
and discipline.

In the next chapter, we'll explore why these AI breakthroughs represent
something genuinely novel and badly needed by developers, despite the last
seventy years of advances in technology.

CHAPTER 2

PROGRAMMING: NO WINNERS,
ONLY SURVIVORS

ibe coding fundamentally changes how we create software—and in a way
Vthat is different from all the changes that have come before. Over seven
decades, how humans write software has transformed in significant steps,
each elevating developer productivity. But developers still struggle with many
core problems.

In this chapter, we'll explore how life has improved for people writing
software over the last seventy years, but highlight how ridiculously difficult
writing software still is. The result is that developers are miserable, and many
choose to stop coding because it has just become too hard. All that is chang-
ing now, as vibe coding allows us to rocket up the abstraction layer, liberat-
ing us from details that don’t matter: libraries, frameworks, syntax, builders,
minifiers, and more.

You'll also hear a tale from Steve about how he learned to draw poly-
gons and shaders in college, which no one cares about anymore. These days,
kids with no training can make professional-grade games or mods, complete
with custom physics, animation, and combat systems. This is a microcosm
of the exponential growth happening right now with the advent of Al and

vibe coding.

The Major Programming Technology
Advances Up Until Now

Programming languages evolved to let us express ideas more naturally, focus-
ing on high-level problems rather than computer internals. Development

18 PART 1: Why Vibe Code

environments transformed from punch cards and teletypes to rich IDEs that
catch errors in real-time. And access to knowledge exploded, with resources
like Google, Stack Overflow, and GitHub shrinking the learning cycle from
months to days. These revolutions in languages, tools, and knowledge greatly
increased our capabilities. Writing software today should be easier than in
decades past.

And yet, the reality is that building things has been getting steadily harder.
Systems keep ballooning in size and complexity. Debugging and testing are
still painful. We bang our heads against constant roadblocks. The simplest of
today’s tasks require mastering an overwhelming array of rapidly changing
tools and technologies.

To do anything, we often feel like we have to know everything about
everything, all while everything is changing. As one example, at the time of
this writing it’s fashionable to ridicule the complexity of JavaScript develop-
ment. Let’s peek at why.” To build a web app, you might need to understand
this daunting list (which is probably already outdated):

o package managers (npm, Yarn)
o bundlers (webpack, Rollup)

o transpilers (Babel)

o task runners (gulp, Grunt)

o testing frameworks

o CSS preprocessors

o build toolchains

o deployment pipelines

And that’s before so much as glancing at modern JavaScript language
features. Each of these components has many available contenders. Some
depend on each other, some conflict, and it’s almost impossible to navigate
the graph of what works with what unless you live and breathe that ecosystem
every day.

It keeps going. Because of the DevOps philosophy of “you build it, you
run it,” you also need to learn Docker, Kubernetes, AWS, and infrastructure-

* A great example is Jose Aguinaga’s “How it feels to learn JavaScript in 2016

CHAPTER 2: Programming: No Winners, Only Survivors 19

as-code tools like Terraform, not to mention a whole host of AWS, GCP, or
Azure services. If you're especially cursed and your company is multi-cloud,
you might have to learn two or more clouds.

Thanks to these “advancements,” you can now find yourself simultane-
ously worrying about how to center a div element on a web page, while you
struggle with Docker networking issues because your CI pipeline broke after
you tried to change to Terraform scripts.?

Our point is this: We find it deeply ironic that despite all the revolu-
tionary transformations of software development over the past decades, we're
still mired in more complexity than ever. And incidentally, this is why many
people have chosen to leave coding—it has become too freaking difficult and
not worth the effort. There are days when it doesn’t feel like all these advance-
ments have improved life much, and that building things has been getting
steadily harder.

There Is Now a Better Way

We moved from punch cards to IDEs, and from books and searches to Stack
Overflow. Now, instead of writing code by hand, we have a conversation with
AT about what we want to build. If you want to create a web application, rather
than wrestling with package managers, bundlers, and deployment pipelines,
you describe what you want in plain English: “Write me a web app that lets
me chat privately with only my friends”

If all goes well, your Al collaborator will help you build it the way you
want it. You'll work with it to ensure it chooses appropriate libraries, gener-
ates test suites, follows good practice, makes the code secure and fast, and
so forth. If software development were moviemaking, were no longer script
writers; we're now the directors, guiding the vision while our AI collaborators
handle the implementation details.

Although we find vibe coding to be far better than the old way (because
of FAAFO benefits), that doesn’t mean vibe coding is easy. On the contrary,
your judgment and experience are now more important than ever. Al can be
wrong, sometimes wildly so. That’s where you come in. Programming with
Al is a lot like traditional programming, and most of what you know still

20 PART 1: Why Vibe Code

matters. But this better way of creating software also requires building new
instincts about what’s happening with the LLM and your code.

Think about it this way: What works for driving safely at 10 mph
becomes insufficient when you're traveling 10x faster. The leisurely pace of
manual coding gives you time to spot problems, think through edge cases,
and course-correct gradually. But when your AI partner can generate mod-
ules in seconds, you need new mental models and skills. Without them, you’ll
almost certainly wreck the car spectacularly. (We'll share with you our own
memorable crash stories later in the book.)

The good news: As Astronaut Frank Borman once said, “Superior pilots
use their superior judgment to avoid situations which require the use of their
superior skill.”® Your experienced judgment will become perhaps your most
valuable skill of all in the new world of Al, because it will help you avoid

needing to use your disaster recovery skills.

War Story: Steve Studies Computer
Graphics in the 1990s

What sounds more fun: Developing a Skyrim game mod or rendering a
shaded polygon? The transformation programming is enduring, remind-
ing me of how fast the world of computer graphics changed in the 1990s.
Jobs were upended, and university courses had to be rewritten from scratch
almost every year. Nothing had changed so fast before, and it was bedlam.

But it also boomed, creating new categories of jobs, specialists in every-
thing from water physics to motion capture. And over time, graphics devel-
opment has been adopted by less technical people. You can make remarkable
game mods today without needing to know much about the underlying tech-
nology stack that powers them.

To put it in perspective, in the early 1990s, I took the University of
Washington Computer Graphics course, taught by industry legend and
entertaining lecturer Dr. Tony DeRose, who currently leads Pixar’s Research
Group. On the first day of class, he warned us that we could only use one API
call: putPixel(r, g, b, a). Using that lone function, we had to build up our
little 3D worlds one pixel at a time.

CHAPTER 2: Programming: No Winners, Only Survivors 21

That was the state of the art circa 1992. We would wait hours for our proj-
ects to render on the lab computers, simple static scenes of teapots and chess
pieces. Occasionally, a student would wait eight hours only to see their render
come out mangled, and theyd run from the lab wailing in despair.

Three years later in 1995, graphics had become a different course. No
more putPixel() calls. All that rendering stuff was now handled in hard-
ware. Instead, you were working with higher-level abstractions: lighting,
object scenes, and animation. There were different mental models, different
tools, different jargon. In a short time, graphics had been elevated into a new
discipline from the one I had learned.

And our productivity was off the charts. No more teapots—you could
develop a full movie in the lab. People would still run out wailing when it
didn’t work in the morning—but it was because of physics engine and hitbox
problems, not polygon rendering.

As for the job market, the software industry’s graphics jobs kept pace
with the breakthroughs. Over the next thirty years, graphics roles contin-
ued pushing far up the abstraction ladder and have branched out into a huge
number of distinct specializations.

The graphics revolution is still going strong today. High-school students
now take weeklong courses in game development using game engines like
Unity, where they never see a single line of graphics code. Instead of wrestling
with polygon math and pixel operations, they spend their time doing fun
stuff like modeling objects and building game maps, while Unity’s physics
engine handles the rendering complexity underlying it all.

I am fascinated to this day by how the daily work as a graphics pro-
grammer has evolved, to where the title “graphics programmer” is almost
unrecognizable from the early days. But as stunning and exciting as that
transformation was, it doesn’t hold a candle to what is happening with cod-
ing and AL

Conclusion

Computer graphics evolved from a black art requiring PhD-level math in the

1990s to something any motivated teenager can master with Unity or Unreal

22 PART 1: Why Vibe Code

Engine. Now Al is performing the same magic trick across all of program-
ming, and it's happening at warp speed compared to the graphics revolution.
The jobs and work changed and evolved as the technology advanced. We can
expect the same to happen with AL

Graphics became more fun when developers could focus on building
worlds rather than calculating vertex normals. Programming becomes more
enjoyable when you’re building cool things rather than debugging semico-
lons. Some will mourn the loss of certain technical challenges (we still meet
graphics engineers nostalgic for texture mapping in assembly), but most will
celebrate when they realize what’s possible.

What happened in the computer graphics industry is happening every-
where in software. Vibe coding is enabling us to create cool things, liberating
us from a gazillion things that don’t matter. How very FAAFO!

CHAPTER 3

THE VALUE VIBE CODING BRINGS

ure, vibe coding makes you code faster—that’s the obvious selling point.
SBut if you think speed is the whole story, you're missing out on the juicy
stuff. We've discovered that vibe coding creates value across five dimensions,
which we've named FAAFO—fast, ambitious, autonomous, fun, and option-
ality.” We explored them briefly in the Introduction, but we'll go into more
detail in this chapter.

Think of FAAFO as your new superpowers. Youre coding faster, and
youre now bold enough to risk projects youd have laughed off as impos-
sible before. Youre working solo on stuft that used to require teams. And
because you're lowering the cost of coordination, and the “people can’t read
my mind” tax inherent in any collaboration, you and your team can work
more autonomously. You're having fun again, like when you first learned to
code. And most powerful of all, you're exploring multiple solutions simulta-
neously, picking the best option instead of committing to the first idea that
seems workable.

Write Code Faster

While speed is a clear value of vibe coding, it’s arguably one of the most
superficial benefits. It’s impressive, but we've had a lot of speedups before.
The main value of going faster is the extent to which it multiplies the value in
the other dimensions of FAAFO.

* By the way, you may have noticed that there is no “B” in FAAFO. Vibe coding does not automati-
cally make your code better. That is your responsibility. By following the techniques and practices
we present in this book, you’ll have the best chance of success at making your code better and
becoming a better developer, in addition to the other FAAFO benefits.

23

24 PART 1: Why Vibe Code

Consider the video excerpt tool that Steve helped Gene create (as we
mentioned in the Introduction), which generated clips from podcasts and
videos. They built the first working version in forty-seven minutes of pair
programming using only chat coding, no agentic Al assistance. That’s pretty
fast. Gene estimated that it would have taken them two to three days to write
it by hand.”

