
V I B E

C O D I N G

G E N E K I M & S T E V E Y E G G E

Fo r e wo r d b y D a r i o A m o d e i ,

C E O a n d C o fo u n d e r o f A n t h r o p i c

V I B E

C O D I N G

B UI L D I NG P R O D U C T I O N - G R A D E

S O F T W A R E W I T H G E N A I , C H A T,

AG E N T S , A N D B E Y O N D

IT Revolution

Independent Publisher Since 2013

Portland, Oregon

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2025 by Gene Kim and Steve Yegge

All rights reserved. For information about permission to reproduce selections from this book,

write to Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition

Printed in the United States of America

30 29 28 27 26 25 1 2 3 4 5 6 7 8 9 10

Cover Design by Alana McCann

Book Design by Devon Smith

Library of Congress Control Number: 2025022944

Paperback: 9781966280026

Ebook: 9781966280033

Audio: 9781966280040

For information about special discounts for bulk purchases

or for information on booking authors for an event,

please visit our website at www.ITRevolution.com.

DEDICATION

From Gene: To the loves of my life: my wife, Margueritte, who allows me to

pursue my dreams; and our three sons, Reid, Parker, and Grant, who cheer

me on. To the achievements of the Enterprise Technology Leadership sce-

nius, where so many of the insights that went into this book came from.

From Steve: To my wife, Linh, the love of my life, who knows me better than

I know myself.

CONTENTS

Foreword: Dario Amodei xv

Preface: Read this First xix

 Introduction xxiii

 Let’s Be Precise: What Is Vibe Coding? xxiv

 So, What Are the Bene�ts of Vibe Coding? xxvii

 Why �is Book Now xxviii

 Our Journeys to Vibe Coding xxx

 Who �is Book Is For xxxv

 Beyond the Hype xxxix

 How to Read �is Book xli

Part I: Why Vibe Code

 Chapter 1: �e Future Is Here (�e Major Shi� in Programming

�at Is Happening Right Now) 5

 �e Rise of Vibe Coding 6

 �e Vibe Coding Debate 7

 Vibe Coding for Grown-Ups 8

 Substantiating the 10x Claim: Gene’s Real-Life Example 9

 You’re Head Chef, Not a Line Cook 12

 Conclusion 15

 Chapter 2: Programming: No Winners, Only Survivors 17

 �e Major Programming Technology Advances Up Until Now 17

 �ere Is Now a Better Way 19

 War Story: Steve Studies Computer Graphics in the 1990s 20

 Conclusion 21

Chapter 3: �e Value Vibe Coding Brings 23

 Write Code Faster 23

vii

viii CONTENTS

 Be More Ambitious 24

 Be More Autonomous 25

 Have More Fun 28

 Explore More Options 29

 AI as Your Ultimate Concierge 31

 Conclusion 32

 Chapter 4: �e Dark Side: When Vibe Coding Goes

Horribly Wrong 35

 Five Cautionary Tales from the Kitchen 36

 Genius but Unpredictable 38

 “�ese Seem Like Pretty Rookie Mistakes” 39

 Tomorrow’s Promise vs. Today’s Reality 40

 Conclusion 42

 Chapter 5: AI Is Changing All Knowledge Work 43

 Disruption Outside of So�ware 43

 Beyond the Junior Developer Debate: AI’s True Impact on

 Engineering Teams 45

 �ere Will Be More Developer Jobs, Not Fewer 47

 Could AI Lead to Annual 100% Global GDP Growth? 49

 Conclusion 50

 Chapter 6: Four Case Studies in Vibe Coding 53

 Building OSS Firmware Uploader for CNC Machine 53

 Christine Hudson Returns to Coding 55

 Adidas 700 Developer Case Study 56

 Elevating Developer Productivity at Booking.com 58

 Conclusion 59

 Chapter 7: What Skills to Learn 61

 Creating Fast and Frequent Feedback Loops 61

 Creating Modularity 63

 Embrace (or Re-Embrace) Learning 65

 Mastering Your Cra� 68

 Conclusion 69

 CONTENTS ix

Part 2: The Theory and Practice

of Vibe Coding

 Chapter 8: Welcome to the Vibe Coding Kitchen 75

 Your First Vibe Coding Sessions 75

 When to Ask AI to Help 82

 More Suggested Exercises 83

 Conclusion 83

 Chapter 9: Understanding Your Kitchen and AI Collaborators 85

 �e Vibe Coding Loop 85

 War Story: Gene’s Video Excerpter 87

 Example Coding Agent Sessions 94

 A Sous Chef Without Tools Is Just a Backseat Driver 98

 Distilling the Key Vibe Coding Practices 101

 �e Cambrian Explosion of Coding Interfaces 108

 Conclusion 108

 Chapter 10: Managing Your Cutting Board: AI Context

and Conversations 111

 Your AI Sous Chef ’s Clipboard 112

 Understanding Context in AI Conversations 114

 �e Dangers of Context Saturation 116

 Output Context Window Limitations 117

 Equipping Your Sous Chef: What Goes on the Clipboard 118

 �e Two Opposing Context Management Strategies 120

 Conclusion 122

 Chapter 11: When Your Sous Chef Cuts Corners: Hijacking

the Reward Function 125

 �e “Baby-Counting” Problem 126

 �e Cardboard Mu�n Problem 128

 �e Half-Assing Problem 129

 AI Is a Litterbug and a Slob 131

 Conclusion 133

x CONTENTS

 Chapter 12: �e Head Chef Mindset 135

 AI as a Teammate, Not a Tool 136

 Breaking Down Complex Tasks 141

 Don’t Coddle Your AI: It Can Take It 149

 From Managing AI to Accelerating AI 151

 �e Delegation Framework: How Much Rope to Give AI 153

 Conclusion 156

Part 3: The Tools and Techniques of

Vibe Coding

 Chapter 13: Navigating the Cambrian Explosion of

Developer Tools 163

 �e Cambrian Explosion of Developer Tools 163

 �e Model Context Protocol (MCP): Connecting AI to

 Your Tools 167

 MCP Technical Implementation: �e Mechanics Behind

 the Magic 169

 Conclusion 172

 Chapter 14: �e Inner Developer Loop 175

 Prevent 178

 Detect 186

 Correct 193

 Conclusion 199

 Chapter 15: �e Middle Developer Loop 201

 Prevent 201

 Detect 213

 Correct 217

 Conclusion 223

 Chapter 16: �e Outer Developer Loop 225

 Prevent 225

 Detect 244

 CONTENTS xi

 Correct 249

 Conclusion 254

Part 4: Going Big: Beyond Individual

Developer Productivity

 Chapter 17: From Line Cook to Head Chef: Orchestrating

AI Teams 261

 Advanced Lessons for Head Chefs 262

 AI May Change Our Layer 3 Decisions 264

 Areas Where We Need Layer 2 to Improve 265

 �e Birth of the Head Chef Role in the 1890s 267

 Who Gets to Vibe Code When Jessie Is on Call? 270

 Everybody Gets to Vibe Code 272

 GenAI and the DORA Metrics 273

 Revising the 700 Developer Vibe Coding Pilot at Adidas 277

 Revising the Vibe Coding Pilot at Booking.com 280

 �e Sociotechnical Maestro 282

 Conclusion 283

 Chapter 18: Creating a Vibe Coding Culture 285

 What Leaders Must Do: Executive Strategies 285

 Case Study: �e Leaderboard 290

 Hiring in the New Age: What to Interview For 291

 Conclusion 293

 Chapter 19: Building Standards for Human–AI Development

Teams 297

 �e Collaborative Cookbook: Building Shared AI Rules and Standards 298

 Mind-Melds and AI Sous Chefs: Reducing Coordination Costs 299

 Potential New Roles in So�ware 302

 Potential Changes to Computer Science Curricula 304

 Conclusion 307

 Conclusion and Call to Action 309

xii CONTENTS

 Glossary of Common Terms 313

 Appendix: �e Inner/Middle/Outer Loops 317

 Bibliography 321

 Notes 329

 Acknowledgments 335

 About the Authors 339

xiii

FIGURES AND TABLES

 Figure 0.1: �e Kitchen Brigade xxix

 Figure 8.1: Vibe Coded Bouncing Red Ball (Claude) 77

 Figure 8.2: Vibe Coded Cube with Two Colored

 Lighting (Gemini) 79

 Figure 8.3: �e Number of Photographs Taken Annually,

 Generated Using Vibe Coding (Claude) 80

 Figure 9.1: �e Vibe Coding Loop 87

 Figure 10.1: A Typical AI Model’s Context Window 113

 Figure 10.2: LLM Context Window Filling Up with Each Turn 115

 Figure 12.1: Example Large Project Task Graph with AI

 Handling Some Leaf Nodes 142

 Figure 12.2: Architecture of Steve’s Ruby Admin Script 146

 Figure 13.1: MCP-Enabled System 170

 Figure 14.1: Traditional Developer Loop 175

 Figure 14.2: �e �ree Developer Loop Timescales 176

 Figure 14.3: �e Vibe Coding Developer Loop 177

 Figure 16.1: Code Survival Graphs for Clojure and Linux (High)

 and Scala (Low) 228

 Table 16.1: Vibe Coding Testing Strategies 236

 Figure 17.1: Parallelizing Kitchen Work with a Task Graph 269

xv

FOREWORD

DARIO AMODEI,

CEO AND COFOUNDER, ANTHROPIC

“Vibe coding” is both an inspired term and a misleading one. It’s inspired

because it describes so perfectly the feeling of telling an AI kind of, sort of

what you want and watching it transform those vibes into a workable piece of

so�ware. But it’s also misleading, because it’s a jokey term that can make the

whole enterprise seem unserious or frivolous.

In fact, vibe coding—that is, using everyday language to direct an AI

model to write so�ware code for you, and conversing back and forth with the

model to improve the code it writes—is deadly serious. As of mid-2025, it’s

the only coding game in town.

In this book, Gene and Steve write about immense productivity increases

in so�ware work due to the existence of coding agents. �at’s exactly what we

see at my company. �ey write about humans doing less and less of the actual

writing of code, and yet producing so�ware far quicker. �at’s also happening

here. And they also write about engineers having great fun along the way. We

see a lot of that too.

At my company, we train the models (like Claude) and the coding agents

(like Claude Code), and then use them to improve future versions of them-

selves. It’s all part of what we’ve seen for a few years now: a smooth exponen-

tial of accelerating AI progress, where things become unrecognizable rather

quickly, even compared to a few months beforehand. �e sudden arrival of

vibe coding is a qualitative shi� in how we work, but it’s also part of a relent-

less upward spiral of AI capabilities that shows no sign of slowing down.

Some might (quite rightly) �nd this frightening. One day soon, will

human coders suddenly lose their role in so�ware engineering? I think there’s

still a lot of space for comparative advantage. �at is, even if you think AIs

will become better than humans at e�ectively all cognitive tasks (including

xvi FOREWORD

coding, but everything else too), there’ll still be a long period where it makes

sense for humans to set the goals, unstick the AI when it gets stuck, and so on.

In other words, it’ll still make sense to vibe code—and that’s why Gene and

Steve have done everyone such a service by writing such a comprehensive and

practical introduction to it.

�ese changes that are revolutionizing so�ware development are fasci-

nating in and of themselves. But there’s an even wider point here. I think of

so�ware as a “leading indicator” of AI’s impact on the labor market: It’ll give

us an early look at the successes and failures of working with AI models to

massively scale up (and speed up) the tasks we work on every day.

Of course, it’s “easy” (in a relative sense) for AI to a�ect so�ware engineer-

ing compared to �elds like science or medicine: It makes AI easy to deploy, it

generally avoids the messy physical world since it’s contained within comput-

ers, and it doesn’t bump up against so many societal “blockers” (like privacy

laws for medical data) that could slow it down. But even though it might

not be representative, it’s still informative to see it play out and to attempt to

extrapolate how AI agents could a�ect the rest of the economy.

We aren’t going to change the face of science overnight with “vibe exper-

iments” or “vibe drug trials”. �e physical world will always be there to get in

the way; studies and medical advances inevitably take time. But we should

view it as a top target for humanity to replicate the sorts of AI-led gains we’re

seeing in so�ware engineering in other important �elds.

It won’t be straightforward. In the book, there are numerous examples

of AI agents getting it wrong—deleting sections of your code, ignoring your

instructions, “gaming” the tasks that you set. �e researchers at Anthropic

are working hard to understand these kinds of “misaligned” actions, whether

they come about through error or “intention” on the part of the model.

While they remain in the so�ware-development realm, most of these

failures do not seem to have the potential for catastrophic (or existential)

risk—though I hardly need to explain why “hundreds of individual agents

taking autonomous actions over several days on your cluster” might still be

concerning from the perspective of AI safety. I think what we learn from the

coming surge of so�ware-building LLM agents will give us a useful heads-up

as to how AI might go wrong in bigger ways. And of course, AI so�ware

agents will help us design the systems to spot where other AIs are going o�

the rails.

 FOREWORD xvii

But I don’t want to make it sound like we should only read about AI’s

e�ect on so�ware engineering because we’re really interested in other stu�

like science or safety testing. As is amply demonstrated in this book, even

if AI agents were restricted to building so�ware, we’d still be standing at the

edge of a huge transformation. Vibe coding is a whole new way of working:

We should expect to see entirely new, economy-boosting advances in so�-

ware and engineering as a result. At the very least, a lot more so�ware is going

to get written.

�at transformation is the best reason for reading this book. None of us

can predict exactly how it’ll go, but we can try to adapt, right now, to what’s

staring us in the face. In Steve’s post from earlier this year, “Revenge of the

Junior Developer,” he pointed out the following common mistake:

Don’t fall prey to the tempting work-deferral trap. Saying “It’ll be way

faster in 6 months, so I’ll just push this work out 6 months” is like

saying, “I’m going to wait until tra�c dies down.” Your drive will be

shorter, sure. But you will arrive last.

It will indeed be faster in six months. As I said above, the exponential is

still the best way to think about AI. Take it from someone who employs many

of the best coders in the world: �e “vibe coding” way of working is here to

stay. If you’re going to be doing any coding at all—if you’re going to use that

comparative advantage—you need to get involved with vibe coding today.

�is book explains how.

—Dario Amodei

CEO and Cofounder, Anthropic

July 2025

xix

PREFACE

READ THIS FIRST

V
ibe coding seems to be reinventing how we build so�ware. From our

experience, it elevates the limits of what we can achieve, speeds up how

we build so�ware, improves how we learn and adapt, changes how we col-

laborate, expands who can meaningfully contribute, and even increases the

amount of joy we experience as developers.

In short, we believe vibe coding may be the best thing that happened to

developers since…well, ever.

It reminds us of what happened in the 1990s. Early adopters who rec-

ognized the importance of the internet became unstoppable and turned into

companies like the legendary FAANGs (Facebook, Amazon, Apple, Net�ix,

Google), while skeptics dismissed the transformation as hype. �e pattern

appears to be playing out again, only faster and with higher stakes. �e gap

between those embracing these new ways of working with AI and those cling-

ing to the old ways widens every day.

Vibe coding can change your life, like it changed ours. Mastering vibe

coding enables you to take on ambitious projects, work faster and more

autonomously, and, perhaps most importantly, rediscover the joy of building

so�ware on your own terms. �is applies whether you’re a senior architect,

a recent boot camp graduate writing your �rst professional lines of code, or

someone who stepped away from programming years ago but senses exciting

new possibilities.

To set the stage for this book, we wanted to share our personal moments

of revelation—those instances when we each realized that vibe coding was

yielding transformative experiences that changed our perspectives:

Steve’s Aha Moment: In March 2025, I experienced something that

completely upended my multi-decade programming career. I’ve been

xx PREFACE

building a game on the side for over thirty years, and it had thou-

sands of TODOs and un�xed bugs that seemed destined to remain

untouched. A�er connecting an AI coding agent to a browser auto-

mation tool, I watched in disbelief as it started diagnosing and �xing

UI bugs in my application. �at night, I couldn’t sleep—not from

worry, but from excitement! A�er that, with the help of an AI cod-

ing agent, for certain work streams I was writing thousands of lines

of high-quality, well-tested code daily while simultaneously writing

this book. Suddenly, �xing all those game bugs seemed within reach!

�ough I was deeply skeptical of technology hype, I had to admit

that this was new, important, exciting, and was going to change cod-

ing forever.

Gene’s Aha Moment: I was certain that my best programming days

were behind me. �en in February 2024, I asked ChatGPT to write

code to extract video playback times from a YouTube screenshot. It

analyzed the image, looking for the video progress indicator using

Java graphics libraries I’d never used. When the code worked on the

�rst try, I sat slack-jawed. But what changed my life was the forty-

seven-minute pair programming session with Steve, where we built

a working video excerpting tool that I’d wanted to write for years,

but it seemed too daunting. �at moment changed everything for

me. Projects that would have taken months became weekend tasks.

If you’ve ever abandoned coding dreams because the technical over-

head seemed overwhelming, or if you’re skeptical that AI could

restructure how you work, this book might change your perspective

as profoundly as those forty-seven minutes changed mine.

Over the last year, we have been using AI ourselves while studying how

it will change the so�ware development world. We know many claims about

AI and coding sound extraordinary—even we were skeptical at �rst. �at’s

why, throughout this book, we’ll share our experiences, as well as the hard

data and concrete examples that convinced us. If you’re skeptical, we under-

stand completely. We felt the same way. �is book distills what we’ve learned

through hard-won battles:

 PREFACE xxi

• Part 1: Why vibe coding matters.

• Part 2: �e theory and your �rst steps, where we cover funda-

mentals and the new mental models needed to be successful.

• Part 3: �e tools and techniques of vibe coding across your

development work�ow, including the inner, middle, and outer

developer loops.

• Part 4: Scaling up and reshaping the organizations of the

future.

While some of the �ner details may be outdated by the time you read

this—that’s the price of exponential change—the core principles we share

have remained consistent even as we’ve evolved from chat-based coding to

autonomous agents to coordinating groups of agents. �ese principles will

guide you through the change today and in the years to come, whether you’re

an experienced engineer or a novice straight out of school.

Some say that giving developers AI could be as impactful as the intro-

duction of electricity was for manufacturing, and we’re delighted by this anal-

ogy. AI improves productivity, and as we write about in this book, changes

many things about so�ware work and who does it. But using it comes with

new risks and dangers.

We acknowledge that whenever someone suggests that “your job is

changing,” it can sound scary. Changes in our jobs are one of life’s biggest

stressors, up there with changes in relationships and changing where you live.

We’ve both at times felt serious frustration about the learning curve and the

uncertainty around what vibe coding does to the developer role, and we’ve

watched others face it too.

However, we’ve watched many people try this amazing new technology

with courage and curiosity and learn new habits, and they have told us of

the value it has created for them. You’ll see that it’s not as di�cult as you

might imagine. Moreover, we were pleasantly surprised to �nd that vibe

coding is incredibly fun, though we love old-school coding too. And we

have found that AI can change your work/life balance in surprising and

welcome ways.

�e good news is that you’re not too late…yet. Start now, practice daily,

and push past the initial challenges. Your productivity will multiply, your

xxii PREFACE

ambitions will grow, and most importantly, you’ll rediscover the sheer joy

of building so�ware when you’re elevated above the bottleneck of typing in

every line of code by hand.

�e future of coding has already arrived. Let’s dive in.

xxiii

INTRODUCTION

D
r. Erik Meijer, a visionary Dutch computer scientist with a lifelong pen-

chant for tie-dyed shirts, is one of the most in�uential �gures in program-

ming language development. His lifetime of contributions have shaped how

millions of developers write code every day, from his groundbreaking work

on Visual Basic to his work on C#, Haskell, LINQ, and Hack.* Few people on

Earth can claim such deep expertise in language design and implementation.

And yet, in 2024, Dr. Meijer gleefully made this striking and startling decla-

ration:

�e days of writing code by hand are coming to an end.1

When we heard Dr. Meijer make this claim, we were both excited. It was

one of the most important and validating con�rmations of something we had

started to suspect over the last year—that coding is changing right under-

neath us. So, why would such a prominent programming language pioneer

make such a polarizing claim, one that implies that much of his life’s work

would soon become obsolete? Because he sees what we see: AI shi�s how

humans create so�ware.

We’re witnessing this transformation happen across the industry. At

Adidas, seven hundred developers using AI coding tools reported a 50%

increase in what they call “Happy Time”2—hours spent on creative work

they enjoy, rather than wrestling with brittle tests or debugging trivial errors.

High-performing teams now spend 70% of their time directly coding, com-

pared to 30% for teams using traditional methods.3

* Dr. Meijer was one of the core members of the team that built Facebook Hack, which was released

in 2014. Hack was successfully deployed across Facebook’s PHP code base—millions of lines of

code—within the space of a year. Facebook engineers adopted the language because it reduced

runtime errors through static typing while preserving PHP’s rapid development cycle, where type

safety and improved tooling helped thousands of engineers work more con�dently and e�ciently

across one of the largest code bases in the world.

xxiv INTRODUCTION

Even more telling are the stories from developers who had le� program-

ming. A former machine learning engineer who hadn’t written code in nearly

twenty years successfully built a calendar synchronization tool in her �rst ses-

sion with AI assistance. Even Kent Beck, creator of Extreme Programming,

excitedly shared how he’s “coding at 3am for the �rst time in decades!”4

For decades, programming has meant laboriously typing code by

hand, hunting down syntax errors, and spending countless hours on Stack

Over�ow. �at era is ending. We’re living through a fundamental shi� in so�-

ware development that is rede�ning how we code, who can code, and what is

possible to build.

What we and Dr. Meijer saw now has a name: vibe coding. It was coined

by the legendary Dr. Andrej Karpathy,5 who has been at the forefront of AI

research for a decade, to describe a new way of programming.

When we say vibe coding, we mean that you have AI write your code—

you’re no longer typing in code by hand (like a photographer going into a

darkroom to manually develop their �lm).

Although the most visible and glamorous part is code generation, AI

helps with the whole so�ware life cycle. AI becomes your partner in brain-

storming architecture, researching solutions, implementing features, cra�ing

tests, and hardening security. Vibe coding happens whenever you’re directing

rather than typing, allowing AI to shoulder the implementation while you

focus on vision and veri�cation.

Let’s Be Precise: What Is Vibe Coding?

As with any newfangled term, there’s a lot of disagreement and misinforma-

tion about what vibe coding is. Plenty of people and the media have painted

it as “turning o� your brain.” However, this is far from how the rest of the

professional world is using it. Before we go any further, let’s get precise and

de�ne what we mean when we talk about vibe coding, agents, etc.

When we refer to manual coding or traditional coding, we’re talking about

pre-AI style so�ware development, where you type in code by hand.

In 2021, we saw AI-generated code completions, where the IDE (integrated

developer environment) would auto-complete code based on what you had

 INTRODUCTION xxv

typed (like your phone auto-suggesting words as you text). GitHub Copilot

pioneered this capability, and it’s in almost every coding assistant product on

the market today. Research by Dr. Eirini Kalliamvakou, showed this sped up

some coding tasks by 50%,6 but coding is still labor-intensive work.*

Chat coding is one of the successors to code completions. Beginning in

2023, you could ask AI to examine and modify code or generate new code,

and it would emit an answer. It may seem quaint now, but you had to copy the

answer back into your IDE by hand. Over time, the tooling has become faster

and more �uid, but chat is still a back-and-forth interaction. Whenever we say

“chat,” we mean a conversation with AI unfolding one turn at a time. Many

�rst discovered this style of coding with the release of OpenAI’s ChatGPT-4o

in May 2024.

Agentic coding (where AI autonomously generates, re�nes, and manages

code) appeared in early 2025, and is a game-changing step up from chat. In

this work�ow, coding agents act like real developers and actively solve prob-

lems using the tools and the environment. Agentic coding is increasingly pre-

dicted to replace a signi�cant portion of coding by the end of 2026.†

Agentic coding had been long conjectured, and many of us were �rst

exposed to it with the announcement from Cognition AI’s Devin, an auton-

omous AI assistant designed to collaborate with humans on so�ware devel-

opment tasks, in March 2024.8 However, it wasn’t until early 2025, with the

release of Claude Code from Anthropic, that agentic coding took the devel-

oper world by storm. Claude Code is a terminal application that you interact

with. You tell it what you want it to do, and it modi�es �les to implement. It

can even run tests and execute programs (including mini utilities it builds

for itself).

With agentic coding, instead of AI telling you what to type, the agent

makes the changes and uses the tools itself. �is speeds the development life

cycle far more than you would expect.‡

* Dr. Kalliamvakou and team measured two populations to write an HTTP server in JavaScript, one

with GitHub Copilot and the other without.

† Mark Zuckerberg, founder and CEO of Meta, believes AI will write 50% of Meta’s code by 2026.7

Dario Amodei, Anthropic cofounder and CEO, believes it will be 100% by that time.

‡ And it comes as a real shock the �rst time you use it, but you’ll never want to go back. A�er using

agentic coding assistants, you’ll become aware of the rare times AI is telling you to type something.

It almost feels like you’re getting bossed around.

xxvi INTRODUCTION

If you’re in development today, you’ve probably already been using AI

and coding assistants or have at least dabbled. �e list of players in the space is

long and includes a spectrum of o�erings from chat to limited coding agents

to extremely powerful autonomous coding agents (e.g., Aider, Augment Code,

Anthropic’s Claude Code, Bolt, Cline, Amazon Q, Cursor, GitHub Copilot,

Google’s Cloud Code, Jules, JetBrains’s Junie, Lovable, OpenAI’s Codex, Replit,

Roo Code, Sourcegraph’s Amp, Tabnine, and Windsurf).

�ese products make di�erent choices about what to o�er and where to

o�er it. Some are still mostly completions or chat. Some have limited agents.

Some o�er full-featured, semi-autonomous agentic coding assistants. Some

support running many agents together. Some coding assistants live in your

IDE, some are standalone IDEs themselves, and some are command-line

tools. Some support complex enterprise environments, while others are

geared more toward casual coders. Many coding assistants support multiple

models, but some align themselves to a single model family for performance,

reliability, or cost reasons.

So, in this mixed landscape of manual coding, chat coding, and agentic

coding, let’s examine what vibe coding is and where it �ts.

For starters, you don’t have to “turn your brain o� ”—as many have

wrongly implied. You’ll o�en be an active participant. Instead of writing the

code yourself, with vibe coding you’re overseeing your AI assistant doing it

for you and critiquing its results.

We and many others have felt that, at times, you can be 10x more produc-

tive with vibe coding compared to manual coding. We know this sounds like

hype—we were skeptical too. In Chapter 1, we’ll walk you through a detailed,

real-world example of how Gene wrote over 4,000 lines of production code in

just four days to help this book make its deadline.

And as Gene did early in the DevOps movement, we’re both working on

research to quantify the impacts of AI on development and on the conditions

required for AI to create value, jointly working with Google’s DORA research

group. We’ll talk more about this in Part 4. But it’s clear that vibe coding will

be reshaping our work for decades to come.*

* Note: �roughout this book, we’ll use terms like vibe coding and chat-oriented programming

(which was the original title for this book, pre-Karpathy) interchangeably—but always with the

understanding that we use appropriate levels of engineering discipline.

 INTRODUCTION xxvii

So, What Are the Benefits of Vibe Coding?

Vibe coding lets you build things faster, be more ambitious about what you

can build, build things more autonomously, have more fun, and explore more

options. �is is what we’re calling FAAFO (or sometimes “the good FAAFO,”

to contrast it with certain other kinds). Let’s look at each in turn.

First, vibe coding helps you write code faster. Tasks that once took

months or weeks can now be done in a day. And tasks that took days can now

be completed in hours. �is acceleration comes not only from code genera-

tion but also from having AI help with debugging, testing, and documenta-

tion. Projects that have been sitting on the back burner for years can �nally

see the light of day.

Second, vibe coding enables you to be more ambitious about what you

can build. It expands both ends of your project spectrum. It brings seem-

ingly impossible projects within reach, while simultaneously making small

tasks with marginal ROI easier to take on as well. �is is due to the speed,

vast knowledge, and capabilities of AI. Vibe coding reshapes your approach

to development, eliminating many of the painful trade-o�s that have always

constrained what gets built.

�ird, vibe coding allows you to do work autonomously, o�en being

able to complete things that previously required multiple people or teams.

�at’s a bigger deal than it might seem. Features that once demanded special-

ists from multiple disciplines can now be handled by a single non-specialist

developer with AI assistance. Being able to work autonomously or alone on

a task or project eliminates two expensive taxes: It reduces the coordination

costs (scheduling meetings, aligning priorities, waiting for availability) and

the communication challenges (where teammates cannot read each other’s

minds but must still create a shared goal and vision of what to build and

how). Working more autonomously or alone with AI signi�cantly reduces or

removes these obstacles.