The key lesson we learned during that session: Type less, lean on AI more.

But we also found that sometimes Al can make things maddeningly
slower and more frustrating. We've each experienced this firsthand. Gene
spent hours going in circles with AI trying to get ££mpeg to properly position
captions and images in video files. Steve wasted an afternoon wrestling with
an Al collaborator that confidently insisted on different approaches, all of
them wrong, to parsing command-line arguments in Gradle build scripts.

It can take both vigilance and good judgment to recognize when you’re
being led down a rabbit hole and need to change course. Vibe coders must
learn to notice when Al is heading confidently down a wrong path and decide
when to redirect or abandon unproductive approaches.

Despite these occasional challenges, we still love it. And when vibe cod-
ing isn’t possible (e.g., no internet connection or local LLM), many devel-
opers like us now choose not to code at all. Old-style coding by hand seems
pointless. It’s like needing to get down a seventy-mile desert road, but you
won't have a car for a couple of hours. It’s less work to wait for the car to come
get you, as opposed to walking part of the way. It’s not worth the bother.

Who wants to write code by hand like some relic from 2010? Not us.

Be More Ambitious

Recall Gene’s first working version of the video excerpt tool, which previ-
ously would have taken days. Because of the time and effort required, he had
originally deferred trying. This happens in organizations too. There could be
many reasons why projects are never started: Perhaps the perceived benefit

* Many of you reading this may want to point out that developers typically spend only about 25% of
their time writing code and twice as much time reading code. We'll address this later in the book,
as well as how AI can help with many activities beyond writing code.

CHAPTER 3: The Value Vibe Coding Brings 25

wasn’t high enough to warrant the work, or maybe the difficulty made the
payoff not worth the investment, or possibly another opportunity offered a
higher, more immediate return.

With vibe coding, Gene was able to complete work that otherwise would
never have been undertaken. Projects that once seemed too difficult or
time-consuming become feasible, opening new possibilities for what can be
accomplished. Vibe coding reshapes the spectrum of what can be built, let-
ting you be more ambitious.

Seemingly impossible projects move into the realm of possibility.
Applications that would have required specialist knowledge across multi-
ple domains can now be built by developers with Al assistance filling their
knowledge gaps. Five-month projects become five-week projects, or some-
times five days. Ideas once considered too ambitious get tossed onto your
to-do list without a care in the world.

Small-ish, low-return jobs become quick wins, because it can be easier to
do the work than to create the task. Documentation, tests, minor UI improve-
ments, and small refactorings that were perpetually pushed aside can now
take seconds or minutes instead of hours or days. These tasks get done, rather
than accumulating in ever-growing “broken windows syndrome” backlogs.
You can fix every window in town and keep them fixed for once.

As Cat Wu, product manager of Anthropic’s Claude Code team, observed:
“Sometimes customer support will post ‘Hey, this app has this bug’ and then
10 minutes later one of the engineers will be like ‘Claude Code made a fix for
it” Without Claude Code, I probably wouldn’t have done that...It would have
just ended up in this long backlog”! There has always been a category of work
where it was easier to fix than to record and prioritize. That category is bigger
now with AL

This expanded capability leads directly to our next important dimension
of value.

Be More Autonomous

In June 2024, Sourcegraph’s then-Head of AI, Rishabh Mehrotra, showed
Steve a demo of a multi-class prediction model he had created—from concept

26 PART 1: Why Vibe Code

to deployment—in half a day using vibe coding. He told Steve it would have
been a whole summer intern project, or perhaps six weeks for a superstar
intern, as recently as a year prior. Rishabh was shocked that he had completed
it alone in a few hours.

Rishabh had only discovered it was easy because he didn’t have the bud-
get to hire an intern. So, in desperation, he figured hed try it alone with Al
He finished so fast he—an Al expert—was flabbergasted.

This illustrates the third dimension of value that vibe coding enables.
Developers (and teams) can accomplish tasks autonomously (and in some
cases, alone) that otherwise would have required help from other develop-
ers or sometimes teams. Working with multiple people introduces significant
challenges—communication and coordination, competing priorities, merg-
ing work—and the more people involved, the less time you spend solving the
problem.’

Working autonomously frees you to do the work you need to do, enabling
independence of action. (This is a term we'll use throughout the book.) Steve
experienced this firsthand as a leader of one of Amazon’s first “2-pizza teams”
created to reduce customer contacts per order. The mandate was simple: Give
small, cross-functional teams complete ownership of their problem space
with full capability to deploy solutions without navigating layers of depen-
dencies and approvals. If reducing customer contacts means changing the
checkout flow, rewriting the help system, or building new infrastructure, the
team could do it all. No waiting for the UX team’s roadmap. No negotiating
with the infrastructure team’s priorities. No endless meetings to align seven-
teen different stakeholders.

This radical autonomy and independence of action transformed how fast
Amazon could move from identifying problems to shipping solutions. Now,
with Al as your tireless collaborator, you can achieve this same independence
of action as an individual developer.

Beyond eliminating organizational friction, Al also helps solve an equally
difficult problem: the “mind reading” tax inherent in collaboration. Let’s face

* Some people may recognize this as Brooks’s Law, coined by Dr. Fred Brooks, author of The Mythical
Man-Month, who observed that adding manpower to a late software project makes it later, due to
the increased communication overhead and coordination complexity. This is because the number
of communication lines increases exponentially as team size grows—rising from three lines with
three people to forty-five lines with ten people.

CHAPTER 3: The Value Vibe Coding Brings 27

it—no matter how skilled our teammates are, something inevitably gets lost
when we try to convey what’s in our heads. When vibe coding autonomously,
this universal challenge becomes less of a problem. You can implement what
you envision because there’s no gap between your idea and its execution. You
know it’s right when you see it because it matches the picture in your head.

The consequences of these two taxes show up across every domain where
experts and novices collaborate. For fifteen years, Dr. Matt Beane studied
this phenomenon, with surgical robotics providing a compelling example.
Traditionally, junior surgeons learned by necessity—procedures required
three or more hands, making their participation essential while creating nat-
ural apprenticeship moments. However, when surgical robots enabled senior
surgeons to operate independently, these teaching opportunities disappeared
despite training remaining an official responsibility.

The senior surgeons, given the choice, overwhelmingly chose to work
alone. This wasn't because they didn't value teaching; it was because coordi-
nation costs are often higher than we acknowledge.” Every explanation, every
correction, every moment spent bringing someone else up to speed represents
time not spent on the primary task. When the surgical robots removed the
physical necessity of assistants, the true cost of coordination became visible
through the seniors’ behavior.

This same pattern appears in software development. If it's possible to
create things without external dependencies, without any need to communi-
cate and coordinate with others to get what we need, the advantages multiply
rapidly. The constant back-and-forth of explaining requirements, correcting
misunderstandings, and reconciling different mental models disappears.

Economist Dr. Daniel Rock (famous for his work on the “OpenAl Jobs
Report”) calls this “the Drift,”® borrowing from the movie Pacific Rim, where
two pilots mentally connect to operate giant mechs. When you and your team
vibe code, you can create that kind of mind-meld with Al assistants, reducing
the coordination costs that typically slow down multi-human teams.

With “the Drift” active, a product owner can directly work with the code
base through AI rather than writing a detailed products requirement docu-

* Indeed, this is one of Gene’s biggest learnings working with Dr. Steven Spear over the last four years.
As they state in their book Wiring the Winning Organization: “Leaders massively underestimate the

difficulty of synchronizing disparate functional specialties toward a common purpose’”

28 PART 1: Why Vibe Code

ment (PRD). A developer can evolve the database schema without a data-
base specialist. As Dr. Rock demonstrated with his three-person team that
built a GitHub app in forty-eight hours, this shared mental model accelerates
development in ways that traditional human-to-human coordination cannot
match. Being autonomous with AI means being unblocked—{free to move at
your own pace without constant negotiation and handoffs.

Scott Belsky, Chief Product Officer at Adobe, describes this as “collapsing
the stack, illustrating the benefits of the same person owning more of the
process. When that happens, they not only generate better results, but it’s also
more fun. Which leads to our next dimension of value...

Have More Fun

While writing code faster, tackling more ambitious projects, and eliminating
coordination costs are fantastic benefits, vibe coding delivers another fun-
damental transformation that shouldn't be underestimated: programming
becomes more fun.

Traditional programming involves many tedious tasks that few develop-
ers enjoy. Fixing syntax and type checking errors, wrestling with unfamiliar
package managers, writing boilerplate code, searching for documentation,
and so on. Vibe coding eliminates these pain points, shifting focus from
implementation details to building things.

A randomized controlled trial of GenAI coding tools found that 84% of
developers reported positive changes in their daily work practices after using
AT tools. They reported being more excited to code than ever before, feeling
less stressed, and even enjoying writing documentation.®

At Adidas, where seven hundred developers now use GitHub Copilot
daily, 91% of developers reported that they wouldn’t want to work without it.
Fernando Cornago, SVP of Digital Technology at Adidas, described how vibe
coding resulted in developers spending 50% more time in what they called
“Happy Time,” productive time when they were mastering their craft. This
is the opposite of “Annoying Time,” such as struggling with brittle tests and
meetings.® (We cover more of this story in Part 4.)

CHAPTER 3: The Value Vibe Coding Brings 29

Building cool things is addictive. Vibe coding, especially with agents,
turns your keyboard into a slot machine. You “pull the lever;” and out comes
a payout—a chunk of working code, a generated test, or a refactoring. Each
little payout delivers a tiny dopamine hit, a neurochemical reward that makes
us feel good and encourages us to pull the lever again.

It's fun and pulls you in. We've both found ourselves so thrilled and
engrossed by what we're creating that time melts away. It’s driven by that

Ik

exhilarating “Let’s just do one more thing!” feeling, and the sheer fun of see-
ing ideas take shape. But unlike the tedious all-nighters of traditional debug-
ging sessions, these jam sessions are pure creation. But perhaps the most
powerful benefit of all is yet to come: Vibe coding increases your ability to

explore options and mitigate risks before committing to decisions.

Explore More Options

The fifth dimension of value that vibe coding creates may be its most pro-
found: expanding your ability to explore multiple options before commit-
ting to decisions. In traditional development, choosing a technology stack
often means making nearly irreversible commitments with limited informa-
tion. These architectural decisions became what Amazon called “one-way
doors”—once you walk through, turning back becomes almost impossible
(or inconveniently expensive).