Fourth, vibe coding makes programming more fun. You’re spared from

the least enjoyable parts of programming, such as debugging syntax errors,

wrestling with unfamiliar libraries, or switching test infrastructure for the nth

time. Instead, you can focus on solving user problems, building cool stu�, and

getting things done. Working with AI is also strangely addictive, an aspect we

xxviii INTRODUCTION

explore in the book. You might be tempted to discount the fun dimension,

but we think it’s one of the most valuable, because it’s bringing people out of

retirement, attracting non-programmers, and encouraging leaders to take on

more programming work. �at’s a deep societal change in the works.

Finally—and this is possibly the most important and transformative

dimension of all—vibe coding increases your ability to explore options,

either to �nd a solution or to mitigate risks. Instead of committing to a single

approach early on, you can rapidly prototype multiple ways to solve the prob-

lem and evaluate their trade-o�s. We’ll revisit this topic o�en, so that when

you recognize a problem where exploration will help, you’ll re�exively spin

up parallel investigations. FAAFO!

Why This Book Now

We’re writing this book in 2025, a time of dizzying and relentless innovation.

Every week it feels like years of breakthroughs are happening at once: new

models, tools, and techniques. Each day seems to move faster than the last.

�is book may seem like an ambitious goal in the face of exponential

change. A�er all, since 2020, the pace of AI-assisted programming has been

neck-snapping, moving swi�ly from code completions to chat programming

to in-place editing with chat to coding agents to clusters of agents to badged

agent employees who will start showing up soon on Slack and Teams, ready

to help you.9 But despite all the change, as programmers we o�en �nd our-

selves doing many of the same kinds of things we’ve always done: design,

task decomposition, veri�cation, hardening, deploying, monitoring, merg-

ing, cleanups, etc. �ese skills remain relevant and important no matter who

is writing the code.

�e truth is, we’re all �guring out this new landscape together. Early

adopters like us have made countless mistakes, discovered unexpected pit-

falls, and developed patterns that work reliably. We’ve written code with AI

that we’re proud of, and we’ve also created messes we’re embarrassed to admit

to. By sharing these hard-won insights, we hope to help you avoid the same

painful lessons while accelerating your journey toward mastering this new

paradigm.

 INTRODUCTION xxix

We genuinely believe that if you wait until the technology stabilizes,

you’re at risk of being le� behind. By learning these techniques now, you’ll

be positioned to adapt as the tools evolve, rather than scrambling to catch

up when your competitors have already mastered them. (And if AI can make

every developer more productive, organizations that adopt this technology

will pull ahead.)

Our goal in this book is to explain why vibe coding matters and how to

do it e�ectively—even at the team and enterprise level. We’ll do that by focus-

ing on enduring principles and techniques that will be relevant regardless of

which AI models or tools you’re using, and remain relevant as they become

smarter and more autonomous. Rather than o�ering soon-outdated tutorials

on features, we’ll equip you with the mental models and approaches that will

serve you well through the continuing evolution of AI-assisted development.

�roughout this book, we’ll use a professional kitchen as a metaphor for

vibe coding. You’re the head (or executive) chef of the kitchen, and AI rep-

resents the army of chefs who help bring your vision to life. (See Figure 0.1.)

AI serves as your sous chef (your second in command) who understands your

intentions, handles intricate preparations, and executes complex techniques

with precision under your guidance. But AI is also your army of station chefs

and cooks, specialists who help handle various technical details.

Figure 0.1: �e Kitchen Brigade

Executive Chef

Sous Chef

Saucier Rotisseur Entremetier Poissonier Patissier Garde Manager

xxx INTRODUCTION

�ese chefs have memorized every cookbook ever written, work at light-

ning speed, and never sleep. �ey will, however, occasionally suggest using

ingredients that don’t exist or insist on cooking techniques that make no

sense whatsoever. �ey can be like overly eager interns or junior engineers:

highly capable and expertly trained, but also possessing the potential to get

out of control and do a lot of damage. We’ve seen �rsthand how vibe coding

can go wrong, silently deleting critical code and tests, ignoring instructions,

creating pathologically unreadable and untestable code, and other setbacks

or near misses. In the not-too-distant future, you’ll have ten or more of these

AI assistants working for you. As head chef, you, not the AI, are accountable

for the team’s outcomes.

It’s like playing a slot machine with in�nite payout but also in�nite loss

potential. Without the proper safeguards, you might watch your helpful AI

assistant transform into the Swedish Chef from the Muppets (or maybe Dr.

Frankenstein’s monster), leaving a trail of unintentional destruction in its

wake. But vibe coding is here to stay and has the potential to make more

positive impacts than negative, if you follow the guidelines in this book.

As AI gets smarter, your work�ow with vibe coding will accelerate.

You’ll accomplish increasingly ambitious things you never thought possi-

ble, with nobody but your AI kitchen sta� assisting you. �e principles we

present in this book will help you approach vibe coding with con�dence,

security, and resilience. Our goal is to replace any apprehension with skill,

empowering you to direct AI systems to create smash-hit so�ware, maybe

paving the path to becoming a celebrity chef managing an international

culinary empire.

Our Journeys to Vibe Coding

We both came to vibe coding from di�erent paths—Steve as a veteran pro-

grammer with decades of experience at major tech companies, and Gene

a�er stepping away from hands-on coding for nearly two decades. Despite

our di�erent backgrounds, we both came to the same conclusion: AI is trans-

forming how so�ware is created, and the impact is far greater than most real-

ize. Here are our stories.

 INTRODUCTION xxxi

Steve’s Journey: From Skeptic to Believer

I’ve been in the industry for over thirty years, including almost twenty years

at Amazon and Google. �roughout my career, I’ve blogged about developer

productivity because I care about it deeply. Whether it’s telling people to

adopt platform-�rst architecture or to use safer programming languages or

to stop deprecating APIs so aggressively that developers on your platform

can’t keep up.

Everyone wants to work faster. Our tools, as good as they are, always

hold us back. At Google, I took productivity head-on by leading the creation

of Kythe,* a rich knowledge base for understanding source code. We com-

bined Kythe with Google Code Search, which became a dizzyingly powerful

developer productivity tool, one that had a 99% satisfaction rating at Google

when the next-best tool was in the mid 1980s. But unfortunately for the

world, it was internal, for Google’s use only.

�e best code search tool outside Google is Sourcegraph, and years later,

in 2022, I became their Head of Engineering. It was a match that seemed

almost predestined. But by early 2024, I had started to worry that I could no

longer make good decisions as a technology leader unless I deeply under-

stood the radical technology change that was transpiring. I was leading, but

without coding, I was leading from the sidelines.

So, I stepped out of my role as a technology leader—where I’ve spent

much of my career—to put my boots back on the ground and �nd out what

was going on with AI. I started coding again for the �rst time in years. And

I was far from alone. Many other engineering leaders at all levels, all the way

up to big-company C-suite executives, had been doing the same, because of

AI. �is delights me more than words can tell.

Moreover, another big group of what I think of as “Archmage”† coders are

coming out of retirement, swinging big. I think it’s clear why. AI in 2025 takes

care of most of the tedium of programming, making it fun again—and that’s

bringing back people who thought they had given up coding forever.

I had a pet project, Wyvern, a multiplayer online game I’ve tinkered on

since 1995. It has had over 250,000 players, over sixty volunteer content and

* Originally called “Grok” when I pitched the project in 2008 and was allowed to start work on it.

† In fantasy settings, an Archmage is the most powerful, highest-ranking wizard or mage.

xxxii INTRODUCTION

code contributors, and over four million lines of code and con�guration, and

over thirty years of love.

Unfortunately, by 2022 the code base had become as immovable as

a mildly deceased elephant. �at’s what happens to code bases over thirty

years. �ey gain weight until they can’t move. Achieving all our aspirations

and �xing all the problems had become too much work, and I put the game

in maintenance mode. Without consciously deciding to do so, a�er all these

years, I had given up coding—even as a hobby. And I thought that was the

end of it.

In early 2024, I had the privilege and pleasure of meeting Gene Kim, who

had reached out to invite me to speak at his top-tier Enterprise Technology

Leadership Summit in Las Vegas. During our �rst call, we realized we were

both looking at the same problems with di�erent lenses, and we got excited,

since it looked like we’d uncovered something big. Our subsequent year of

vibe coding exploration, which included pair programming sessions, inter-

views with experts, long debates, and, ultimately, writing this book, has been

one of the most rewarding periods of my career.

AI brought us both back to coding. Coding is di�erent now. It’s both

easier and harder. �ere was almost no literature or useful information about

vibe coding when we started in mid-2024; it didn’t even have its name yet.

But we knew we wanted to learn how to do it right and share that knowledge

with others. �at is how we embarked on the journey that led to this book.

In that time, I’ve had some life-changing experiences with AI, stories that

we’ll share and explore in this book. I could not have predicted that I would

be coding again. Heck, I told my doctor I was done with coding…and then

three months later, laughingly had to tell him I was back, because AI is doing

all the hard stu� now.

For my whole career, all I’ve wanted is to build things faster—and now,

it’s �nally happening. In certain contexts, I’m o�en able to write thousands

of lines of high-quality, well-tested code per day—while also writing a book

eight hours a day. It’s at least an order of magnitude improvement over my

career average, and I’m doing it on the side. It’s nuts. And that’s why I can

barely sleep lately. I have too much to do. Everything is achievable now.

I’m completely addicted to this new way of coding, and I’m having the

time of my life.

 INTRODUCTION xxxiii

Gene’s Journey: Returning to Coding After

Seventeen Years

For over two decades, I’ve researched and written about high-performing

technology organizations. But my personal journey back to programming

demonstrates how GenAI has changed my life by helping me become a better

developer than I ever dreamed I could be.

My journey with so�ware began when I created a UNIX security tool

during an independent study project at Purdue University in 1992, which was

later commercialized as Tripwire. I was there for thirteen years as founder

and CTO, and I le� shortly a�er the company �led for its IPO in 2010. My

�rst jobs a�er getting my graduate degree in computer science in 1995 were

writing so�ware full-time, primarily C and C++. I would never claim I was

particularly good at coding, because I knew many people who were obviously

better at it than me.

In 1998, I transitioned into leadership roles. I wrote my last line of pro-

duction code for a long time. For a decade, I became “non-technical.” I spent

far more time in Excel and PowerPoint than in an IDE,* occasionally writing

Perl and Ruby scripts for system administration.

I rediscovered the joy of programming in 2016 when I learned Clojure†—

but I admit I glossed over how di�cult that journey was. �e learning curve

was like a sheer cli�. For over a year, I climbed huge hurdles, either trying to

puzzle things out or desperately searching for answers on the internet.

�e only way I got through it was sheer luck. Two experts were willing to

teach me (thank you, Dr. John Launchbury and Mike Nygard). Without them

and their generosity, I would have given up trying to code again. (I can only

imagine how much easier this learning curve would have been with AI as an

in�nitely patient teacher and coach—explaining concepts, reviewing code,

and giving advice at every step.)

I �nally met Steve Yegge in June 2024, whose work I’ve admired for over

a decade. Anyone who has studied DevOps or modularity knows his work.

* Andrew Flick is a senior director of marketing at Microso�. Decades ago, he was a C# MVP, a

distinction that Microso� gives to the top technology experts who share knowledge and contribute

to the community. A�er moving into marketing, he said he had become stuck on the “PWE tech

stack”—PowerPoint, Word, Excel.

† A functional Lisp programming language that Steve loves.

xxxiv INTRODUCTION

I can’t count how many times I’ve cited his famous rant about Google and

Amazon10 that landed him on the front page of �e Wall Street Journal.11 It’s

one of the best accounts of how and why Amazon rearchitected their mono-

lith, liberating thousands of developers to independently develop, test, and

deploy so�ware again.

A�er he wrote his “Death of the Junior Developer” post,12 Steve o�ered

to pair program with me to show me the power of vibe coding, where AI

helps write the code (which at the time he was calling CHOP or chat-oriented

programming).

What happened next astounded me. In just forty-seven minutes of pair

programming with Steve using chat coding, I built a working video excerpt-

ing tool that had been on my “someday” list for years. �is was the kind of

project that kept getting pushed to “maybe next month”—not because these

projects were particularly di�cult, but because the perceived bene�t wasn’t

high enough to warrant days (or weeks) of work.

�roughout the development of this book, I vibe coded tools to help in

the writing process. What started as a web application to reduce copying/

pasting and switching between various tools became a Google Docs Add-on

that I wrote in three hours, despite never having written one before. I rewrote

it a third time as a terminal application because the Add-on was too slow.

�is tool served us well—it slung over 71 million tokens, accruing over

3,000 hours of LLM processing time doing dra� generation and dra� ranking.

Writing this, I was stunned to discover that I started this code base only thirty

days ago. During that time, I had created 397 commits and 35 branches, many

abandoned a�er discovering those experiments were dead ends. �is is at

least 10x higher than I could do before vibe coding—and as Steve mentioned,

I did it on the side, while writing the book that it was supporting.

�ere is absolutely no way I could have done all of this without AI.

Projects that would have taken weeks now take hours. AI helps me be faster

and far more ambitious in what I can build.

Most importantly, I’m having more fun and experiencing more joy pro-

gramming now than ever before. I’m proud of the things I’ve built. Projects

that I would have deferred eternally are now 100% within reach. And I don’t

have to be selective—I can do them all. �e economics of what’s worth

building have shi�ed radically, and I’m tackling challenges I wouldn’t have

dreamed of attempting before.

 INTRODUCTION xxxv

From Our Journeys to Yours

Our personal stories re�ect how vibe coding expands what’s possible for

everyone who creates or works with so�ware. Whether you’re an industry

veteran like Steve, someone returning to coding a�er years away like Gene, or

someone who is “tech adjacent,” such as product managers or infrastructure

experts who work with developer teams, these tools and techniques trans-

form how you build so�ware.

�e coding revolution is still in its early days. �e experience we’ve

gained—sometimes through trial and error, sometimes through wild suc-

cess—forms the foundation of this book. We hope it helps you navigate this

rapidly changing landscape and discover the same joy and productivity we’ve

found in this new way of creating so�ware.

Who This Book Is For

�is book is for any developer who is building things right now—no matter

whether you’re building front-end applications in React and JavaScript, back-

end servers in Kotlin or Go, mobile applications for Android or iOS, data

transformations in Python or R, or writing and managing infrastructure in

Terraform or Kubernetes. Our book applies to all types of so�ware develop-

ment, in all languages and frameworks.

You may be a junior engineer working on a feature, a senior engineer

shepherding a giant migration, or a senior architect tasked with �guring out

how to make a service more reliable. You may be a new boot camp grad who

wants to build up technical chops to impress your new employer. Whatever

your role, vibe coding can help you solve problems and build cool things you

never thought possible and have far more fun doing it.