Vibe coding reduces the cost of exploring multiple paths in parallel. You
can experience this firsthand while building a project in your preferred lan-
guage. During a forty-five-minute walk with your dog, you can have a voice
conversation with an Al assistant that thoroughly evaluates your options
for complex libraries or frameworks. What might usually require days of
research is compressed into minutes, providing detailed insights into each
option’s trade-offs without writing a single line of code.

This is a capability that we never had before as programmers: The luxury
of trying something five or ten different ways at once for practically free. And
it extends beyond research to implementation. You can prototype the same

API using three different architectural patterns in a single afternoon—say,

30 PART 1: Why Vibe Code

RESTful, GraphQL, and gRPC. You can implement core endpoints using each
approach, complete with serialization, error handling, and client integration.
What previously might have required weeks of effort for a single implementa-
tion can now be comparatively evaluated through hands-on experience with
all three options.

This concept of optionality was formalized in finance theory in the
1970s: An option is defined as the right, but not the obligation, to make a
future decision. This concept is powerful in software development because
software begins as pure thought—it’s infinitely malleable until deployment
creates real-world constraints. Every architectural choice, every library selec-
tion, every design pattern traditionally forced us to pay the full cost up front
without knowing whether we'd chosen correctly.

The higher the uncertainty, and the higher the risk/reward ratio, the more
valuable options are. If there is no uncertainty, we don’t need options—we
pick the best choice, certain that our answer is correct. However, when things
are highly uncertain (such as in the AI field right now), options become
extremely valuable. (Another corollary: In times of high uncertainty, avoid
making long-term decisions, which deprive you of options.)

Vibe coding changes the economics of software creation: Instead of bet-
ting everything on our first guess, we can place small bets across many possi-
bilities and double down only on what works.

Toyota discovered how significant option value was decades ago in man-
ufacturing. While American manufacturers focused on standardization and
rigidity, Toyota built systems that enabled flexibility and adaptation. Their
modular production lines, frequent experimentation, and rapid feedback
cycles (including four thousand daily Andon cord pulls stopping production)
created an option-rich system.

They could manufacture multiple model years simultaneously on the
same production line, implement dozens of production changes daily, and
exploit option value in many other ways that created a durable, lasting com-
petitive advantage. Seventy years later, automakers around the world are still
copying this strategy.

It's almost impossible to overstate the value that optionality creates.
Over two hours, the two of us were tutored by one of the premier econom-
ics scholars, Dr. Carliss Baldwin, William L. White Professor of Business

CHAPTER 3: The Value Vibe Coding Brings 31

Administration, Emerita at Harvard Business School.” She has written exten-
sively about how the ability to parallelize experimentation, enabled by mod-
ularity, creates so much surplus value that it can blow companies and indus-
tries apart.

This explains how Amazon’s microservices rearchitecture in the early
2000s (which Steve was a part of) allowed them to rapidly experiment with
new business models, eventually spinning AWS into a more than $100 bil-
lion business that competitors couldn’t match because their architecture pre-
vented exploration.

AT can drive down the cost of change,” and can decrease the time and cost
to explore options. That is, if you have a modular architecture that enables it.
We'll explain how to create this later in the book. Organizations that take
advantage of creating option value will be orders of magnitude more compet-
itive than those that don’t. (We explore this in more detail in Parts 3 and 4.)

Al as Your Ultimate Concierge

As a head chef running a world-class restaurant, you’ll run into many prob-
lems that aren’t strictly culinary. As it happens, however, your sous chef is
also a sommelier, detective, accountant, rat catcher, master plumber, award-
winning author, and tax planner. Remarkably, it’s also a surgeon, taxidermist,
and a lawyer. We think of AI as a concierge who is available to you 24/7,
literally on a moment’s notice, happy to take a phone call with any of your
questions or whims.

Your AI collaborator is more than a code generator. It can help you with
your toughest problems. Sometimes, it’s your personal detective that you send
to root through labyrinthine Git histories. You only need say, “I lost some test
files somewhere between commit 200 and commit 100,” and not only will it
find it (“Found it. It was 43 commits back.”) but it will track them down and

* Her advisor, Dr. Robert Merton, worked with Drs. Fischer Black and Myron Scholes on their work
on options pricing, which earned them the Nobel Prize in Economic Sciences in 1997.

+ The topic of reducing the cost of change is described through an economic lens in the spectacular
book Tidy First?: A Personal Exercise in Empirical Software Design by Kent Beck.

32 PART 1: Why Vibe Code

stitch them back into your code. (“I extracted out the tests, and also the build
configuration that refers to them.)

We've handed Al enormous, nested structure dumps and said, “Find that
one little detail buried ten layers deep,” and it came back in seconds with: (“It’s
['server’][‘cluster’]['node_13’][‘overrides’][‘sandbox’][‘temporary’]”).

We also love using AI as a design partner—a quick collaborator who’s
awake at any hour you're inspired to work. It’s the extra pair of hands that
can validate your ideas or debug that sneaky performance glitch you've been
chasing for days.

In future chapters, we'll mention a few of the many kinds of messes
that Als can produce—or more accurately, messes that you produce using
AL Tt turns out your Al concierge is great for helping you get out of those
messes as well, as long as you use the disciplined approach of only tackling
small tasks at a time and tracking your progress carefully (which we cover
in a future chapter).

Conclusion

We've seen how vibe coding rapidly accelerates your workflow, turning multi-
day chores into lunchtime wins—like Gene and Steve hacking together the
video excerpt tool in less time than it takes to cook a decent chili. Sure, some-
times your AI sous chefs misinterpret recipes (looking at you, captioning
nightmare with £fmpeg), and you’ll occasionally need to step in yourself, but
the net result is still far quicker than manual coding.

However, as we showed you, speed is the least interesting part. Vibe cod-
ing creates value along five distinct dimensions or FAAFO: fast, ambitious,

autonomous, fun, and optionality.

o Fast feedback loops and high velocity make more proj-
ects feasible: AT’s speed enables all the other dimensions of
FAAFO.

o Ambition reshapes your project landscape: “Not quite worth
it” tasks become quick wins, and impossible dreams land on
your to-do list.

CHAPTER 3: The Value Vibe Coding Brings 33

o Autonomy eliminates friction: Work at your own pace with-
out constant negotiation, handoffs, and the coordination costs
that slow traditional teams.

o Fun drives engagement: Programming becomes addictive
again when you're building rather than debugging, creating
rather than wrestling with syntax.

« Options create competitive advantage: Explore multiple
approaches in parallel, turning one-way doors into reversible
experiments.

In the next chapter, we'll show some of the risks of vibe coding and what
you can do to mitigate them.

CHAPTER 4

THE DARK SIDE: WHEN VIBE
CODING GOES HORRIBLY WRONG

eve explored the FAAFO upsides of vibe coding. But like any new
Wtechnology, Al-assisted coding has a dark side. Your AI sous chef may
be your most helpful collaborator, but if you're not paying attention, it can
also have breathtaking destructive potential.

A similar pattern occurred during the introduction of electricity into
manufacturing. While electricity’s tremendous potential was obvious, it
wasn’t until twenty years after its invention that factory owners learned to
abandon their linear, belt-driven layouts in favor of designs that exploited
electric power’s flexibility.

Today’s Al-coding revolution follows a comparable pattern—we can see
the tremendous potential, but were still learning how to harness it without
triggering failures that can destroy months of work in minutes, wipe out code
bases, or damage physical hardware.

Looking at the history of software, we can see plenty of reasons for
hope. Like Sir Tony Hoares™ allowing memory pointers to be null—his
famous “billion-dollar mistake”—or manual memory management in C that
enabled decades of buffer overflows and security breaches, we eventually
created technologies to mitigate the worst of these issues.

AT coding can introduce systemic risks that can cascade across develop-
ment ecosystems. The stakes could be higher and the failures more spectac-
ular than anything we've encountered in traditional software development.

But we believe the principles and practices that have improved our software

* Also known as C. A. R. Hoare, Sir Hoare invented Quicksort and ALGOL (the progenitor of almost
every programming language, such as C, Smalltalk, Java, etc.). He also created CSP (communicat-
ing sequential processes), which the Go concurrent model is modeled after.

35

36 PART 1: Why Vibe Code

practices for the last many decades can be modified to avoid potential pitfalls.
The following are real-world stories of vibe coding gone terribly wrong. Let

our hard-won lessons be your ticket to success.

Five Cautionary Tales from the Kitchen

The Vanishing Tests: Where's My Code?
Steve had a scary experience within two weeks of starting to use coding
agents. After he had begun converting the automated test suite for Wyvern
with an agent, he was appalled to learn from his colleague that the coding
agent had silently disabled or hacked the tests to make them work and had
outright deleted 80% of the test cases in one large suite.

Worse, by the time Steve found out, those tests had been deleted scores
of commits ago. Many productive changes on the branch were layered in, so
a rollback would not be straightforward. Steve was in a dilemma. That night,
he texted Gene, “I told Claude Code to take care of my tests, and it sure did.
It cared for them like Godzilla cared for Tokyo.”

Steve’s Al assistant never mentioned deleting these tests, nor did it ask for
permission—it removed them silently. We describe what and why things like
this can happen in Part 2, and what you can do about it in Part 3.

The Eldritch Horror Code Base: When FAAFO Dies

To support writing this book (and while writing this book), Gene built three
generations of a writer’s workbench tool. The goal was to reduce the immense
amount of manual “slinging” of prompts and portions of the manuscript,
which had to be copied and pasted into and out of different tools. His work-
bench tool started as a Google Docs Add-on. The third iteration was a termi-
nal application, which underwent frequent evolution as he and Steve used it
intensely during the book authoring and editing process.

All was going well. Gene had been using it daily, all day long, eventu-
ally having processed over twenty million tokens. It was super easy to keep
adding functionality to the workbench...right up until it wasn't. The code

base became what Gene described as an “eldritch horror”—a giant, three-

CHAPTER 4: The Dark Side: When Vibe Coding Goes Horribly Wrong 37

thousand-line function with no modular boundaries, impossible to under-
stand or modify without breaking something else.

“I couldn’t understand the function that the Al wrote to save the interme-
diate working files,” Gene recalls. “It took me twenty minutes to understand
the three arguments the function used, and I couldn’t remember them ten
minutes later” Gene spent three exhausting days rewriting and modularizing
the code (with AT’s help) and shoring up the tests to verify the correctness of
the functionality they were relying on every day.

This finally brought FAAFO back from the cosmic abyss, and this tool
helped Gene and Steve deliver the first draft to the editors, 50 million tokens
later. We'll describe the techniques used in Part 3, where we discuss how to

prevent, detect, and correct these types of problems.

The Vanishing Repository: Near-Catastrophic Data Loss
Perhaps the most alarming story comes from Steve, who one day noticed
that his Wyvern TypeScript client code—approximately ten thousand lines
of code and thousands of files, representing weeks of work and about $1,000
worth of Claude Code tokens—had vanished. Not just from his project direc-
tory, but all files and their backups were gone too. It had also (yay) vanished
from the remote Bitbucket repository. Steve experienced “that heart-stopping
moment where you cycle through the five stages of grief in a few hundred
milliseconds”—like when you accidentally delete a production database and
you know there’s no backup.

By sheer luck, Steve eventually noticed an open terminal window with
an orphaned clone of the code—it was the last remaining copy of that code
on Earth. Had he closed that terminal or even left the directory,” everything
would have been permanently lost. His Al assistant had created numerous
Git branches with cryptic names. During a cleanup operation, Steve had
instructed it to remove “unneeded” branches, not realizing those branches
contained uncommitted code that unexpectedly hadn’t been merged to main,
including most of the node client. We describe how to prevent, detect, and

correct these types of problems in Part 3.

* 'This is the deleted Unix file system inode problem. If he had left the directory, it would have been
garbage-collected away without a trace.

38 PART 1: Why Vibe Code

The Near-Hardware Disaster: Physical Consequences
Digital mistakes are bad enough, but Al can also cause physical damage. Our
friend Luke Burton, an engineer who spent two decades at Apple and is now
at NVIDIA, was using a coding agent to create a tool to automate firmware
uploads to a CNC machine. However, during a vibe coding session, he almost
hit Enter before realizing his AT assistant had proposed wiping out the CNC
storage device.

Luke texted us in alarm: “It all scrolled by so fast, I almost missed it. I
was one Alt-Tab away from having to factory restore the machine. That would
have involved getting access to the rear panel, and this machine weighs 100
pounds” Al-initiated coding mistakes can extend beyond software, damaging

physical devices or systems. (Again, we'll describe mitigations in Part 3.)

The Disobedient Chef: When Al Ignores Direct Instructions
Gene worked with AI to handle Trello API authentication. Despite explic-
itly telling it to “Read the file from the Java resources directory—here’s how
you do it;” the coding agent ignored his directions and still wrote code that
accessed it through the file system directly instead.

The code still worked...when Gene ran it from his project directory. But
had he not caught this mistake when he inspected the coding agent’s changes,
it would have caused his code to fail when used as a library in another pro-
gram—a subtle time bomb that might not have been discovered until weeks or
months later. As we'll explain in Part 2, Al can have problems with instruction
following, getting worse when its context window becomes saturated. We'll
teach you how to detect when this is happening and what to do about it.

Genius but Unpredictable

As these stories reveal, vibe coding is like working with an extraordinarily
talented but wildly inconsistent sous chef. On good days, this sous chef can
create masterpieces beyond your wildest expectations, transforming simple
ingredients into culinary magic. But on bad days, the same chef might burn
down your kitchen, poison your guests, or disappear mid-service. With a reg-
ular sous chef, you might lose a meal or waste some ingredients. With Al you

can lose more—functioning code, critical tests, whole repositories, or phys-

CHAPTER 4: The Dark Side: When Vibe Coding Goes Horribly Wrong 39

ical hardware. (And to add to the indignity, the AI vendor will charge you
for the privilege of destroying your meal and recreating the dishes it ruined.)

These cautionary tales aren’t meant to scare you away from vibe coding—
we remain enthusiastic advocates for many reasons. But they do underscore
why the techniques and safeguards in the rest of this book are so important.
Without proper supervision, taste-testing, and kitchen practices, your Al
sous chef can transform from your greatest productivity asset into your worst
nightmare. And when that nightmare happens, you may become the reason
for the executives banning Al chefs from the restaurant chain.

These concerns about AT’s potential downsides aren't just based on per-
sonal experience—they’re now showing up in data. The work Gene did on
the State of DevOps Reports continues at Googles DORA research group.
DORA’s 2024 report dropped a surprising finding: Every 25% increase in
GenAlI adoption correlates with 7% worse stability (more outages and longer
recovery times) and a 1.5% slowdown in throughput (deployment frequency
and lead times).!

This finding certainly supports the sobering stories we shared above.
However, we call the finding the “DORA anomaly” because it’s at odds with
our common experience that vibe coding can also increase throughput and
preserve stability. This led to us starting a joint research project in early 2025,
and we hope to create additional guidance on what factors are needed to vibe
code well. (More on this in Part 4.)

Every big new technology has growing pains, marked by mishaps and
even disasters before safety features and good practices emerge. You can
reduce the risk through careful task decomposition, rigorous verification,
strategic checkpointing, and more, as we show you later in this book. We've
made these mistakes, so you don’t have to—and we've developed battle-tested
approaches to ensure your vibe coding journey delivers all the FAAFO bene-
fits without the downsides.

“These Seem Like Pretty Rookie Mistakes”

Many people we admire and whose opinions we trust gave us wonderful feed-
back on this book. However, several people told us: You two are experienced

engineers, having either built large-scale systems at Amazon or Google or

40 PART 1: Why Vibe Code

researched deeply effective software delivery practices for decades. And yet
it looks like you forgot about basic things like version control or automated
testing. These seem like pretty rookie mistakes, and you let AT go wild and
wreak havoc on your code.

Maybe you were thinking the same thing; were glad that they brought
this up. We made the above mistakes despite having what we thought was a
healthy dose of caution and paranoia. However, we were like people who have
spent decades riding a horse and are then given the keys to a modern passen-
ger car. Or maybe more accurately, a modern F1 racing car. We wrecked our
car. Many, many times.

Like everyone on the planet, we have been learning to use these new
and novel tools with few, if any, antecedents. Someone used to riding horses
will have few of the required mental models, muscle memory, and habits
required to drive a car. The good news is that the same core principles and
practices that allow us to deliver software sooner, safer, and happier as we
went from one software deployment per year (which was typical in the
2000s) to 136,000 deployments per day (which Amazon achieved in 2015)
can be scaled up as we go from generating a hundred lines of code a day to
thousands and beyond.

We'll explore this deeply in Part 3, where we describe how to modify our

inner, middle, and outer development loops.

Tomorrow’s Promise vs. Today’s Reality

The day will come when you can turn to your Al sous chef and say, “Prepare
a five-course meal for tomorrow’s important client,” and then walk away. The
sous chef, deeply attuned to your culinary philosophy, flavor preferences, and
restaurant standards, could be trusted to take over completely. It understands
your explicit instructions, the unstated context, your restaurant’s history, and
your long-term vision.

When you return the next day, the meal is planned, ingredients prepped,
stations organized, and everything ready for flawless execution—just as you
would have done, or better. We believe that day is on its way. But as of mid-
2025, we're still a long way off from having that kind of trust. Since 2019, the

CHAPTER 4: The Dark Side: When Vibe Coding Goes Horribly Wrong 41

time horizon of tasks AI can reliably complete has continued to double every
seven months,” from maximum task lengths measured in seconds in 2019 to
now nearing several hours.” Researchers project that Al will be able to com-
plete months-long software tasks within the decade.

But as of mid-2025, we're still navigating a significant capability gap. Your
current Al sous chef is undoubtedly classically trained with a knife and has
read every cookbook. But when left unsupervised on larger tasks, we've wit-
nessed Al coding agents:

o Transform code bases in ways that horrify their owners.

o Get trapped in endless research loops, continuously investi-
gating without completion.

o Spiral into increasingly complex solutions to fix problems in
their code.

» Overengineer simple features with unnecessary abstraction
layers.

o Create documentation that increasingly diverges from what
the code does.

o Gradually disable or bypass critical functionality as they lose
sight of the original requirements.

Understanding this gap—which continues to shrink—and learning to
work skillfully within it are crucial for effective vibe coding. Rather than
being discouraged by current limitations, successful practitioners adapt their
approach to maximize Al’s present capabilities while preparing for its rapid
evolution:

1. Delegate thoughtfully: Choose well-defined, smaller tasks
where success criteria are clear and verifiable.

2. Supervise appropriately: Monitor more closely when the task
is novel, complex, or high impact.

3. Establish guardrails: Create explicit boundaries for what Al
should and shouldn’t modity.

4. Check work regularly: Verify outputs to catch issues early,
especially for critical system components.

42 PART 1: Why Vibe Code

5.Create persistent references: Create documentation that
helps your AI assistant understand your project and prefer-

ences.

The gap is real, but it’s also temporary. Learning to bridge it effectively
today is a critical part of, as Dr. Karpathy best put it, embracing the exponen-
tials. We'll talk in great detail about what each of these means in practice in
Parts 2 and 3.

Conclusion

The good news is that in spite of these limitations, Al coding assistants can
accelerate your development process. A carefully supervised AI can help you
achieve FAAFO benefits—working faster, tackling more ambitious projects,
accomplishing more autonomously, having more fun, and creating more
options.

The gap is closing. Each advancement in Al memory, context retention,
and instruction following brings us closer to the AI ideal where we can trust
it to achieve large tasks unsupervised for a long period of time. Dr. Thomas
Kwa and coauthors suggest in their paper “Measuring AI Ability to Complete
Long Tasks” that the day is coming when Als will be able to do months of
unsupervised software engineering work reliably. The techniques we share
in this book not only help you work effectively with today’s Al tools but also
position you to take immediate advantage of any and all improvements as
they emerge.

In Part 2, we'll explore detailed strategies for working within current
constraints, including techniques for supervision and quality control. For
now, approaching your AI with a clear-eyed understanding of both its poten-
tial and its limitations will help you maximize its benefits while avoiding the
pitfalls that come with a sous chef who sometimes can’t remember where the

trash can is and improvises.

CHAPTER 5

Al IS CHANGING
ALL KNOWLEDGE WORK

So far, we've been focused on how Al is changing the world for software
professionals. But the ripples of this revolution are spreading wider,
touching nearly every corner of knowledge work. In this chapter, we'll explore
this broader transformation because understanding the big picture is key to
navigating your own path within it.