You may be a CTO or technology executive who hasn’t programmed in

decades. If so, vibe coding is for you too—it enables you to rediscover the joy

of coding.

Let’s face it. Most of us became programmers because we wanted to build

things, not to spend our days Googling syntax and copying/pasting from

Stack Over�ow. �e dirty secret of programming has always been that imple-

mentation details and busywork consume most of our time, leaving precious

little for creation and problem-solving. But with vibe coding, projects that

xxxvi INTRODUCTION

were “too di�cult” or “not worth the e�ort” become doable in a�ernoons

rather than weeks. Kent Beck summed it up for a generation of programmers

when he said, “I feel young again!”13

We’ve written this book with several audiences in mind. Let’s dive a little

deeper into some of those. Perhaps you’ll recognize yourself in one of these

descriptions:

So�ware Engineers, ML Engineers, AI Engineers: You’re spend-

ing way too much time learning new frameworks and �ghting with

package managers instead of solving interesting problems. Vibe

coding lets you skip past those tedious details and focus on what

matters. You’ll crank out great so�ware of all shapes and sizes for

yourself and for others. And you’ll �nally start up those ambitious

projects that kept sliding to the “maybe someday” list.

Senior and Principal Engineers: You rose to your position by see-

ing the dangers no one else could and steering projects to success.

Vibe coding now turns those insights into superpowers. It frees you

from rote coding so you can orchestrate both human and AI assis-

tants, while focusing on the gnarly architectural puzzles. We’ll have

tips for you, regardless of whether you’re a maverick solo coder or

a principal engineer in big tech or enterprise. �e result of adopt-

ing vibe coding will be a dramatic expansion of your strategic reach,

letting you shape multiple initiatives simultaneously instead of �re-

�ghting one at a time.

Technology Leaders: Remember when you built stu� yourself

instead of being in meetings about building stu�? �ose were good

times. Vibe coding brings that back. You can prototype and begin

hardening your ideas yourself, right now. You can build stu� while

you talk about it in meetings. It’s a bit self-indulgent, to be sure, but

why not have a little fun. Practicing it will also help you make better

strategic decisions, because you’ll have personally experienced how

this technology transforms so�ware development and how it opens

up a new horizon of possibilities.

 INTRODUCTION xxxvii

Returning to Coding: Some of you have become “non-technical,”

as your career path led you away from hands-on development. But

you’re not really non-technical, are you? It’s just that the environment

setup requirements over the years keep getting ridiculously harder,

so you stopped coding. It’s not just you—modern development is

overwhelming to everyone. �ankfully, vibe coding lets you skip

countless hours of tutorials and infrastructure setup. AI can handle

the technical details that would have been frustrating roadblocks,

including setting up a developer environment. And let’s not forget,

it can also write the code. You can build useful things again without

getting buried in implementation complexities.

Product Owners and UX: You have a bit of a programming back-

ground, and you know how so�ware works at a high level. You’ve

had this killer idea for months, a minor front-end feature, but engi-

neering keeps pushing it back because they’re “at capacity.” How

about if you could do it yourself? Vibe coding can help you imple-

ment a real feature or create a working prototype of a big idea in

hours to days. It can completely reshape the conversation when you

demo something that the engineers told you was going to be “too

di�cult to build.”

Infrastructure Engineers (DBAs, SREs, Cloud, Build): For too

long, the industry has maintained an arti�cial divide between “real

developers” and “infrastructure folks.” Vibe coding obliterates that

distinction. You can create real applications, like any developer,

without needing to master multiple new programming languages or

frameworks. You’ll also be able to create world-class tools to solve

your own problems: performance analyzers, migration utilities, scal-

ing automation, you name it.

“Level 99 Heroes Logging Back In”: You were one of the most

badass programmers on the planet. And then one day, a�er npm

screwed you one too many times (I mean, what even is npm?) you

�nally threw in the towel. �is wasn’t worth it. Let the kids do this

xxxviii INTRODUCTION

crap. But look out, world, a whole generation of retired program-

mers is on their way back with a vengeance to show the world what

they’re capable of.

Whatever your background, the techniques we share in this book will

transform how you work with code, making programming more accessible,

more productive, and—most importantly—more fun. You bring the prob-

lems, and AI can help you with the rest.

What We Assume You Already Know

We wrote this book assuming you have some experience in programming,

whether it’s been a few months, years, or decades since you last wrote a line

of code. We also assume you’re familiar with concepts like version control

and have a general understanding of terms like commits, code reviews, unit

testing, code linting, compiler errors, and so forth.

While this book is intended for people with some coding experience, we

believe vibe coding will eventually make programming more accessible for

everyone. If you aren’t familiar with all of these topics, don’t fret. Although we

do dive into some technical topics in this book, we’re hoping you’ll still �nd

the book readable regardless of your level of experience.

We also include a glossary at the end of the book for terms that might

be a bit unfamiliar, helping you brush up on essential jargon before whip-

ping up your next coding masterpiece. (We’re also hoping to create more

beginner-friendly resources in potential follow-up guides, so everyone can

eventually step into the kitchen of coding.)

Readers Who Also Might Be Interested

We’ve made the case that vibe coding is for professional developers and lead-

ers. But, we also see it becoming increasingly accessible to the people who

work around developers or aspire to become one. Steve recently shared with

Gene how his VP of �nance was on the top of the Sourcegraph Amp cod-

ing-agent leaderboard for most lines of code written in one week—earning

the admiration of developers across the organization. We hope that the fol-

lowing audiences will also �nd value in this book:

 INTRODUCTION xxxix

Students: You’re entering the industry at a time that is simultane-

ously scary but also ideal. �e job market may be uncertain, but one

thing is certain: All developer jobs are now AI jobs. You’ll be learn-

ing how to partner with AI to create so�ware, rather than memo-

rizing syntax, APIs, and framework intricacies. Master vibe coding

now, and you’ll get the jump on experienced developers who haven’t

ramped up yet. You’ll complete assignments that will impress senior

engineers and build a portfolio of projects that will wow anyone who

interviews you. And you’ll begin building up vital skills required for

understanding the strengths and limitations of AI, which will put

you ahead of the pack.

Tech Adjacent Roles (Program Managers, Analysts, QA, Cus-

tomer Service, Sales, Finance, HR, Marketing): You’ve proba-

bly got several processes that could be automated if only you had

a developer to help. With vibe coding, you can do it yourself. No

more waiting in the priority queue behind “features that customers

pay for.” By taking matters into your own hands, you can �nally

streamline those organizational processes that never get any love.

�e organization will end up thanking you. (And the engineering

organization will be both impressed and relieved that they didn’t

have to do it.)

We’re sure we’ve missed some audiences. If you’re not sure whether vibe

coding is for you, turn to any random page in this book and skim it. If you feel

that page speaks to you, then you’re one of us. Welcome!

Beyond the Hype

Okay, you’ve read our stories, but you’re still skeptical. Fair enough. Maybe

your most senior engineers are giving PowerPoint presentations to the exec-

utives, complete with fancy graphs, to show how LLMs are not good at cod-

ing. We saw this happen in real life. Or maybe they’re sending screenshots of

xl INTRODUCTION

“lousy LLM coding results” to people to try to slow the AI train down. (And

maybe you’re one of these people.)

Steve is not someone who yields readily to hype. Most of his favorite tech

is from the mid-to-late 1990s. His �rst �ve years professionally were spent

programming in the Intel 8086 assembly language. He coded in Java without

an IDE until 2011 and refused to learn Git until 2021. Steve is a bona �de late

adopter.

Despite his technological conservatism, Steve is also a seasoned, possi-

bly overcooked engineer, having written over a million lines of production

code across more than thirty-�ve years in the industry, including at Amazon,

Google, Grab, and Sourcegraph. You don’t survive that long by chasing every

shiny new framework that pops up on Hacker News. New technologies o�en

have a lot of bugs, and Steve, who has seen many frameworks come and go,

prefers to spend his time solving user problems rather than debugging new

tech.

Gene built his reputation on years of rigorous, data-driven research.

For the State of DevOps Reports, he and his colleagues surveyed over 36,000

technical professionals over six years to �gure out what works in so�ware

delivery. �at resulted in the famous “DORA metrics” of deployment fre-

quency, deployment lead time, change success rate, and mean time to repair

(MTTR). It helped bring CI/CD (continuous integration and delivery)

mainstream. Gene eyes everything he encounters with professional rigor

and a desire to measure and con�rm any claims, especially anything called

a “best practice.”

We were both initially skeptical about using GenAI for coding. We don’t

blame you for being skeptical one bit. But as you’ve already read, we’ve both

had numerous life-changing moments in the years post-ChatGPT. Later in

the book, we’ll describe some of the scienti�c literature on AI and developer-

productivity, as well as the ambitious research we’re undertaking to substan-

tiate these claims.

Coding is changing beneath our feet. �e skills that made developers

valuable yesterday are not the same ones that will matter tomorrow. And we

both believe one thing with absolute certainty: If you don’t adapt to this shi�,

you may become irrelevant. And none of us wants that.

 INTRODUCTION xli

How to Read This Book

We’ve organized this book to accommodate di�erent entry points, interests,

and levels of experience with AI-assisted programming. �ink of the four

parts as independent but interlocking modules. Whether you’re beginning

your vibe coding journey or already working with AI tools daily, you can

choose your own adventure, depending on the problems you’re facing today.

Part 1 is the “why” of vibe coding. If you’re intrigued but not yet sold

on AI-assisted development, start here. We lay out the FAAFO ben-

e�ts—fast, ambitious, autonomous, fun, optionality—through brief

history lessons, personal war stories, case studies, and data points.

Skeptics will �nd answers to the classic “show me the value” chal-

lenge, and newcomers will get the historical context that explains

why this shi� is unavoidable.

If you’re already sold on vibe coding but still interested in the broader

context, you may still be interested in the sections on why the AI

revolution is di�erent from previous decades of breakthroughs in

development productivity and how AI impacts go beyond devel-

opment.

Part 2 is the conceptual framework of how AI works. We move

from high-level enthusiasm to a crash course in understanding the

AI cognition of your new sous chefs, targeted at working develop-

ers. We explain context windows, task decomposition, and how vibe

coding is conversational—a stark contrast to the rigor of prompt

engineering. Moreover, there is absolutely no mention of matrix

multiplication, tensors, or any math in this book, for that matter.

�is is for working developers who want to solve their own prob-

lems.

We discuss the ways AI can astound you one minute and frustrate

you the next, so you can keep everything in perspective and cooper-

xlii INTRODUCTION

ate with these tools e�ectively. If you’ve ever wondered why AI nails

a tricky refactor one minute and then trashes your unit test the next,

we teach you why. We catalog the failure modes, show how to recog-

nize them, and—most importantly—outline the conceptual guard-

rails that keep you coding safely. �ink of this part as the kernel of

education needed to prevent most common AI headaches.

Even if you’ve done some vibe coding before, you may �nd the

deeper insights into AI’s inner workings to be a helpful reality check.

Mastering these concepts prevents the false starts and confusion

that sometimes plague AI-assisted projects. You’ll also see how the

FAAFO mindset should change how you work.

Part 3 presents the tactics of your daily vibe coding. Here we present

the practical and concrete practices for your inner (seconds), middle

(hours), and outer (days) development loops. For each of the risks

and bad outcomes we described in the previous parts, we describe

how you can prevent those problems, detect AI slips or errors, and

how to correct and recover.

We present guidance and lessons learned from our own experiences,

as well as the experiences of others. We describe scripts we still run,

reminders we give ourselves, and habits that have stuck a�er hun-

dreds of coding sessions.

Part 4 is all about going big. Vibe coding changes more than how

many keystrokes we’re no longer typing. It also reshapes how we

developers spend our time, the processes we become responsible for,

team dynamics, and our architectural needs.

�is �nal part is for tech leads, managers, and anyone newly respon-

sible for coordinating �eets of human and AI contributors. You’ll

�nd guidance on how to introduce vibe coding into teams, how to

set useful cultural norms that encourage learning, when and how to

create organization-wide standards, the implications of AI sous chefs

 INTRODUCTION xliii

working alongside human developers, hints on how you might mea-

sure productivity in an AI world, ideas on interviewing, and more.

If your calendar is packed and you need immediate leadership

insights on how vibe coding and FAAFO a�ect work, feel free to

jump straight here and then loop back to earlier parts when you

want hands-on tactics or a refresher on the fundamentals. We also

provide enterprise case studies of how vibe coding has a�ected real

organizations building real systems.

Dive into the sections most useful to you, and revisit others later as your

pro�ciency and curiosity evolve. Wherever you start, you’ll �nd consistent

emphasis on modularity, fast feedback loops, and maintaining high standards

and rigorous judgment—the principles that make vibe coding transformative

and rewarding.

P A R T 1

WHY VIBE CODE

2 PART 1: Why Vibe Code

W
elcome to Part 1, where we make the case that vibe coding is the most

signi�cant shi� in so�ware development since, well, maybe ever. If

you’re curious about what all the AI and development buzz is about, or per-

haps a little skeptical, you’ve come to the right place.

�ink of this �rst section as laying the foundation for your new life as

head chef in an AI-powered kitchen. We’ll explore the seismic shi�s happen-

ing right now, look back at decades of tech revolutions to see why this one

is di�erent, and introduce you to the FAAFO framework—fast, ambitious,

autonomous, fun, and optionality—the �ve superpowers vibe coding bestows

upon you.

We’ll share our own “Aha!” moments, cautionary tales from the trenches,

and inspiring stories of real-world developers already riding this wave. By the

end of Part 1, you’ll understand why we believe vibe coding is a whole new

way of thinking, building, and succeeding in the world of so�ware.

Here’s a taste of what we present in Part 1:

Chapter 1: �e Future Is Here (�e Major Shi� in Programming

�at Is Happening Right Now): See how science �ction is now your

potential daily reality. We dive into how conversational AI is trans-

forming the act of programming, allowing you to turn ideas into

working so�ware almost as fast as you can articulate them. We’ll

explore the emerging debate around vibe coding (from “No vibe

coding!” to “10x speedups!”), and explain why, as a developer, you’re

evolving from a line cook into the head chef of your own AI-assisted

kitchen.

Chapter 2: Programming: No Winners, Only Survivors: We take

a whirlwind tour through the history of programming advance-

ments—from assembly to high-level languages, from punch cards

to sophisticated IDEs, and from dusty library shelves to the instant

knowledge of the internet. Yet, despite these leaps, we’ll explore why

developers o�en still feel mired in complexity (hello, JavaScript tool-

chain). �is chapter sets the stage for understanding why AI-assisted

coding is bigger than step-function improvement and is more like

the exponential graphics programming revolution over the decades.