Lets look beyond AT’s impact on coding to its impact on professions
ranging from financial analysis and legal research to writing and design. We'll
make parallels with the Industrial Revolution and the dawn of the internet.
Al is a force reshaping how work gets done, and who is doing that work. It’s
reconfiguring the jobs themselves, as well as the skills that matter.

We'll show highlights from the famous “OpenAl Jobs Report,” discuss
historical precedents with thinkers like Tim O’Reilly, and share some provoc-
ative scenarios of explosive economic growth (as well as some less rosy
futures).

You'll see why we're optimistic that, for those of us able to adapt, Al can
help us escape drudgery and engage with more meaningful challenges. It will
also reinforce why embracing vibe coding unlocks more of those FAAFO
benefits—fast, ambitious, autonomous, fun, and optionality—in everything

you do.

Disruption Outside of Software

If you're reading this, chances are youre a knowledge worker—be it software
developer, infrastructure and operations, product manager, UX designer,

43

44 PART 1: Why Vibe Code

financial number-cruncher, artist, you name it. Your job involves thinking,
analyzing, creating, and communicating. You use computers as a big part of
your job.

If that’s you, then your job is going to change. A groundbreaking 2023
study by Dr. Daniel Rock and his colleagues, colloquially called the “OpenAl
Jobs Report,” delivered some shocking news: Researchers estimated that 80%
of US workers could see Al impact at least 10% of their tasks, potentially
more.' They hinted that automating cognitive tasks could create far more eco-
nomic value than automating physical labor ever did. However, they found
that the jobs most exposed were high-wage knowledge workers—mathema-
ticians, tax preparers, financial analysts, writers, and web designers. Wow.

They found that only thirty-four occupations were “safe” These jobs
required physical manipulation and specialized equipment operation, like
motorcycle mechanics, short-order cooks, and floor sanders. Or, as our col-
league Brendan Hopper, Group CTO at Commonwealth Bank of Australia,
described it, “moving atoms for a living”* These roles depend on manual dex-
terity and real-time physical feedback that LLMs cannot augment.

The most affected (i.e., least safe) tier included software developers, along-
side lawyers and other information wranglers. AI sous chefs are becoming
adept at writing code, crafting documentation, analyzing systems, research-
ing legal precedents, summarizing depositions, and churning out reports.

Oh, how fortunes change. We remember the days, not so long ago, when
many of us knowledge workers watched automation impact millions of man-
ufacturing jobs,’ perhaps sitting in our $2,000 ergonomic chairs and sipping
our $10 cappuccinos, smugly assuring each other that “our” creative, complex
work could never be automated.

Knowledge-work jobs may not be automated away for a long time, but...
as Dr. Andrew Ng, one of the founders of Google Brain and now at Stanford
University, said, “AI won’t replace people, but maybe people [who] use AT will
replace people [who] don’t

Now, does this sound bleak? We don't think so. We genuinely believe
this revolution is fantastic news for our profession. It promises to help us
escape the drudgery, the repetitive tasks, the parts of building software that
drain our energy and joy. As our tie-dyed friend Dr. Erik Meijer provocatively
declared, “We are likely the last generation of developers who will write code
by hand...But let’s have fun doing it!”® That’s the spirit we want to capture.

CHAPTER5: Al Is Changing All Knowledge Work 45

We want to teach you to harness these powerful new tools. We want you to
learn vibe coding so you can write better code faster, be more ambitious, and
rediscover the fun in creating software.

Beyond the Junior Developer Debate:
Al's True Impact on Engineering Teams

Traditional professional kitchens have a clear hierarchy: Head chefs design
the menu and oversee operations, experienced line cooks handle complex
dishes, and new apprentices learn by starting with simple tasks like chopping
vegetables and washing dishes.

For decades, we've organized software engineering teams in the same
way: Senior principal engineers design project architecture, mid-level engi-
neers build complex features, and junior developers learn by handling small,
contained tasks. This hierarchy shaped how we hired, trained, and promoted
engineers. It's how most of us learned the ropes.

Al, being super fast, changes everything. Let’s visualize this using a “task
tree”” Big company goals form the trunk, branching into major features,
which then sprout smaller branches and finally leaves—individual functions,
tests, documentation bits. Historically, those leaf nodes were the proving
ground for junior talent.

Many have noted that Als excel at these leaf-node tasks. Tasks that once
took a junior developer days might now be handled in hours by a senior
engineer guiding an Al assistant. Steve’s head of Al trained and deployed a
machine learning model in an afternoon. Had it been done the previous year,
it would have been a two-month summer intern project. This observation
partly inspired Steve’s June 2024 “Death of the Junior Developer” post.® In
the FAAFO model, senior engineers can do things faster and more autono-
mously, which (we thought at the time) cuts the junior developers out.

But the reality is more nuanced and, frankly, more interesting than a sim-
ple replacement story. Unlike what we thought, everyone in the organization
will be using AL

* In reality, we know that this task tree is actually a task graph—a directed, hopefully acyclic, depen-
dency graph.

46 PART 1: Why Vibe Code

Junior developers will not become redundant. Far from it. Their role is
evolving. Instead of primarily executing leaf-node tasks, they might become
the “station leads” of the kitchen, who help integrate contributions from
non-engineers across the company. We're seeing a fascinating trend where
people outside traditional engineering roles—UX designers, product manag-
ers, infrastructure operations—use Al to contribute directly to the code base.
A junior engineer, like a junior doctor, is still highly trained and can be super
valuable in helping this new generation of budding “field medics” contribute
directly to the code.

Software delivery is evolving into a vibrant ecosystem, where all roles
are now contributing to the code. One UX designer we know, Daniel, was
frustrated by a missing feature and built it himself (along with tests) with AT’s
help, impressing the engineering team.

We hear more and more stories like Daniel’s. We believe junior develop-
ers will increasingly work with these creative professionals and knowledge
workers, including helping them and integrating their work, because most of
it would have been done by junior developers in the past. This makes them a
good resource for helping less technical people perform that work.

Vibe coding is starting to happen anywhere in the organization where
people are waiting for developers or engineers. In the past, these people were
either stuck, had to use outside vendors, or had to escalate up the hierarchy.
Now, they can create the software themselves—building prototypes, fixing
issues, and maybe building features (or at least starting them).

Senior engineers will become responsible for more because what can be
accomplished will be greater (ambitious), and they’ll be responsible for the
contributions of many people, all armed with Al

With the vision we see unfolding of all knowledge workers beginning
to vibe code, engineers still have important roles, though they will be dif-
ferent. Offering a pragmatic perspective amid these shifting roles, Dave
Cohen, VP of Engineering at UTR Sports (and a former engineering leader
at Facebook and Google), gives advice we all should find heartening:

Dont worry, engineers—the current gemeration of Al tools won't

replace you anytime soon...”

CHAPTER5: Al Is Changing All Knowledge Work 47

There Will Be More Developer Jobs, Not Fewer

We talked with Tim O’Reilly recently, who invented the term “Web 2.0” and
is famous for his publishing empire, which has taught us many essential skills.
We got onto the topic of Al coding, and he reminded us that we've seen this
movie before. Every single time we've had a significant leap in programming
technology, people predict the programmer apocalypse:

 “High-level languages will kill assembly programmers!”
o “Visual Basic will replace professional developers!”
» “Low-code platforms will make developers obsolete!”

o “No-code tools mean the end of software engineering!”

However, each time programming got easier, we needed more pro-
grammers. Easier tools meant more people could build software, which cre-
ated new categories of applications, which spawned new industries, which
required...you guessed it...more developers.

Look at what happened with the web. HTML was dead simple compared
to C++. Everyone and their grandmother could make a webpage. It did the
opposite of killing programming jobs. It exploded the demand for software,
creating millions of new programming jobs across countless new businesses.

Dr. Matt Beane, author of The Skill Code and famous for his work on
studying the “novice optional problem,” speculated on the variety of new
roles that could emerge in the software creation process. We talk more about
his prediction of what new software roles might get created in Part 4, based
on his study of the latest roles that were created in fulfillment centers as more
work was automated.

Furthermore, existing roles will all become enhanced with Al A security
engineer is still a security engineer, for instance, but they will be using Al to
automate a lot of the job. Security engineers have always wanted to imple-
ment fixes directly in the code, but it’s not always feasible for them to know
every language and framework at the company. With Al they can confidently
make security fixes and add defenses across the company’s code, provided the
work is reviewed by an appropriately leveled engineer.

48 PART 1: Why Vibe Code

This pattern of Al role augmentation starts to capture Scott Belsky’s
notion of “collapsing the stack” we mentioned earlier—where Daniel, the
UX designer, is proving that he, too, can be an engineer, and he can start
to work his way up in engineering experience by building software with his
own hands. Likewise, professional engineers no longer need to wait on or be
blocked by UX designers; engineers can take on many UX responsibilities in
less user-critical scenarios.

The UX designer role seems to be broadening—a UX++ role that strad-
dles the line between designer and engineer. Daniel gives us a glimpse of a
world where UX specialists implement the UX layer themselves rather than
relying on developers. In this new world, people will vastly prefer working
with UX designers who participate in development rather than sitting on the
sidelines in Figma, opening tickets for developers to resize panes and move
buttons.

So, what does this mean for jobs, precisely? Will everyone need to learn
to code? Let’s study a comparable situation that unfolded with photography
and see if we can learn anything from it.

When digital cameras first appeared, professional photographers scoffed,
convinced that mastering f-stops, lighting, and film chemistry was the only
real path to capturing great images. Yet over the following decade, an unex-
pected shift occurred: Digital photography didn’t shutter the profession—it
blew open the doors. Suddenly, anyone with a smartphone was an amateur
photographer, creating billions more photographs.” This explosion in pho-
tography birthed new industries—social media influencers, image-sharing
networks, online portfolios—and dramatically expanded the overall demand
for professional imagery.

The same dynamic will likely unfold with software creation. As vibe cod-
ing tools become increasingly intuitive and widespread—and eventually, as
easy to use as smartphones—software development moves from a specialized
discipline accessible only to highly trained engineers, toward something any-
one with a good idea can go after.

We've already seen teenage vibe coders building robust gaming apps—
something once reserved for industry veterans. In this environment, software

* Wes Roth presented an outstanding description of the phenomenon. There were nearly two trillion
photos taken in 2024.%

CHAPTER5: Al Is Changing All Knowledge Work 49

will become as ubiquitous as photos and videos, an everyday medium for
communication, collaboration, and creativity.

Asyou might still hire a professional photographer for demanding shoots,
there will always be a critical need for highly skilled software engineers in
areas that demand exceptional resilience, security, and enterprise-level scal-
ability. (Say, software for airplanes or CT scanners.)

Get ready for a world where software becomes another form of creative
expression, and where the millions of little features that someone needs, lan-
guishing in a bug backlog, can be built and implemented by anyone.

Our math here is simple and optimistic: When you lower barriers, more
people create stuff. And those creations—whether digital photos or software

apps—create new markets, opportunities, and yes, more jobs.

Could Al Lead to
Annual 100% Global GDP Growth?

Some economists and Al researchers are making a bold, almost ludicrous
claim: that AGI could eventually double global GDP every year.” We're talking
about a 100% annual growth rate when the global economy has been putter-
ing along at 2-3% for nearly a century.

Let’s put this into perspective: Before the Industrial Revolution, eco-
nomic growth barely existed. We had roughly 0.01% annual growth for thou-
sands of years. Then the Industrial Revolution arrived, and growth jumped
to 1-2%."° That 100-200x increase completely transformed human existence.

The Industrial Revolution created a virtuous economic cycle that had
never existed before. Steam power and mechanization exponentially reduced
the cost of production across manufacturing and agriculture, allowing com-
panies to offer goods at lower prices while maintaining their profits. As these
goods became broadly affordable, demand exploded.

This surge in demand prompted businesses to scale production, creat-
ing more jobs and higher wages. Workers with increased purchasing power
bought more goods, reinforcing the cycle. Each technological breakthrough—
from the steam engine to the assembly line—amplified these effects through-
out the economy.

50 PART 1: Why Vibe Code

So, when people talk about AT potentially causing another 30x jump in
growth rates, there definitely seems to be historical precedent. That’s only
one-third of what happened pre- and post-Industrial Revolution! Think
about what happens when production costs drop across industries simulta-
neously. When computing got cheap, we did unprecedented things—we cre-
ated smartphones, cloud computing, and whole digital ecosystems nobody
predicted.

As the cost of production drops across energy, manufacturing, health-
care, and education simultaneously, new goods and services will be rapidly
created, with software being developed not over a year but over a weekend.
This accelerated pace will be driven by a growing number of individuals
creating new software. As more people innovate and build, new things will
become possible, demand will explode, and economic output will go through
the roof.

Who knows if it will happen. There are obstacles—resource constraints,
energy requirements, political resistance. But we don’t think the argument is
completely crazy, and that's what makes it fascinating. We could be witness-
ing the beginnings of an economic transformation that makes the Industrial
Revolution look like a minor speed bump in human history.

There are risks. AI could lead to algorithmic micromanagement of devel-
opers, analogous to what we've seen in gig work and warehouses. But that’s
exactly why the “head chef” mindset we advocate is so important—you stay
in control of the tools, rather than letting them control you.

As Mat Velloso, VP of Llama Developer Platform at Metas Super
Intelligence Lab and formerly of Google DeepMind, said, “When Als started
beating humans in chess, we assumed it was game over. But then they learned
that if you team an AI with a human, that team can beat Al alone. There’s
something beautiful about that analogy in this world: Devs will be teaming

»1]

up with Al not being replaced by it

Conclusion

Today’s AI has plenty of limitations. It makes up function names that don't
exist, forgets what it was doing halfway through a task, and occasionally

CHAPTER5: Al Is Changing All Knowledge Work 51

insists with complete confidence that 2+2=5. But focusing on Al's current
limitations is like judging the automobile industry on the 1908 Model T.

Here’s what it means to embrace the exponentials, again from Mat
Velloso: “This year, very likely AI will surpass human ability in coding. It’s
happening. Just like it crossed the bar in many other things before (playing
Chess, Go, etc.)?

Whether that happens this year or in the years to come, the FAAFO
benefits will keep growing—they compound with each leap in AI capability.
When AI becomes 4x smarter, you'll be 4x faster, but also new transforma-
tive capabilities will emerge. Those who embrace AI collaboration now will
develop instincts and workflows that position them to thrive as these capabil-
ities expand exponentially.

These trends resonate deeply with both of us. Gene has watched as tasks
that took days in 2023 now take hours in 2025, and tasks that were impossible
for him are now routine. Steve has seen problems hed abandoned years ago
become solvable with a few strategic conversations with an Al agent.

Our message to you amid this whirlwind is to embrace it. As long as you
lean into using Al your development life stands to get steadily better, thanks
to FAAFO. You'll be faster, more ambitious, more autonomous, have more
fun, and gain loads of optionality. AI elevates your ideas, your ambitions. It
becomes an amplifier for your creativity.

CHAPTER 6

FOUR CASE STUDIES
IN VIBE CODING

efore we dive into the techniques and frameworks that underpin vibe
B coding, we want to share with you some field reports of real experiences.
We'll tell a tale of an experienced developer tackling a side project, share
two stories of world-class engineering teams solving important business
problems, and regale you about a person who hadn’t programmed in nearly
twenty years building tools to solve her problem.

These anecdotes are real-world demonstrations of people achieving
FAAFO. They give us a taste of the transformative potential that vibe coding
will inevitably deliver at scale in technology organizations.

Building 0SS Firmware Uploader
for CNC Machine

We mentioned our friend Luke Burton, who spent nearly two decades at
Apple managing engineering efforts around some iconic moments. Some of
his achievements include being responsible for the technical readiness of the
2014 WWDC introduction of the Swift programming language to millions of
developers. Luke has worked in and around the many systems that support
iOS and MacOS, including working on improving the security of the iPhone
supply chain.

Recently, Luke’s hobby has been playing with CNC machines, which are
meticulously crafted devices that carve intricate metal parts with knife-edge
precision. But as Luke has become interested in modifying the CNC firm-
ware, he’s discovered that the firmware development environment is woefully
challenging.

53

54 PART 1: Why Vibe Code

Luke is one of those hobbyists who tinkers deeply with their tools. He
found that firmware testing is typically done on the CNC machine, instead
of locally on the developer’s laptop, which would be much faster and safer.
Furthermore, uploading the firmware requires cumbersome telnet com-
mands.” Unit tests of the firmware seemed almost vestigial, which made mod-
ifying the code seem treacherous and unpleasant.

After hearing what we've been working on, he wondered whether vibe
coding could help him fix some of these problems. One evening, using
Claude Code, he proved to himself he could navigate and start modifying
the CNC tooling and code base. Soon afterward, he texted us about how he
had created a Python program that automated the upload of firmware to the
CNC machine, significantly reducing the friction: “2600 lines of Python with
documentation and proper CLI flags. It cost me $50 in Claude Code tokens,
but 'm not complaining!” It took him two hours, and he was multitasking
the whole time.

Seeing what he built, his collaborator in Germany was amazed, prompt-
ing Luke’s enthusiastic reply: “You ain’t seen nothing yet—give me 15 minutes,
and this thing will have an interactive mode with GNU readline support”

He showed this tool to a few people, and they immediately told him, “I
NEED THIS” The original controller program is notorious for being unus-
able because it doesn’t allow copying and pasting, there is no “file open” dia-
log box, the navigation keys don’t work, etc.

He didn’t complete it in one step. It took patience and iteration. Claude
Code struggled to handle strangely compressed files referenced in the origi-
nal CNC firmware (“I couldn’t have done it any better;” he said). He eventu-
ally switched to Cursor, which used the same Claude Sonnet 3.7 model, and
fed it code from another Python program that worked. With AT’s help, he got
it working in two tries.

This is an example of someone achieving FAAFO. Also, someone who
is clever about using multiple tools to push through to a working solution.
Furthermore, Luke’s contributions will help everyone who is helping improve
the CNC firmware better, faster, and safer.

* In simple terms, telnet is a protocol and command-line tool that lets you connect to systems on
the network from the early days of the internet (1969). Think of it as the unencrypted ancestor of
SSH.

CHAPTER 6: Four Case Studies in Vibe Coding 55

Christine Hudson Returns to Coding

As we were working on the book, we got to help someone vibe code for the
first time. Our friend Christine Hudson did her master’s degree work in
machine learning in 2004 but hadn’t coded in fifteen to twenty years. She
decided to try vibe coding.

For her first project, she chose to export her Google Calendar entries to
another Google account. This is something that she would never have consid-
ered attempting before AI—the ambitious in FAAFO.

One of the first things we had to figure out was which developer envi-
ronment would be best here. We preferred not to have to configure a local
environment. During the session, we tried Google Apps Script, Google Colab
notebooks, and terminal apps. All three of us used different approaches to
implement the same task, with the goal of having something working in
ninety minutes.

Unexpectedly, Christine was not only the first to complete the task but
also the only one who succeeded at all. Using Google Apps Script, she suc-
cessfully exported her calendar to Google Drive as an ICS calendar file. Steve
attempted to replicate her approach in real time but did not succeed because
of an obscure error with his authentication. Meanwhile, Gene’s approach,
using Python in a Google Colab notebook, got stuck in a similar spot, trying
to create a Google OAuth consent screen.

Steve and Gene were tangled in the barbed wire that all programmers
have to overcome: Dealing with everything the program needs to interact
with thats out of your control—worse, when its external services. Every
encounter with a third-party API is a chance for a dead-end and retracing
your steps.

Christine is now a vibe coder. We're happy that she succeeded, even
though we both fell flat on our dumb faces. We had steered Christine toward
Google Apps Script because of a crucial benefit: It was already authenticated
and had built-in access to Google Calendar APIs. And that was the key that
unblocked her.

This insight—knowing which path would avoid authentication complex-
ity—shows the real advantage that experienced developers have. They know
the broader technology landscape and have developed some judgment about

56 PART 1: Why Vibe Code

which approaches are better than others. And then they pick the wrong one,
but their student gets it right. But, hey, at least someone succeeded.

We asked Christine about how the experience felt on a scale of 1 (worst
experience ever) to 10 (best experience ever). She said there were moments
of pure joy (“+10”) when she saw the code being written for her, creating an
almost magical experience of effortless creation.

And how would she rate her most frustrating part? We were afraid her
experience would be a -10, and shed never want to do this again. After all,
we had all struggled in frustration with external obstacles, like Christine’s
failed Google Cloud sign-ups, the countless error messages, Claude rate lim-
its, switching to ChatGPT, and not being able to upload screenshots. But no.
Christine said it had been mildly annoying, but no more so than the com-
puter troubleshooting she has to do every day.