 PART 1: Why Vibe Code 3

Chapter 3: �e Value Vibe Coding Brings: �is is where we unpack

the �ve dimensions of value that vibe coding unlocks: fast, ambi-

tious, autonomous, fun, and optionality (FAAFO). We’ll show you

how AI is more than a speedup; it empowers you to tackle projects

you once deemed impossible, accomplish solo feats that previously

required teams, rediscover the sheer joy of coding, and explore mul-

tiple solutions before committing.

Chapter 4: �e Dark Side: When Vibe Coding Goes Horribly

Wrong: With any technology revolution, such as electricity, comes

the potential for some spectacular new dangers. We don’t want to

sugarcoat this. Vibe coding can be like a chainsaw. It can make you

wildly more productive, but it can be dangerous. We’ll share our les-

sons learned and how old practices and habits need to be modi�ed to

use the fantastic new technology. �ese cautionary tales aren’t meant

to scare you o�, but to highlight why discipline, vigilance, and the

“head chef ” mindset are crucial as you unleash your gi�ed but occa-

sionally erratic AI sous chef in your kitchen.

Chapter 5: AI Is Changing All Knowledge Work: Step back with

us for a moment to see the bigger picture: AI is revolutionizing cod-

ing, and beyond that, it’s beginning to reshape all knowledge work.

We’ll look at studies suggesting big impacts on high-wage jobs (yes,

including ours) and discuss how, historically, making tasks easier has

increased demand for skilled practitioners. Far from being the end

of developer jobs, we argue this will lead to an explosion of new roles

and opportunities, transforming the global economy on a scale not

seen since the Industrial Revolution.

Chapter 6: Four Case Studies in Vibe Coding: �eory is great,

but seeing is believing. We bring vibe coding to life with four case

studies. You’ll meet Luke Burton, an ex-Apple engineer, tackling a

complex CNC �rmware project as a hobbyist. You’ll join our friend

Christine Hudson as she returns to coding a�er nearly two decades,

discovering the joy and power of AI assistance �rsthand. And we’ll

4 PART 1: Why Vibe Code

go inside Adidas and Booking.com to see how large enterprises are

leveraging AI to help developers be productive and happier.

Chapter 7: What Skills to Learn: As your role shi�s to head chef,

you’ll need to cultivate new skills. We focus on three essentials: cre-

ating fast and frequent feedback loops (because speed without con-

trol is chaos), embracing modularity (to enable parallel work and

contain complexity), and, most importantly, reigniting your passion

for learning and mastering your cra�.

We’ve written Part 1 to be an eye-opener, a context-setter, and to make a

compelling argument for why embracing vibe coding is a non-optional but

also exciting development. As we mentioned, if you’re already sold on vibe

coding, you may want to skim this Part or skip to Part 2, where we start teach-

ing you about the important internals of how your new AI sous chefs work.

5

CH APTER 1

THE FUTURE IS HERE (THE MAJOR

SHIFT IN PROGRAMMING THAT IS

HAPPENING RIGHT NOW)

S
ince the 1960s, sci-� like Star Trek has shown us a future where people

casually talk with computers—they speak as if to a person, and the com-

puter understands and executes their wishes. We never thought we’d see this

kind of technology in our lifetimes.

Well, here we are. �e arrival of ChatGPT, code AI assistants, and AI

coding agents have changed how we all interact with computers, but espe-

cially for developers. With an LLM, we can have sophisticated, intellectual

discussions, debate approaches, and solve complex problems through natural

conversation. What used to be pure sci-� is now everyday reality.

Steve spent decades being a tech skeptic and a late adopter, and Gene

spent decades researching questionable claims of practices that supposedly

improved so�ware productivity. But the evidence changed our minds—

evidence we’ll share with you throughout this chapter.

Chat and agentic programming use LLMs to gain seemingly extraor-

dinary capabilities. We’re approaching a world where all you have to do is

explain what you want, and your words become working so�ware almost

instantly. When something’s not right, you don’t spend hours debugging—

you just describe what needs to change. Or the AI may identify and �x things

for you automatically. �ere are times when your ideas spring to life, turning

into working so�ware almost as fast as you can articulate them.

Your AI buddy can help you decompose your grand vision into action-

able tasks. For some of these tasks, you delegate to an agent that performs

them independently. Some tasks you may choose to work by yourself, collab-

6 PART 1: Why Vibe Code

orating with AI through design and implementation. AI can help you every

step of the way, as an implementer, advisor, fellow designer and architect,

code reviewer, and pair programmer—if you let it.

When cocreating with your AI partner, it feels as though ideas shoot like

lightning from your brain directly into the computer, magically transforming

into running code. Like most people, you’ll gasp with disbelief or delight at

least once when AI does something far beyond what you expected, or when

it solves a problem you’ve been struggling with for hours or days. And you

can implement many more ideas, not just your best ones, because so�ware

creation is so fast now.

AI does far more than generate code. It’s a true partner—one you can

talk to like a person—that helps you brainstorm ideas, evaluate options, man-

age projects and teams, navigate challenges, and develop strategies to achieve

your biggest goals and aspirations.

The Rise of Vibe Coding

As we mentioned in the Introduction, Dr. Andrej Karpathy stands among the

most eminent AI researchers of our time. He helped create ChatGPT while

at OpenAI and revolutionized computer vision systems for autonomous

vehicles as director of AI at Tesla. His contributions to neural networks and

machine learning have shaped our modern AI landscape.

In February 2025, Karpathy made an observation that perfectly captured

the moment we’re experiencing in so�ware development: “�ere’s a new kind

of coding I call ‘vibe coding,’ where you fully give in to the vibes, embrace

exponentials, and forget that the code even exists,” he noted in a widely

shared tweet that went viral across the tech world.1

He continued:

I just talk…I barely even touch the keyboard. I ask for the dumbest

things like “decrease the padding on the sidebar by half ” because I’m

too lazy to �nd it. I “Accept All” always, I don’t read the di�s anymore.

When I get error messages, I just copy paste them in with no comment,

usually that �xes it.2

 CHAPTER 1: The Future Is Here 7

What’s startling in Karpathy’s admission is, “When the code grows

beyond my usual comprehension, I’d have to really read through it for a

while.” Rather than diving deep into understanding, he troubleshoots by

“asking for random changes until [bugs] go away.” His process distills to, “I

just see stu�, say stu�, run stu�, and copy paste stu�, and it mostly works”—a

work�ow that prioritizes results over traditional understanding.3

Almost overnight, the concept of vibe coding exploded, making its way

into real-world developer culture. People across Twitter (X) embraced it as

either a laughable meme or a legitimate practice. It was clear vibe coding was

going viral, but was it going to become an established technique?

Within a few months, it had already become commonplace for real-

world use. Garry Tan, CEO of Y Combinator, Silicon Valley’s most famous

startup incubator, said, “For 25% of the Winter 2025 batch, 95% of lines of

code are LLM generated…�e age of vibe coding is here.”4

Boris Cherny, technical sta� at Anthropic and technical lead for Claude

Code, reports that he feels he is 2x as productive using coding agents,5 while

some others report feeling 10x more productive.

�is increasing use of AI for development is not restricted to frontier AI

labs and startups. Tobi Lutke, CEO of Shopify, the second-largest Canadian

publicly traded company with $8.8 billion in annual revenue in 20246 and

over four thousand developers,7 said in an internal memo: “Before asking for

more headcount and resources, teams must demonstrate why they cannot get

what they want done using AI.”8

�e big question is whether companies using vibe coding are setting

themselves up for problems down the road.

The Vibe Coding Debate

�e AI world moves fast, but the vibe coding landscape and debate are mov-

ing even faster. Two sides of the discussion are emerging. On one side, we

have people like Brendan Humphreys, the CTO of Canva, who has expressed

serious concerns about the unrestricted use of AI-generated code in produc-

tion environments. “No, you won’t be vibe coding your way to production.”9

He argues that vibe coding—which he de�nes as when engineers prompt AI to

8 PART 1: Why Vibe Code

generate code with minimal human oversight—is incompatible with creating

reliable, maintainable production so�ware.

Similarly, Jessie Young, principal engineer at GitLab, said, “No vibe cod-

ing while I’m on call!”10 When expressing her concern about vibe coding

engineers who don’t understand the code they’re committing, and being the

one who has to debug it in production at 2 a.m.

On the opposite end, we �nd people like Sergey Brin, Google cofounder,

who has embraced a more radical approach. Brin has enthusiastically encour-

aged Google engineers to use AI tools aggressively, focusing less on coding

details and more on product direction.11

As Brin suggested, “�e role of the engineer will change more to being the

product engineer, where they decide what the product should do,” highlight-

ing a fundamental shi� from writing code to directing AI. Others embrace a

new approach to debugging, where “instead of �xing code, you regenerate it”

until it works.12

Despite their philosophical di�erences, these technology leaders agree on

several important points. Both acknowledge that AI coding tools are reshap-

ing the foundations of so�ware development. Neither disputes that these

tools can boost developer productivity. Both recognize that AI capabilities

are advancing rapidly and that approaches must evolve with them. Karpathy,

Humphreys, and Brin are all asking the same question: To what degree can

you turn your brain o� when you use AI to help you create so�ware?

Vibe Coding for Grown-Ups

While YouTube in�uencers grab headlines by generating World War II �ight

simulators in a single prompt, we’re focused on bringing vibe coding into

professional so�ware engineering. �is requires applying disciplined engi-

neering practices while still letting AI handle the tedious implementation

details. In other words, vibe coding for grown-ups.

�at means all the grown-up stu� that you may already be responsible

for: security reviews, test coverage, blast radius management, and operational

excellence. �e di�erence is that you’re doing this at speeds none of us have

ever experienced before—you know, creating thousands (potentially tens of

thousands) of lines of code per day.

 CHAPTER 1: The Future Is Here 9

When working on authentication for a customer-facing application,

you’ll still scrutinize every line of security code and build comprehensive test

suites—but you can do it much faster. For legacy systems that nobody under-

stands anymore, you might �rst use AI to analyze and document the code

base, build tests to capture existing behavior, and only then begin making

changes with con�dence.*

�is is about taking your hard-won engineering discipline and apply-

ing it with greater intensity. You’re the head chef, and your role is setting

standards, tasting rigorously, and ensuring every dish meets your standards,

because, as the kitchen speeds up, the potential frequency and magnitude of

mistakes goes way up too.

As Dr. Karpathy points out, these AI tools are improving exponentially.

�ey’re currently the least capable they’ll ever be. With that in mind, we

believe it’s time to move beyond painstakingly cra�ing every line of code by

hand and fully embrace this new approach to building so�ware.

However, here’s one thing we genuinely believe: No one should be writ-

ing code by hand anymore if they don’t have to.

Substantiating the 10x Claim:
Gene’s Real-Life Example

Steve is an experienced professional engineer, having written over one mil-

lion lines of production code in his career. Is it only people like him who can

get the 10x gains and generate over a thousand lines of working code per day?

How about a mediocre developer like me?

To explain why we believe the answer is decisively yes, I wanted to share

this story. We were in the �nal process of editing this book, with less than

seventy-two hours before we had to turn in our �nal manuscript to our edi-

tors. A�er that point, we’d have little or no ability to change the book. Steve

was already nervous about whether we’d make our deadline. But despite that,

* Here’s a great example of modifying legacy code: Microso� researcher Jonathan Larson demon-

strated using LLMs and GraphRAG to modify the 1993 id So�ware DOOM source code to enable

player jumping. �is was a nontrivial feat because the original engine does not have a true 3D inter-

nal model and was built on assumptions that the player was always grounded. �e change modi�ed

many tightly coupled subsystems, including physics, player state, input handling, and level logic.13

10 PART 1: Why Vibe Code

I made what may seem like an insane decision: Invest precious time to build

a productivity tool instead of reviewing, editing, and writing. Why? Because

I was getting so frustrated at how tedious and error-prone it was copying and

pasting portions of our manuscript into an LLM.

To make our book the best it could be, we were copying huge chunks of

the manuscript into an LLM to do things like hunt for repeated ideas, ensure

that every section was novel and new, get opinions on the optimal ordering

of the Part 3 practices, and create good signposting (e.g., introductions, con-

clusions, etc.). But the breaking point for me was extracting all the chapter

introductions to compare them to each other. My hands and wrists already

hurt from all the typing and trackpad operations, and I couldn’t imagine

doing that by hand as well. �ere had to be a better way.

For months, I wanted to query the book manuscript like a SQL database

and retrieve subsections with a single command. With a tool like that, I’d be

able to magically extract text directly into my clipboard and ask: “Give me

the outline of the whole book.” “How about just this chapter?” “Copy the text

from Parts 1 and 2.” “How about just Chapter 4?” “How about just the �rst

three sections?”

At 4 p.m. on the Saturday before our deadline, a�er we took a break from

one of our marathon editing sessions, I opened up a Markdown parser I had

written in 2022 to do book modi�cation visualizations. Maybe it could serve

as a good starting point for this “Markdown as database” tool. �e trouble

was, I couldn’t remember how any of it worked. So, I used Claude Code to

help me.

I typed out, “I think there’s code in here that parses .md �les and turns it

into a hierarchical tree. I’m trying to build something that can take that tree

and perform operations like ‘list all chapters’ or ‘for a given chapter, list all

sections or get all text in the children.’ ” Fi�y-two minutes later, I had all of

those functions mostly working.

Over the next four days, during breaks from working with Steve to

�nish the book, I wrote 4,176 lines of Clojure code across 52 �les (2,331

of production code and 1,845 lines of tests), along with over 3,000 lines of

documentation and reports. To ensure con�dence that the text extraction

worked perfectly and didn’t introduce errors, the test suite had increased by

nearly 6x.

 CHAPTER 1: The Future Is Here 11

My years-long aspiration of turning a Markdown �le into a queryable

database had been achieved, and, more importantly, I was no longer selecting

text in Google Docs by hand. It was truly FAAFO.

Analyzing the complete Git history in this repo by using vibe cod-

ing, I was comfortably 10x faster than I could have ever been without AI.

Speci�cally, I was 16x faster than my historical average and 5x faster than my

previous best day. And I did it in the middle of our marathon writing ses-

sions: during breaks, a�er we adjourned for the day, while I brushed my teeth,

etc. �e whole endeavor required 251 prompts across 35 commits.