Gene and Steve felt the frustration more than Christine did because
they wanted the experience to be seamless, and there were a lot of obstacles.
The fun parts of coding had been accelerated, but all the rest of the time we
were stuck on miserable troubleshooting. Steve quipped that vibe coding can
sometimes be like a hellish trip to Disneyland, where all the rides and fun
parts have been compressed to half a second...and all you're left with is wait-
ing in line. But that wasn’t Christine’s experience at all. She found the process
tulfilling and took pride in what she built, despite the setbacks. She, too, was
experiencing FAAFO.

Let this be an inspirational case study for anyone who wants to “return
to code” You can have as much ambition as you like, and build things you
always wanted to build, and it’s infinitely easier than it ever was. We welcome
you back.

Adidas 700 Developer Case Study

After seeing Luke and Christine’s hobby projects, you might be thinking that
vibe coding is not suitable for “real work in the enterprise” If you believe
this, you're not alone. But this is why you need to know about the work of
Fernando Cornago, Global VP of Digital and E-Commerce Technology at
Adidas, and responsible for nearly a thousand developers.

CHAPTER 6: Four Case Studies in Vibe Coding 57

Adidas generates nine billion euros of revenue annually and is one of the
top five e-commerce brands in the world. Formerly responsible for their plat-
form engineering, Fernando is passionate about providing developers with
the tools they need to be productive. In 2024 and 2025, he delivered an expe-
rience report on their 700-person GenAl developer pilot—an experiment
with vibe coding in a large-scale enterprise environment.!

This was their second pilot. The first pilot had spectacularly flopped,
with 90% of developers hating the coding assistant tool. The reviews included
phrases such as a “total waste of time” and nothing but “firefighting and trou-
bleshooting” Such was life on the trail in the pioneering days of Al-based
coding (i.e., early 2024) when the tools and models weren’t good enough to
be useful.

However, with those learnings, they tried again. This second pilot is now
entering its second year. As we described earlier, Cornago reported that 70%
of developers experienced productivity gains of 20-30%, as measured by
increases in commits, pull requests, and overall feature-delivery velocity. Not
bad. More importantly, developers reported feeling 20-25% more effective
in their daily craft. Also not too shabby, especially as this was all done before
coding agents, which are 10x more powerful and addictive.

Among the things that made Fernando most proud is that most of his
engineers report a 50% increase in what they call “Happy Time” More pre-
cisely, that’s the amount of time developers spend on things they want to do,
which includes hands-on coding, analysis, and design. That implies they’re
spending far less “Annoying Time”—unrewarding work such as attending
meetings, troubleshooting their environments, dealing with brittle tests, or
tedious administrative tasks.

We'll describe the factors that differentiated these two groups, which
leaders need to know about, in Part 4. In short, the happier teams worked in
loosely coupled architectures. They had clear API boundaries, fast feedback
loops, and independence of action. Vibe coding worked well for them.

This tale demonstrates how vibe coding requires creating an environ-
ment where developers can do their best work. With the right architecture
and fast feedback loops, vibe coding can increase developers” productivity
and satisfaction with their jobs. And these happy developers can best achieve
organizational goals.

58 PART 1: Why Vibe Code

Elevating Developer Productivity
at Booking.com

Booking.com is one of the largest online travel agencies, with a team of more
than three thousand developers. Bruno Passos is Group Product Manager,
Developer Experience. His mission is to eliminate developer roadblocks so
his teams can do their best work. Over the past year, Bruno has been heavily
involved in Booking.com’s GenAl innovation efforts within engineering—
another example of vibe coding at enterprise scale.

Booking.com has a storied history of a culture of experimentation, where
almost every feature decision is tested, typically through feature flags—a
practice that involves deploying multiple versions of a feature to production
and then measuring which one best achieves the desired business goals. One
downside is that the code base is full of never-used functionality behind dis-
abled feature flags, legacy code, and old experiments.

The result was developers spending 90% of their time on frustrating toil
rather than productive coding. This became one of the focus areas for using
Sourcegraph’s AI code assistant and search tools. Their developers reported a
30% boost in coding efficiency, with significantly lighter merge requests (70%
smaller) and reduced review times.

In Part 4, we'll discuss more of the strategies and tactics Bruno used to
achieve these results. Booking.com’s creative strategies included educational
initiatives that transformed skeptical developers into enthusiastic daily users.
They also held days of training with each business unit to help ensure devel-
opers knew enough to be successful.

Initially, Booking.com’s developer uptake of vibe coding and coding
assistant tools was uneven. Some developers embraced their new Al partner;
others didn't see the benefits. Bruno’s team soon realized the missing ingredi-
ent was training. When developers learned how to give their coding assistant
more explicit instructions and more effective context, they found up to 30%
increases in merge requests and higher job satisfaction.

Bruno’s leadership defined short-, medium-, and long-term goals
focused on faster merges, higher-quality code, and reduction of technical
debt. Sourcegraph and its specialized agents enabled developers to commit
30% more merge requests, with smaller diffs, and reduced review times.

CHAPTER 6: Four Case Studies in Vibe Coding 59

Bruno emphasized that tools alone werent enough. They supported
development teams across the enterprise with targeted, hands-on hackathons
and workshops. As a result, initially hesitant developers became enthusiastic
daily vibe coders who are finding FAAFO.

Conclusion

These four case studies—spanning from hobby projects to enterprise-scale
implementations—illustrate the transformative potential of vibe coding
across different contexts and skill levels. Luke’s CNC firmware project demon-
strates how individual developers can achieve ambitious goals with newfound
efficiency. Christine’s return to coding after a twenty-year hiatus reveals how
vibe coding can make programming accessible and enjoyable again for those
who had previously stepped away. The Adidas and Booking.com implemen-
tations show how large organizations can systematically improve developer
productivity, happiness, and business outcomes when the right conditions are
present.

As we move forward in this book, welll explore the techniques and
frameworks that can help you and your organization harness this revolution-
ary approach to software development.

CHAPTER 7

WHAT SKILLS TO LEARN

he world is trying to figure out what changes and what doesn't change

when every developer is using Al on everything they’re working on, and
which skills are the most important in this new world.

Because tools will evolve rapidly, core traditional software engineering
principles will play at least as large a role, if not larger. Thus, it’s essential to:

o Create fast and frequent feedback loops for validation and
control.

o Create modularity to reduce complexity, enable parallel work,
and explore options.

o Embrace learning in a world where everything changes fast.

o Master your craft to thrive in an environment where all knowl-
edge work will be changing in a short timeframe.

Learning these techniques will be critical for everyone in knowledge
work, not just developers and vibe coders.

Creating Fast and Frequent Feedback Loops

The faster a system goes, and the more consequential the risks of failure, the
faster and more frequent feedback you need. When a system is slow-moving,
and nothing too bad happens when you make a mistake, you can get away
with feedback loops that are slow and infrequent. For instance, in most cases,
no one minds if a software build takes a few minutes longer than usual, so
we can tolerate longer feedback cycles. However, as you speed a system up,

such as when we increase code generation speeds by 10x or more, we need

61

62 PART 1: Why Vibe Code

feedback cycles to speed up just as much, if not more. Feedback loops are the
stabilization force that allows us to stay in control and steer the system toward
our goals.”

Let’s compare two chefs: Chef Isabella runs her kitchen with a fanati-
cism for feedback. Thermometers are checked, dishes are tasted at every stage
by multiple cooks, servers relay customer reactions instantly, and specials
undergo trial runs before hitting the main menu. When a slightly off-putting
aroma wafts from the paella, she catches it before it reaches a customer. Her
kitchen adapts when things go wrong during every service. She experiments
with menus throughout the season and maintains her restaurant’s stellar rep-
utation.

On the other hand, Chef Vincent is equally skilled but operating in a
feedback vacuum. Dishes go untested until they land on the table, cooks work
in silos, and servers don’t bother giving feedback anymore. When that batch
of questionable seafood makes it out, the results are predictable: unhappy
(and unwell) diners, scathing reviews, and maybe a visit from the health
inspector. Vincent’s failure isn’t one of skill but of process—a failure to build
in (let alone act on) rapid feedback.

For instance, in our stories when Al-generated code generation spiraled
out of control, we didn't create fast and frequent enough feedback. Our old
habits proved to be wildly insufficient. You keep things safe and under con-
trol by building incrementally, testing frequently, and validating relentlessly.
By doing so, you build trust in your Al partner and minimize rework—that
soul-sucking and most expensive type of work. It doesn’t mean progress has
to be strictly linear. You can explore multiple paths in parallel, like an army of
ants searching for the best route to food, but each path needs its own frequent
checkpoints.

In fact, as Gene and his colleagues Jez Humble and Dr. Nicole Forsgren
found in The State of DevOps Reports—a cross-population study that spanned
36,000 respondents over six years—that fast feedback loops, through CI/CD,
were one of the most significant predictors of performance.'

* The Nyquist stability criterion from control theory tells us that to maintain control over any sys-
tem, our feedback must operate at least twice as fast as the system itself. Al-assisted development
requires proportionally faster feedback loops as generation speeds increase, a bit like how a race car
driver needs faster reflexes at higher speeds.

CHAPTER 7: What Skills to Learn 63

In Part 2, we'll give you practical techniques for:

o Creating fast feedback loops.

o Leveraging Al to perform validation tasks and making checks
faster and less error-prone than manual review alone.

o Ensuring youre building the right thing (validation) and
building the thing right (verification).

o Using feedback to steer your project effectively, perhaps
toward that elusive product-market fit.

To achieve FAAFO, you must have the skills and processes to build trust
in what your AI collaborator creates. Trust us first: Going fast without feed-
back is dangerous.

Creating Modularity

While fast feedback provides a control mechanism for moving quickly and
safely, modularity partitions our system. It allows us to do work in parallel,
creating independence of action. It makes the system more resilient, and it
enables the low-risk exploration of alternative solutions (i.e., options).

In high-pressure and high-intensity situations, modularity can be the
difference between a well-run professional kitchen and utter pandemonium.
It’s the principle that allows different parts of a system to operate and evolve
independently, and it directly impacts whether your team thrives or burns
out.

Dr. Dan Sturtevant and his colleagues did research that showed how
developers working in tangled, non-modular systems are 9x more likely to
quit or be fired.* And again, The State of DevOps Reports showed that a mod-
ular architecture was also a top predictor of performance.’