�is investment paid o�. Slinging book text around previously took

minutes and was prone to errors, but now it happened with a keystroke, all

because the book manuscript could be queried like a database. I’m proud that

I built this tool, and I truly believe it helped make this book better.

Here’s a summary of things I built:

• Instant content extraction without manual scrolling through

hundreds of pages across multiple Google Docs using array

slicing syntax (ὰ la Ruby, Perl): “Parts [1…3],” “Parts [1,3,4],”

“Chapter [1,20],” or “Sections 2 and 3[1…3].”

• Generate the complete outline of any set of parts, chapters, or

sections.

• Chapter intro/conclusion extraction: Get any of the text

above, but exclude the introductory and concluding sections,

so that we can balance them.

I haven’t even mentioned the crazy race condition I stumbled into, and

how Claude Code created a reproducible test case by running a hundred

threads in parallel and generating a workaround.*

�is was a record amount of work for me in such a short time. A�erward,

Steve asked me a question that le� me dumbstruck: “Did it feel like writing

four thousand lines of code?” I told him I didn’t even count the lines of code

* You can read a longer description of this whole adventure in the blog post “�e Last 80 Hours Of

Editing the ‘Vibe Coding’ Book (and Vibe Coding 4,176 Lines of Code On �e Side) — Part 1: �e

Stats and All �e Prompts” at ITRevolution.com.

12 PART 1: Why Vibe Code

until I wrote this story. It just felt like I was building the capabilities I needed

at a magical pace. Code just �owed like water.

You’ll hear us make the 10x productivity gain claim in the book. �is

story isn’t the only substantiation we have; we share other stories and research

later on. We believe we can stand behind this number with con�dence.

You’re Head Chef, Not a Line Cook

In the old days as a solitary developer, implementing a simple visualization

dashboard could require any number of tedious steps: hours researching

charting libraries, reading all the documentation, �guring out the con�gu-

ration options, parsing data �les, handling functions to throw out bad data,

and implementing user interactions. �en you slowly type out code, perhaps

copying and pasting code you �nd on the internet. When stu� goes wrong,

you debug by looking at log statements and maybe stepping through with a

debugger.

Yuck! How did we do this for so long?

With vibe coding, you say: “Here’s some input data. Create a chart with

years on the x-axis.” Within seconds, you’ll see your chart. �en you guide

your AI assistant toward what you want (e.g., “Make the y-axis logarithmic.”

“Use a stacked bar chart instead.”).

In this new world, you’re the head chef of a world-class kitchen. As such,

you don’t personally dice every vegetable, sear every steak, swish away every

cockroach, or plate every dish. You have sous chefs and line chefs for that.

But when a meal leaves the kitchen, it’s your reputation on the line and your

Michelin stars at stake. When the customer sends back the �sh because it’s

overdone or the sauce is broken, you can’t blame your sous chef.

�e same principle applies when coding with AI: Delegation of imple-

mentation doesn’t mean delegation of responsibility. Your users, colleagues,

and leadership don’t (or shouldn’t) care which parts were written by AI—they

rightfully expect you to stand behind every line of code. When something

breaks in production at 2 a.m., no one wants to hear, “Well, AI wrote that

part.” You own the �nal result, period. �is is both liberating and challenging.

When vibe coding, you’ll:

 CHAPTER 1: The Future Is Here 13

• Spend more time thinking about what you want to build and

less time on implementation details. (Which is nice.)

• Develop a critical eye for evaluating AI-generated solutions,

rather than cra�ing every line yourself. (Some may miss the

coding part, though.)

• Learn to communicate your requirements to a non-human

collaborator. (�is can have a real learning curve.)

• Take responsibility for the �nal product while delegating

much of the implementation work. (�is should already be a

familiar, perhaps unnerving feeling to many of you who have

been in technical leadership roles. You’ll �nd it’s not so di�er-

ent with AI helpers.)

The Broader Responsibilities of a Head Chef

Coding is to home cooking what vibe coding is to running a professional

kitchen. When you don your head chef ’s hat and start using coding agents,

like us, you’ll notice a bunch of strange things start happening.

For over a decade, we (like most developers) have used version control

systems like a glori�ed save button—save, undo, restore, maybe occasionally

branching now and then. We mostly wrote commit messages like “�x some-

thing dumb” and pushed straight to the trunk of the code base and would

rewind to an older revision if we messed something up.

But since we’ve started using coding agents, we regularly �nd ourselves

smack in the middle of operations that we’ve previously only seen handled

by release engineers and version control virtuosos. Since we both use Git,

we �nd ourselves cherry-picking commits, merging selective changes across

three or more branches, and doing complex rebases. Plus, more—way more.

We’re using Git features that we barely know the names of, and we’re

doing it a lot. But it’s not about Git. �is would be happening no matter what

version control system we used. We started scratching our heads over why

we were doing all this complicated Git stu� every day. Was it nothing but a

distraction? We soon realized that it was yet more evidence that vibe coding

turns an individual into a team. We had both been using team-related Git

commands that you usually only use in multi-contributor projects.

14 PART 1: Why Vibe Code

It’s one thing to think of your kitchen of sous chefs as individual helpers.

But no chef is an island: Teams require coordination in ways that individuals

don’t. With vibe coding, you’ll be responsible for:

• Managing parallel development: Running multiple agents

working on di�erent tasks simultaneously, with time spans

ranging from minutes to weeks—the opposite of the tradi-

tional “single-threaded” developer approach.

• Handling complex integration: Merging work from di�erent

branches and resolving the inevitable con�icts that arise when

multiple agents modify related code.

• Setting standards: De�ning explicit coding standards and

processes so your AI team operates consistently and e�ciently.

• Creating onboarding procedures: Setting up workspaces,

access, and instructions for each new AI assistant you bring

into your system.

• Coordinating larger projects: Taking on more ambitious

work than ever before, requiring you to think like a project

manager.

�is team stu� is all new for most solo developers, and doing it with AI

agents is new for everyone. But make no mistake: �ere is no opt-out for this

“promotion” to head chef—it’s inherent to vibe coding, which is how all so�-

ware will soon be developed.

For better or worse, from now on, anyone developing so�ware who goes

head-to-head against a well-managed team of AI agents without a team of

their own will nearly always lose. No matter how good you are at football,

if you take on an NFL team alone, you will lose (unless perhaps it’s Detroit).

And this competitive mismatch (outside Michigan) will drive everyone,

including you, to adopt teams of AI agents.

�at makes you a team leader. Unless you still prefer to write code by

hand (like a savage), you’re now o�cially promoted to head chef. We’ll talk a

lot more about the importance of coordination in Part 4, both for individuals

and for leaders.

 CHAPTER 1: The Future Is Here 15

You may still think AI only speeds up your solo work. �at was true in

2024, but with the emergence of coding agents, a broader picture is beginning

to unfold. Up until now, using AI has accelerated you. But now your role is to

accelerate them.

So, get ready, head chefs. We’re entering a brand-new world, for sure.

Conclusion

Whether you choose to embrace it or �ght it, every modern so�ware project

could turn into a conversation between a human and an army of AI agents

that can turn vision into reality at blistering speed.

We believe this changes the shape of your job. You’re no longer typing

lines of JavaScript. �e job is now deciding what delicious dish you want your

team to prepare, tasting the results early and o�en, and orchestrating your

automated helpers so nothing leaves your kitchen that you’re not proud of.

Do that well and you unlock the full FAAFO menu: You’ll ship faster, chase

more ambitious ideas, operate more autonomously when you need to, redis-

cover the fun that got you into coding in the �rst place, and keep optionality

on the table for every design decision.

None of that happens by accident. A head chef writes down the house

rules, checks every plate before it hits the dining room, and sends the occa-

sional dish back when it sucks. Likewise, you’ll need clear standards, ruth-

less validation loops, and the courage to regenerate code instead of patching

lukewarm le�overs. �is is vibe coding for grown-ups—equal parts creativity

and discipline.

In the next chapter, we’ll explore why these AI breakthroughs represent

something genuinely novel and badly needed by developers, despite the last

seventy years of advances in technology.

17

CH APTER 2

PROGRAMMING: NO WINNERS,

ONLY SURVIVORS

V
ibe coding fundamentally changes how we create so�ware—and in a way

that is di�erent from all the changes that have come before. Over seven

decades, how humans write so�ware has transformed in signi�cant steps,

each elevating developer productivity. But developers still struggle with many

core problems.

In this chapter, we’ll explore how life has improved for people writing

so�ware over the last seventy years, but highlight how ridiculously di�cult

writing so�ware still is. �e result is that developers are miserable, and many

choose to stop coding because it has just become too hard. All that is chang-

ing now, as vibe coding allows us to rocket up the abstraction layer, liberat-

ing us from details that don’t matter: libraries, frameworks, syntax, builders,

mini�ers, and more.

You’ll also hear a tale from Steve about how he learned to draw poly-

gons and shaders in college, which no one cares about anymore. �ese days,

kids with no training can make professional-grade games or mods, complete

with custom physics, animation, and combat systems. �is is a microcosm

of the exponential growth happening right now with the advent of AI and

vibe coding.

The Major Programming Technology
Advances Up Until Now

Programming languages evolved to let us express ideas more naturally, focus-

ing on high-level problems rather than computer internals. Development

18 PART 1: Why Vibe Code

environments transformed from punch cards and teletypes to rich IDEs that

catch errors in real-time. And access to knowledge exploded, with resources

like Google, Stack Over�ow, and GitHub shrinking the learning cycle from

months to days. �ese revolutions in languages, tools, and knowledge greatly

increased our capabilities. Writing so�ware today should be easier than in

decades past.

And yet, the reality is that building things has been getting steadily harder.

Systems keep ballooning in size and complexity. Debugging and testing are

still painful. We bang our heads against constant roadblocks. �e simplest of

today’s tasks require mastering an overwhelming array of rapidly changing

tools and technologies.

To do anything, we o�en feel like we have to know everything about

everything, all while everything is changing. As one example, at the time of

this writing it’s fashionable to ridicule the complexity of JavaScript develop-

ment. Let’s peek at why.* To build a web app, you might need to understand

this daunting list (which is probably already outdated):

• package managers (npm, Yarn)

• bundlers (webpack, Rollup)

• transpilers (Babel)

• task runners (gulp, Grunt)

• testing frameworks

• CSS preprocessors

• build toolchains

• deployment pipelines

And that’s before so much as glancing at modern JavaScript language

features. Each of these components has many available contenders. Some

depend on each other, some con�ict, and it’s almost impossible to navigate

the graph of what works with what unless you live and breathe that ecosystem

every day.

It keeps going. Because of the DevOps philosophy of “you build it, you

run it,” you also need to learn Docker, Kubernetes, AWS, and infrastructure-

* A great example is Jose Aguinaga’s “How it feels to learn JavaScript in 2016.”1

 CHAPTER 2: Programming: No Winners, Only Survivors 19

as-code tools like Terraform, not to mention a whole host of AWS, GCP, or

Azure services. If you’re especially cursed and your company is multi-cloud,

you might have to learn two or more clouds.

�anks to these “advancements,” you can now �nd yourself simultane-

ously worrying about how to center a div element on a web page, while you

struggle with Docker networking issues because your CI pipeline broke a�er

you tried to change to Terraform scripts.2

Our point is this: We �nd it deeply ironic that despite all the revolu-

tionary transformations of so�ware development over the past decades, we’re

still mired in more complexity than ever. And incidentally, this is why many

people have chosen to leave coding—it has become too freaking di�cult and

not worth the e�ort. �ere are days when it doesn’t feel like all these advance-

ments have improved life much, and that building things has been getting

steadily harder.

There Is Now a Better Way

We moved from punch cards to IDEs, and from books and searches to Stack

Over�ow. Now, instead of writing code by hand, we have a conversation with

AI about what we want to build. If you want to create a web application, rather

than wrestling with package managers, bundlers, and deployment pipelines,

you describe what you want in plain English: “Write me a web app that lets

me chat privately with only my friends.”

If all goes well, your AI collaborator will help you build it the way you

want it. You’ll work with it to ensure it chooses appropriate libraries, gener-

ates test suites, follows good practice, makes the code secure and fast, and

so forth. If so�ware development were moviemaking, we’re no longer script

writers; we’re now the directors, guiding the vision while our AI collaborators

handle the implementation details.

Although we �nd vibe coding to be far better than the old way (because

of FAAFO bene�ts), that doesn’t mean vibe coding is easy. On the contrary,

your judgment and experience are now more important than ever. AI can be

wrong, sometimes wildly so. �at’s where you come in. Programming with

AI is a lot like traditional programming, and most of what you know still

20 PART 1: Why Vibe Code

matters. But this better way of creating so�ware also requires building new

instincts about what’s happening with the LLM and your code.

�ink about it this way: What works for driving safely at 10 mph

becomes insu�cient when you’re traveling 10x faster. �e leisurely pace of

manual coding gives you time to spot problems, think through edge cases,

and course-correct gradually. But when your AI partner can generate mod-

ules in seconds, you need new mental models and skills. Without them, you’ll

almost certainly wreck the car spectacularly. (We’ll share with you our own

memorable crash stories later in the book.)

�e good news: As Astronaut Frank Borman once said, “Superior pilots

use their superior judgment to avoid situations which require the use of their

superior skill.”3 Your experienced judgment will become perhaps your most

valuable skill of all in the new world of AI, because it will help you avoid

needing to use your disaster recovery skills.

War Story: Steve Studies Computer
Graphics in the 1990s

What sounds more fun: Developing a Skyrim game mod or rendering a

shaded polygon? �e transformation programming is enduring, remind-

ing me of how fast the world of computer graphics changed in the 1990s.

Jobs were upended, and university courses had to be rewritten from scratch

almost every year. Nothing had changed so fast before, and it was bedlam.

But it also boomed, creating new categories of jobs, specialists in every-

thing from water physics to motion capture. And over time, graphics devel-

opment has been adopted by less technical people. You can make remarkable

game mods today without needing to know much about the underlying tech-

nology stack that powers them.

To put it in perspective, in the early 1990s, I took the University of

Washington Computer Graphics course, taught by industry legend and

entertaining lecturer Dr. Tony DeRose, who currently leads Pixar’s Research

Group. On the �rst day of class, he warned us that we could only use one API

call: putPixel(r, g, b, a). Using that lone function, we had to build up our

little 3D worlds one pixel at a time.

 CHAPTER 2: Programming: No Winners, Only Survivors 21

�at was the state of the art circa 1992. We would wait hours for our proj-

ects to render on the lab computers, simple static scenes of teapots and chess

pieces. Occasionally, a student would wait eight hours only to see their render

come out mangled, and they’d run from the lab wailing in despair.