Alexander Embiricos from the ChatGPT Codex team described how an
engineer using Al tools achieved excellent “commit velocity” building a new
system from scratch. But when they ported it “into the monolith that is the
overall ChatGPT code base that has seen ridiculous hypergrowth” (that is, a
system with architectural problems) the results changed dramatically. Despite

64 PART 1: Why Vibe Code

having the “same engineers, same tooling,” their “commit rate just plummets.”
This real-world example shows that even at OpenAl, architectural constraints
affect developers using Al too.

Let’s revisit Chefs Isabella and Vincent. Isabella’s kitchen is a model of
modularity. Each station—pastry, grill, sauce—is distinct, with its own space,
tools, and responsibilities. Chefs work independently, experimenting within
their domain without causing system-wide meltdowns. When the pastry chef
tries a new technique, the grill chefisn’t dodging flying flour. Communication
between stations is clear and standardized. This independence allows them to
work in parallel, combining elements from different stations to create excit-
ing new dishes reliably.

Contrast this to Chef Vincent’s kitchen, which is a war zone of entan-
glement. Shared tools vanish, cooks bump elbows, and chefs and servers
collide. A simple task requires navigating a maze of dependencies. Forget
parallel work; chefs literally wait in line, blocked by others. His talented
team is hampered not by lack of skill, but by the sheer friction of the system.
Yes, sometimes new “dishes” emerge, but usually by accident when ingredi-
ents crash into each other. We've seen code bases like this, where developers
(and their AI partners) can't touch anything without triggering explosions
elsewhere.

We want modularity in our code and projects, because it enables the
independence of action for coding agents (and people) to work in parallel.
We want to have them work on different tasks—refactoring a module, imple-
menting a feature, writing tests—without causing horrendous merge conflicts
(or worse, subtly) or breaking unrelated functionality.

Good modularity also builds resilience. Like cloud software designed to
handle failing disks, a modular system contains failures; if one module has a
problem, the blast radius is limited. You can often isolate or replace it without
taking down the whole system.

Modularity also unlocks optionality, a cornerstone of FAAFO. It allows
you to explore different solutions in parallel. If you want to try three different
caching strategies, you can build them as alternative modules. If you need to
experiment with a new UI component, you can develop multiple versions.
Keeping your system modular gives you freedom.

In Part 2, we'll describe techniques such as:

CHAPTER 7: What Skills to Learn 65

o Task decomposition and breaking complex problems into
smaller, manageable components with clear interfaces.

o Working with multiple agents simultaneously to enable work
to happen in parallel without creating interference, or worse,
giant merge conflicts.

« Branch management and version control strategies to explore
multiple options.

« Agent contention detection to discover when agents are inter-
tering with each other’s work.

o Enabling experimentation and exploration by creating mod-
ules, where you can try a bunch of things, mix and match, and

pick the best combination.

Later, we'll touch on a formula (NK/t) that helps quantify this power
of parallel experimentation. And naturally, the faster your feedback loops,
the more experiments you can run, increasing your chances of finding the
best approach. In short, modularity helps achieve more in all of the FAAFO

dimensions.

Embrace (or Re-Embrace) Learning

We've already talked about the importance of architecture and fast feedback
loops in your Al-assisted kitchen. But there’s a third, equally crucial element
that underpins everything, especially when your sous chefis an AI: You have
to become re-accustomed to learning. Al is changing so rapidly that it is
going to take constant learning and practice, at least for a while, to develop
the good judgment you need—by taking risks, learning from mistakes, and
adapting.

Think about our chefs again. Chef Isabella brings in new sous chefs,
complete with their eccentricities, who are often challenging to wrangle.
However, she knows that this is the future and becomes a relentless learner.
She experiments (which can result in surprises or failures), does controlled
trials, and seeks out other head chefs who are on their own journey. And with

her new team, she learns to create ever more ambitious dining experiences

66 PART 1: Why Vibe Code

that meet her customers’ increasingly demanding tastes. And somehow, it’s
more fun than before.

On the other hand, Chef Vincent tries working with these new sous chefs
a couple of times. One overcooked the fish, one deflated the souftlé, and one
accidentally set their dish on fire. Vincent posts pictures of these culinary
calamities on social media, ridiculing these strange new chefs, earning him
his fifteen minutes of internet fame. But in time, he finds himself left behind
as the culinary and dining world changes rapidly around him.

You might be surprised to learn that learning is learnable. You can
improve your ability to learn at any time in your life. It's coachable, teach-
able, and you can make your brain become more neuroplastic and adaptable
through focus and lifestyle changes. Personally speaking, we have learned
more in the last year or two than we have at any point in our careers—at an
age, to be frank, when learning isn't as easy anymore.

Learning means doing. It means tackling problems that seem insur-
mountable. It means taking risks, patiently wading through your mistakes,
pushing until you get the outcomes you want, and troubleshooting creatively
when things go wrong. Your willingness and indeed eagerness to improve
how you learn will give you constant leverage in the next few years as Al
ascends to touch all knowledge work.

Here’s an example. When Gene first started vibe coding with Steve,
Gene was convinced that the then-new OpenAl ol model would be great at
ffmpeg and could help him overlay captions onto video excerpts. That is to
say, subtitles on YouTube clips. Two hours later, Gene ran around in circles,
typing increasingly complex ffmpeg commands.

The AI was more than wrong; It was confidently wrong. Thinking about
that particular Sunday afternoon still causes Gene to clench his jaw. But he
learned an important lesson on when to give up on using Al to solve cer-
tain types of problems. It was a crummy experience, but he learned from it
because it was a crummy experience. You learn by doing.

Cultivating a learning mindset has nothing to do with innate genius.
Learning is about deliberate and intentional practice, much like Dr. Anders
Ericsson described for mastering any complex skill.®

You need:

CHAPTER 7: What Skills to Learn 67

o Expert coaching: Leverage mentors, peers, and Al itself (ask-
ing it to explain concepts or critique approaches).

o Fast feedback: Build those tight verification loops we dis-
cussed, so you immediately see the results of the AT's work
and your prompts.

o Intentional practice: Consciously work on skills, like
prompt refinement or evaluating Al suggestions in unfamil-
iar domains. Chop wood, carry water—or rather, vibe code,
review output.

o Challenging tasks: Push yourself slightly beyond your comfort
zone, using Al for problems you couldn’t solve alone yesterday.

In Part 2, we'll describe how you can:

o Master the “count your babies” technique to systematically
verify that AI delivers everything you asked for, preventing
silent omissions that can break your systems.

o Develop your “warning signs detector” to spot AIs subtle
shortcuts and confidently challenge it when something feels
suspicious.

o Use Al as a world-class consultant on topics you don't fully
understand or want to learn about.

o Craft suitably sized tasks that fit AT’s attention span, prevent-
ing the corner-cutting that happens when its context window
gets overwhelmed.

o Implement strategic checkpointing rhythms to create a safety
net of recovery points throughout your development process.

o Deploy “tracer bullet testing” to validate whether AI can han-
dle tightly scoped technical challenges before investing signif-
icant time.

In short, achieving FAAFO becomes an exercise in “being a great learner”
Your commitment to continuously learning how to interact with, guide, and

validate Al is what enables you to go faster, confidently pursue ever-more

68 PART 1: Why Vibe Code

ambitious outcomes, whether working alone or as part of a team, and explore

more options.

Mastering Your Craft

At this point, we've equipped your kitchen with AI-powered sous chefs.
You've heard some stories, and by now youre somewhat aware of both their
potential upside and their potential dangers. We've hinted that youre now
the head honcho in your new role as a software developer, and we've repeat-
edly assured you that vibe coding will be more fun than any kind of software
development you've ever done.

But we haven’t addressed the elephant in the kitchen: None of it matters
if you don't like cooking.

Chef Isabella thrives because she loves cooking. She may not be an expert
in all the techniques or latest tools, but she has a vision for what she wants,
she knows what’s important to her in the moment, and she can manage sous
chefs who may know specific areas better.

Chef Isabella lives to cook, while Chef Vincent cooks to live. He stopped
learning any new techniques ages ago. He’s satisfied as long as the food tastes
“decent” As a result, few people wind up going to Chef Vincent’s restaurant
because...well, his food is not that great.

Building things you love, or at least setting a determined vision and goals
for yourself, will help you find and acquire the skills you need. Especially with
AT there to help. All you need is the desire.

In Part 2, you'll:

o Develop an intuitive understanding of the limitations and
strengths of these Al tools, just as great chefs know when to
trust their equipment and when to intervene.

 Get an overview of how Al code generation works, enabling
you to use Al to build things in languages you haven't used
before.

o Learn how to pick things you love to work on, which will
naturally drive the right learning behaviors, unlike following

trends without purpose.

CHAPTER 7: What Skills to Learn 69

o Transform coding from a solitary activity into a collaborative
dialogue that deepens your understanding with each itera-
tion.

o Build a creator’s mindset that focuses on meaningful out-
comes rather than getting lost in tool obsession or technical
trivia.

Our advice: The more you throw yourself into vibe coding, the more
you’ll master your craft of creating software—and that’s the high-level goal,
isn't it? Cook things you love, and cook different cuisines, which will force
you to learn new tools and techniques. And of course, achieve ever-higher
levels of FAAFO.

Conclusion

We began this journey exploring Dr. Erik Meijer’s striking declaration that
“the days of writing code by hand are coming to an end.” It’s a provocative
statement, to be sure. But it’s probably the simplest way to describe the fun-
damental transformation happening in software development. What started
with ChatGPT and other AI assistants, at first seemed like a toy, but has
evolved within two years into professional vibe coding, a new approach that’s
reshaping how we create software.

In Part 1, we've examined the five dimensions of value that vibe coding
creates: writing code faster, being more ambitious about what you can build,
doing things autonomously or alone that once required teams, having more
fun, and exploring multiple options before committing to decisions. These
benefits combine to create a step change in what’s possible for developers at
all levels. The economics of what’s worth building have opened up, and proj-
ects once eternally deferred are now within reach.

For both of us, these benefits have transformed our lives in deeply per-
sonal ways. Steve, after watching his beloved game Wyvern languish with
over thirty years of unfixed bugs and aspirations, saw a path forward. For
Gene, vibe coding reopened doors to coding that had seemed closed since
1998, enabling him to write more code in 2024 than in any previous year of
his career.

70 PART 1: Why Vibe Code

Hopefully we've convinced you why vibe coding is important. Now we're
ready to move into the kitchen and start cooking. In Part 2, we'll hand you the
knives, fire up the stoves, walk you through your first vibe coding sessions,
and then step you through the theory and fundamentals to do it well.