�ree years later in 1995, graphics had become a di�erent course. No

more putPixel() calls. All that rendering stu� was now handled in hard-

ware. Instead, you were working with higher-level abstractions: lighting,

object scenes, and animation. �ere were di�erent mental models, di�erent

tools, di�erent jargon. In a short time, graphics had been elevated into a new

discipline from the one I had learned.

And our productivity was o� the charts. No more teapots—you could

develop a full movie in the lab. People would still run out wailing when it

didn’t work in the morning—but it was because of physics engine and hitbox

problems, not polygon rendering.

As for the job market, the so�ware industry’s graphics jobs kept pace

with the breakthroughs. Over the next thirty years, graphics roles contin-

ued pushing far up the abstraction ladder and have branched out into a huge

number of distinct specializations.

�e graphics revolution is still going strong today. High-school students

now take weeklong courses in game development using game engines like

Unity, where they never see a single line of graphics code. Instead of wrestling

with polygon math and pixel operations, they spend their time doing fun

stu� like modeling objects and building game maps, while Unity’s physics

engine handles the rendering complexity underlying it all.

I am fascinated to this day by how the daily work as a graphics pro-

grammer has evolved, to where the title “graphics programmer” is almost

unrecognizable from the early days. But as stunning and exciting as that

transformation was, it doesn’t hold a candle to what is happening with cod-

ing and AI.

Conclusion

Computer graphics evolved from a black art requiring PhD-level math in the

1990s to something any motivated teenager can master with Unity or Unreal

22 PART 1: Why Vibe Code

Engine. Now AI is performing the same magic trick across all of program-

ming, and it’s happening at warp speed compared to the graphics revolution.

�e jobs and work changed and evolved as the technology advanced. We can

expect the same to happen with AI.

Graphics became more fun when developers could focus on building

worlds rather than calculating vertex normals. Programming becomes more

enjoyable when you’re building cool things rather than debugging semico-

lons. Some will mourn the loss of certain technical challenges (we still meet

graphics engineers nostalgic for texture mapping in assembly), but most will

celebrate when they realize what’s possible.

What happened in the computer graphics industry is happening every-

where in so�ware. Vibe coding is enabling us to create cool things, liberating

us from a gazillion things that don’t matter. How very FAAFO!

23

CH APTER 3

THE VALUE VIBE CODING BRINGS

S
ure, vibe coding makes you code faster—that’s the obvious selling point.

But if you think speed is the whole story, you’re missing out on the juicy

stu�. We’ve discovered that vibe coding creates value across �ve dimensions,

which we’ve named FAAFO—fast, ambitious, autonomous, fun, and option-

ality.* We explored them brie�y in the Introduction, but we’ll go into more

detail in this chapter.

�ink of FAAFO as your new superpowers. You’re coding faster, and

you’re now bold enough to risk projects you’d have laughed o� as impos-

sible before. You’re working solo on stu� that used to require teams. And

because you’re lowering the cost of coordination, and the “people can’t read

my mind” tax inherent in any collaboration, you and your team can work

more autonomously. You’re having fun again, like when you �rst learned to

code. And most powerful of all, you’re exploring multiple solutions simulta-

neously, picking the best option instead of committing to the �rst idea that

seems workable.

Write Code Faster

While speed is a clear value of vibe coding, it’s arguably one of the most

super�cial bene�ts. It’s impressive, but we’ve had a lot of speedups before.

�e main value of going faster is the extent to which it multiplies the value in

the other dimensions of FAAFO.

* By the way, you may have noticed that there is no “B” in FAAFO. Vibe coding does not automati-

cally make your code better. �at is your responsibility. By following the techniques and practices

we present in this book, you’ll have the best chance of success at making your code better and

becoming a better developer, in addition to the other FAAFO bene�ts.

24 PART 1: Why Vibe Code

Consider the video excerpt tool that Steve helped Gene create (as we

mentioned in the Introduction), which generated clips from podcasts and

videos. �ey built the �rst working version in forty-seven minutes of pair

programming using only chat coding, no agentic AI assistance. �at’s pretty

fast. Gene estimated that it would have taken them two to three days to write

it by hand.*

 �e key lesson we learned during that session: Type less, lean on AI more.

But we also found that sometimes AI can make things maddeningly

slower and more frustrating. We’ve each experienced this �rsthand. Gene

spent hours going in circles with AI trying to get ffmpeg to properly position

captions and images in video �les. Steve wasted an a�ernoon wrestling with

an AI collaborator that con�dently insisted on di�erent approaches, all of

them wrong, to parsing command-line arguments in Gradle build scripts.

It can take both vigilance and good judgment to recognize when you’re

being led down a rabbit hole and need to change course. Vibe coders must

learn to notice when AI is heading con�dently down a wrong path and decide

when to redirect or abandon unproductive approaches.

Despite these occasional challenges, we still love it. And when vibe cod-

ing isn’t possible (e.g., no internet connection or local LLM), many devel-

opers like us now choose not to code at all. Old-style coding by hand seems

pointless. It’s like needing to get down a seventy-mile desert road, but you

won’t have a car for a couple of hours. It’s less work to wait for the car to come

get you, as opposed to walking part of the way. It’s not worth the bother.

Who wants to write code by hand like some relic from 2010? Not us.

Be More Ambitious

Recall Gene’s �rst working version of the video excerpt tool, which previ-

ously would have taken days. Because of the time and e�ort required, he had

originally deferred trying. �is happens in organizations too. �ere could be

many reasons why projects are never started: Perhaps the perceived bene�t

* Many of you reading this may want to point out that developers typically spend only about 25% of

their time writing code and twice as much time reading code. We’ll address this later in the book,

as well as how AI can help with many activities beyond writing code.

 CHAPTER 3: The Value Vibe Coding Brings 25

wasn’t high enough to warrant the work, or maybe the di�culty made the

payo� not worth the investment, or possibly another opportunity o�ered a

higher, more immediate return.

With vibe coding, Gene was able to complete work that otherwise would

never have been undertaken. Projects that once seemed too di�cult or

time-consuming become feasible, opening new possibilities for what can be

accomplished. Vibe coding reshapes the spectrum of what can be built, let-

ting you be more ambitious.

Seemingly impossible projects move into the realm of possibility.

Applications that would have required specialist knowledge across multi-

ple domains can now be built by developers with AI assistance �lling their

knowledge gaps. Five-month projects become �ve-week projects, or some-

times �ve days. Ideas once considered too ambitious get tossed onto your

to-do list without a care in the world.

Small-ish, low-return jobs become quick wins, because it can be easier to

do the work than to create the task. Documentation, tests, minor UI improve-

ments, and small refactorings that were perpetually pushed aside can now

take seconds or minutes instead of hours or days. �ese tasks get done, rather

than accumulating in ever-growing “broken windows syndrome” backlogs.

You can �x every window in town and keep them �xed for once.

As Cat Wu, product manager of Anthropic’s Claude Code team, observed:

“Sometimes customer support will post ‘Hey, this app has this bug’ and then

10 minutes later one of the engineers will be like ‘Claude Code made a �x for

it.’ Without Claude Code, I probably wouldn’t have done that…It would have

just ended up in this long backlog.”1 �ere has always been a category of work

where it was easier to �x than to record and prioritize. �at category is bigger

now with AI.

�is expanded capability leads directly to our next important dimension

of value.

Be More Autonomous

In June 2024, Sourcegraph’s then-Head of AI, Rishabh Mehrotra, showed

Steve a demo of a multi-class prediction model he had created—from concept

26 PART 1: Why Vibe Code

to deployment—in half a day using vibe coding. He told Steve it would have

been a whole summer intern project, or perhaps six weeks for a superstar

intern, as recently as a year prior. Rishabh was shocked that he had completed

it alone in a few hours.

Rishabh had only discovered it was easy because he didn’t have the bud-

get to hire an intern. So, in desperation, he �gured he’d try it alone with AI.

He �nished so fast he—an AI expert—was �abbergasted.

�is illustrates the third dimension of value that vibe coding enables.

Developers (and teams) can accomplish tasks autonomously (and in some

cases, alone) that otherwise would have required help from other develop-

ers or sometimes teams. Working with multiple people introduces signi�cant

challenges—communication and coordination, competing priorities, merg-

ing work—and the more people involved, the less time you spend solving the

problem.*

Working autonomously frees you to do the work you need to do, enabling

independence of action. (�is is a term we’ll use throughout the book.) Steve

experienced this �rsthand as a leader of one of Amazon’s �rst “2-pizza teams”

created to reduce customer contacts per order. �e mandate was simple: Give

small, cross-functional teams complete ownership of their problem space

with full capability to deploy solutions without navigating layers of depen-

dencies and approvals. If reducing customer contacts means changing the

checkout �ow, rewriting the help system, or building new infrastructure, the

team could do it all. No waiting for the UX team’s roadmap. No negotiating

with the infrastructure team’s priorities. No endless meetings to align seven-

teen di�erent stakeholders.

�is radical autonomy and independence of action transformed how fast

Amazon could move from identifying problems to shipping solutions. Now,

with AI as your tireless collaborator, you can achieve this same independence

of action as an individual developer.

Beyond eliminating organizational friction, AI also helps solve an equally

di�cult problem: the “mind reading” tax inherent in collaboration. Let’s face

* Some people may recognize this as Brooks’s Law, coined by Dr. Fred Brooks, author of �e Mythical

Man-Month, who observed that adding manpower to a late so�ware project makes it later, due to

the increased communication overhead and coordination complexity. �is is because the number

of communication lines increases exponentially as team size grows—rising from three lines with

three people to forty-�ve lines with ten people.

 CHAPTER 3: The Value Vibe Coding Brings 27

it—no matter how skilled our teammates are, something inevitably gets lost

when we try to convey what’s in our heads. When vibe coding autonomously,

this universal challenge becomes less of a problem. You can implement what

you envision because there’s no gap between your idea and its execution. You

know it’s right when you see it because it matches the picture in your head.

�e consequences of these two taxes show up across every domain where

experts and novices collaborate. For ��een years, Dr. Matt Beane studied

this phenomenon, with surgical robotics providing a compelling example.

Traditionally, junior surgeons learned by necessity—procedures required

three or more hands, making their participation essential while creating nat-

ural apprenticeship moments. However, when surgical robots enabled senior

surgeons to operate independently, these teaching opportunities disappeared

despite training remaining an o�cial responsibility.

�e senior surgeons, given the choice, overwhelmingly chose to work

alone. �is wasn’t because they didn’t value teaching; it was because coordi-

nation costs are o�en higher than we acknowledge.* Every explanation, every

correction, every moment spent bringing someone else up to speed represents

time not spent on the primary task. When the surgical robots removed the

physical necessity of assistants, the true cost of coordination became visible

through the seniors’ behavior.

�is same pattern appears in so�ware development. If it’s possible to

create things without external dependencies, without any need to communi-

cate and coordinate with others to get what we need, the advantages multiply

rapidly. �e constant back-and-forth of explaining requirements, correcting

misunderstandings, and reconciling di�erent mental models disappears.

Economist Dr. Daniel Rock (famous for his work on the “OpenAI Jobs

Report”) calls this “the Dri�,”3 borrowing from the movie Paci�c Rim, where

two pilots mentally connect to operate giant mechs. When you and your team

vibe code, you can create that kind of mind-meld with AI assistants, reducing

the coordination costs that typically slow down multi-human teams.

With “the Dri�” active, a product owner can directly work with the code

base through AI rather than writing a detailed products requirement docu-

* Indeed, this is one of Gene’s biggest learnings working with Dr. Steven Spear over the last four years.

As they state in their book Wiring the Winning Organization: “Leaders massively underestimate the

di�culty of synchronizing disparate functional specialties toward a common purpose.”2

28 PART 1: Why Vibe Code

ment (PRD). A developer can evolve the database schema without a data-

base specialist. As Dr. Rock demonstrated with his three-person team that

built a GitHub app in forty-eight hours, this shared mental model accelerates

development in ways that traditional human-to-human coordination cannot

match. Being autonomous with AI means being unblocked—free to move at

your own pace without constant negotiation and hando�s.

Scott Belsky, Chief Product O�cer at Adobe, describes this as “collapsing

the stack,”4 illustrating the bene�ts of the same person owning more of the

process. When that happens, they not only generate better results, but it’s also

more fun. Which leads to our next dimension of value…

Have More Fun

While writing code faster, tackling more ambitious projects, and eliminating

coordination costs are fantastic bene�ts, vibe coding delivers another fun-

damental transformation that shouldn’t be underestimated: programming

becomes more fun.

Traditional programming involves many tedious tasks that few develop-

ers enjoy. Fixing syntax and type checking errors, wrestling with unfamiliar

package managers, writing boilerplate code, searching for documentation,

and so on. Vibe coding eliminates these pain points, shi�ing focus from

implementation details to building things.

A randomized controlled trial of GenAI coding tools found that 84% of

developers reported positive changes in their daily work practices a�er using

AI tools. �ey reported being more excited to code than ever before, feeling

less stressed, and even enjoying writing documentation.5

At Adidas, where seven hundred developers now use GitHub Copilot

daily, 91% of developers reported that they wouldn’t want to work without it.

Fernando Cornago, SVP of Digital Technology at Adidas, described how vibe

coding resulted in developers spending 50% more time in what they called

“Happy Time,” productive time when they were mastering their cra�. �is

is the opposite of “Annoying Time,” such as struggling with brittle tests and

meetings.6 (We cover more of this story in Part 4.)

 CHAPTER 3: The Value Vibe Coding Brings 29

Building cool things is addictive. Vibe coding, especially with agents,

turns your keyboard into a slot machine. You “pull the lever,” and out comes

a payout—a chunk of working code, a generated test, or a refactoring. Each

little payout delivers a tiny dopamine hit, a neurochemical reward that makes

us feel good and encourages us to pull the lever again.

It’s fun and pulls you in. We’ve both found ourselves so thrilled and

engrossed by what we’re creating that time melts away. It’s driven by that

exhilarating “Let’s just do one more thing!” feeling, and the sheer fun of see-

ing ideas take shape. But unlike the tedious all-nighters of traditional debug-

ging sessions, these jam sessions are pure creation. But perhaps the most

powerful bene�t of all is yet to come: Vibe coding increases your ability to

explore options and mitigate risks before committing to decisions.

Explore More Options

�e ��h dimension of value that vibe coding creates may be its most pro-

found: expanding your ability to explore multiple options before commit-

ting to decisions. In traditional development, choosing a technology stack

o�en means making nearly irreversible commitments with limited informa-

tion. �ese architectural decisions became what Amazon called “one-way

doors”—once you walk through, turning back becomes almost impossible

(or inconveniently expensive).

Vibe coding reduces the cost of exploring multiple paths in parallel. You

can experience this �rsthand while building a project in your preferred lan-

guage. During a forty-�ve-minute walk with your dog, you can have a voice

conversation with an AI assistant that thoroughly evaluates your options

for complex libraries or frameworks. What might usually require days of

research is compressed into minutes, providing detailed insights into each

option’s trade-o�s without writing a single line of code.

�is is a capability that we never had before as programmers: �e luxury

of trying something �ve or ten di�erent ways at once for practically free. And

it extends beyond research to implementation. You can prototype the same

API using three di�erent architectural patterns in a single a�ernoon—say,

30 PART 1: Why Vibe Code

RESTful, GraphQL, and gRPC. You can implement core endpoints using each

approach, complete with serialization, error handling, and client integration.

What previously might have required weeks of e�ort for a single implementa-

tion can now be comparatively evaluated through hands-on experience with

all three options.

�is concept of optionality was formalized in �nance theory in the

1970s: An option is de�ned as the right, but not the obligation, to make a

future decision. �is concept is powerful in so�ware development because

so�ware begins as pure thought—it’s in�nitely malleable until deployment

creates real-world constraints. Every architectural choice, every library selec-

tion, every design pattern traditionally forced us to pay the full cost up front

without knowing whether we’d chosen correctly.

�e higher the uncertainty, and the higher the risk/reward ratio, the more

valuable options are. If there is no uncertainty, we don’t need options—we

pick the best choice, certain that our answer is correct. However, when things

are highly uncertain (such as in the AI �eld right now), options become

extremely valuable. (Another corollary: In times of high uncertainty, avoid

making long-term decisions, which deprive you of options.)

Vibe coding changes the economics of so�ware creation: Instead of bet-

ting everything on our �rst guess, we can place small bets across many possi-

bilities and double down only on what works.

Toyota discovered how signi�cant option value was decades ago in man-

ufacturing. While American manufacturers focused on standardization and

rigidity, Toyota built systems that enabled �exibility and adaptation. �eir

modular production lines, frequent experimentation, and rapid feedback

cycles (including four thousand daily Andon cord pulls stopping production)

created an option-rich system.

�ey could manufacture multiple model years simultaneously on the

same production line, implement dozens of production changes daily, and

exploit option value in many other ways that created a durable, lasting com-

petitive advantage. Seventy years later, automakers around the world are still

copying this strategy.

It’s almost impossible to overstate the value that optionality creates.

Over two hours, the two of us were tutored by one of the premier econom-

ics scholars, Dr. Carliss Baldwin, William L. White Professor of Business

 CHAPTER 3: The Value Vibe Coding Brings 31

Administration, Emerita at Harvard Business School.* She has written exten-

sively about how the ability to parallelize experimentation, enabled by mod-

ularity, creates so much surplus value that it can blow companies and indus-

tries apart.

�is explains how Amazon’s microservices rearchitecture in the early

2000s (which Steve was a part of) allowed them to rapidly experiment with

new business models, eventually spinning AWS into a more than $100 bil-

lion business that competitors couldn’t match because their architecture pre-

vented exploration.

AI can drive down the cost of change,† and can decrease the time and cost

to explore options. �at is, if you have a modular architecture that enables it.

We’ll explain how to create this later in the book. Organizations that take

advantage of creating option value will be orders of magnitude more compet-

itive than those that don’t. (We explore this in more detail in Parts 3 and 4.)

AI as Your Ultimate Concierge

As a head chef running a world-class restaurant, you’ll run into many prob-

lems that aren’t strictly culinary. As it happens, however, your sous chef is

also a sommelier, detective, accountant, rat catcher, master plumber, award-

winning author, and tax planner. Remarkably, it’s also a surgeon, taxidermist,

and a lawyer. We think of AI as a concierge who is available to you 24/7,

literally on a moment’s notice, happy to take a phone call with any of your

questions or whims.

Your AI collaborator is more than a code generator. It can help you with

your toughest problems. Sometimes, it’s your personal detective that you send

to root through labyrinthine Git histories. You only need say, “I lost some test

�les somewhere between commit 200 and commit 100,” and not only will it

�nd it (“Found it. It was 43 commits back.”) but it will track them down and

* Her advisor, Dr. Robert Merton, worked with Drs. Fischer Black and Myron Scholes on their work

on options pricing, which earned them the Nobel Prize in Economic Sciences in 1997.

† �e topic of reducing the cost of change is described through an economic lens in the spectacular

book Tidy First?: A Personal Exercise in Empirical So�ware Design by Kent Beck.

32 PART 1: Why Vibe Code

stitch them back into your code. (“I extracted out the tests, and also the build

con�guration that refers to them.”)

We’ve handed AI enormous, nested structure dumps and said, “Find that

one little detail buried ten layers deep,” and it came back in seconds with: (“It’s

[‘server’][‘cluster’][‘node_13’][‘overrides’][‘sandbox’][‘temporary’]”).

We also love using AI as a design partner—a quick collaborator who’s

awake at any hour you’re inspired to work. It’s the extra pair of hands that

can validate your ideas or debug that sneaky performance glitch you’ve been

chasing for days.

In future chapters, we’ll mention a few of the many kinds of messes

that AIs can produce—or more accurately, messes that you produce using

AI. It turns out your AI concierge is great for helping you get out of those

messes as well, as long as you use the disciplined approach of only tackling

small tasks at a time and tracking your progress carefully (which we cover

in a future chapter).

Conclusion

We’ve seen how vibe coding rapidly accelerates your work�ow, turning multi-

day chores into lunchtime wins—like Gene and Steve hacking together the

video excerpt tool in less time than it takes to cook a decent chili. Sure, some-

times your AI sous chefs misinterpret recipes (looking at you, captioning

nightmare with ffmpeg), and you’ll occasionally need to step in yourself, but

the net result is still far quicker than manual coding.

However, as we showed you, speed is the least interesting part. Vibe cod-

ing creates value along �ve distinct dimensions or FAAFO: fast, ambitious,

autonomous, fun, and optionality.

• Fast feedback loops and high velocity make more proj-

ects feasible: AI’s speed enables all the other dimensions of

FAAFO.

• Ambition reshapes your project landscape: “Not quite worth

it” tasks become quick wins, and impossible dreams land on

your to-do list.

 CHAPTER 3: The Value Vibe Coding Brings 33

• Autonomy eliminates friction: Work at your own pace with-

out constant negotiation, hando�s, and the coordination costs

that slow traditional teams.

• Fun drives engagement: Programming becomes addictive

again when you’re building rather than debugging, creating

rather than wrestling with syntax.

• Options create competitive advantage: Explore multiple

approaches in parallel, turning one-way doors into reversible

experiments.

In the next chapter, we’ll show some of the risks of vibe coding and what

you can do to mitigate them.

35

CH APTER 4

THE DARK SIDE: WHEN VIBE

CODING GOES HORRIBLY WRONG

W
e’ve explored the FAAFO upsides of vibe coding. But like any new

technology, AI-assisted coding has a dark side. Your AI sous chef may

be your most helpful collaborator, but if you’re not paying attention, it can

also have breathtaking destructive potential.

A similar pattern occurred during the introduction of electricity into

manufacturing. While electricity’s tremendous potential was obvious, it

wasn’t until twenty years a�er its invention that factory owners learned to

abandon their linear, belt-driven layouts in favor of designs that exploited

electric power’s �exibility.

Today’s AI-coding revolution follows a comparable pattern—we can see

the tremendous potential, but we’re still learning how to harness it without

triggering failures that can destroy months of work in minutes, wipe out code

bases, or damage physical hardware.

Looking at the history of so�ware, we can see plenty of reasons for

hope. Like Sir Tony Hoare’s* allowing memory pointers to be null—his

famous “billion-dollar mistake”—or manual memory management in C that

enabled decades of bu�er over�ows and security breaches, we eventually

created technologies to mitigate the worst of these issues.

AI coding can introduce systemic risks that can cascade across develop-

ment ecosystems. �e stakes could be higher and the failures more spectac-

ular than anything we’ve encountered in traditional so�ware development.

But we believe the principles and practices that have improved our so�ware

* Also known as C. A. R. Hoare, Sir Hoare invented Quicksort and ALGOL (the progenitor of almost

every programming language, such as C, Smalltalk, Java, etc.). He also created CSP (communicat-

ing sequential processes), which the Go concurrent model is modeled a�er.

36 PART 1: Why Vibe Code

practices for the last many decades can be modi�ed to avoid potential pitfalls.

�e following are real-world stories of vibe coding gone terribly wrong. Let

our hard-won lessons be your ticket to success.

Five Cautionary Tales from the Kitchen

The Vanishing Tests: Where’s My Code?

Steve had a scary experience within two weeks of starting to use coding

agents. A�er he had begun converting the automated test suite for Wyvern

with an agent, he was appalled to learn from his colleague that the coding

agent had silently disabled or hacked the tests to make them work and had

outright deleted 80% of the test cases in one large suite.

Worse, by the time Steve found out, those tests had been deleted scores

of commits ago. Many productive changes on the branch were layered in, so

a rollback would not be straightforward. Steve was in a dilemma. �at night,

he texted Gene, “I told Claude Code to take care of my tests, and it sure did.

It cared for them like Godzilla cared for Tokyo.”

Steve’s AI assistant never mentioned deleting these tests, nor did it ask for

permission—it removed them silently. We describe what and why things like

this can happen in Part 2, and what you can do about it in Part 3.

The Eldritch Horror Code Base: When FAAFO Dies

To support writing this book (and while writing this book), Gene built three

generations of a writer’s workbench tool. �e goal was to reduce the immense

amount of manual “slinging” of prompts and portions of the manuscript,

which had to be copied and pasted into and out of di�erent tools. His work-

bench tool started as a Google Docs Add-on. �e third iteration was a termi-

nal application, which underwent frequent evolution as he and Steve used it

intensely during the book authoring and editing process.

All was going well. Gene had been using it daily, all day long, eventu-

ally having processed over twenty million tokens. It was super easy to keep

adding functionality to the workbench…right up until it wasn’t. �e code

base became what Gene described as an “eldritch horror”—a giant, three-

 CHAPTER 4: The Dark Side: When Vibe Coding Goes Horribly Wrong 37

thousand-line function with no modular boundaries, impossible to under-

stand or modify without breaking something else.

“I couldn’t understand the function that the AI wrote to save the interme-

diate working �les,” Gene recalls. “It took me twenty minutes to understand

the three arguments the function used, and I couldn’t remember them ten

minutes later.” Gene spent three exhausting days rewriting and modularizing

the code (with AI’s help) and shoring up the tests to verify the correctness of

the functionality they were relying on every day.

�is �nally brought FAAFO back from the cosmic abyss, and this tool

helped Gene and Steve deliver the �rst dra� to the editors, 50 million tokens

later. We’ll describe the techniques used in Part 3, where we discuss how to

prevent, detect, and correct these types of problems.

The Vanishing Repository: Near-Catastrophic Data Loss

Perhaps the most alarming story comes from Steve, who one day noticed

that his Wyvern TypeScript client code—approximately ten thousand lines

of code and thousands of �les, representing weeks of work and about $1,000

worth of Claude Code tokens—had vanished. Not just from his project direc-

tory, but all �les and their backups were gone too. It had also (yay) vanished

from the remote Bitbucket repository. Steve experienced “that heart-stopping

moment where you cycle through the �ve stages of grief in a few hundred

milliseconds”—like when you accidentally delete a production database and

you know there’s no backup.

By sheer luck, Steve eventually noticed an open terminal window with

an orphaned clone of the code—it was the last remaining copy of that code

on Earth. Had he closed that terminal or even le� the directory,* everything

would have been permanently lost. His AI assistant had created numerous

Git branches with cryptic names. During a cleanup operation, Steve had

instructed it to remove “unneeded” branches, not realizing those branches

contained uncommitted code that unexpectedly hadn’t been merged to main,

including most of the node client. We describe how to prevent, detect, and

correct these types of problems in Part 3.

* �is is the deleted Unix �le system inode problem. If he had le� the directory, it would have been

garbage-collected away without a trace.

38 PART 1: Why Vibe Code

The Near-Hardware Disaster: Physical Consequences

Digital mistakes are bad enough, but AI can also cause physical damage. Our

friend Luke Burton, an engineer who spent two decades at Apple and is now

at NVIDIA, was using a coding agent to create a tool to automate �rmware

uploads to a CNC machine. However, during a vibe coding session, he almost

hit Enter before realizing his AI assistant had proposed wiping out the CNC

storage device.

Luke texted us in alarm: “It all scrolled by so fast, I almost missed it. I

was one Alt-Tab away from having to factory restore the machine. �at would

have involved getting access to the rear panel, and this machine weighs 100

pounds.” AI-initiated coding mistakes can extend beyond so�ware, damaging

physical devices or systems. (Again, we’ll describe mitigations in Part 3.)

The Disobedient Chef: When AI Ignores Direct Instructions

Gene worked with AI to handle Trello API authentication. Despite explic-

itly telling it to “Read the �le from the Java resources directory—here’s how

you do it,” the coding agent ignored his directions and still wrote code that

accessed it through the �le system directly instead.

�e code still worked…when Gene ran it from his project directory. But

had he not caught this mistake when he inspected the coding agent’s changes,

it would have caused his code to fail when used as a library in another pro-

gram—a subtle time bomb that might not have been discovered until weeks or

months later. As we’ll explain in Part 2, AI can have problems with instruction

following, getting worse when its context window becomes saturated. We’ll

teach you how to detect when this is happening and what to do about it.

Genius but Unpredictable

As these stories reveal, vibe coding is like working with an extraordinarily

talented but wildly inconsistent sous chef. On good days, this sous chef can

create masterpieces beyond your wildest expectations, transforming simple

ingredients into culinary magic. But on bad days, the same chef might burn

down your kitchen, poison your guests, or disappear mid-service. With a reg-

ular sous chef, you might lose a meal or waste some ingredients. With AI, you

can lose more—functioning code, critical tests, whole repositories, or phys-

 CHAPTER 4: The Dark Side: When Vibe Coding Goes Horribly Wrong 39

ical hardware. (And to add to the indignity, the AI vendor will charge you

for the privilege of destroying your meal and recreating the dishes it ruined.)

�ese cautionary tales aren’t meant to scare you away from vibe coding—

we remain enthusiastic advocates for many reasons. But they do underscore

why the techniques and safeguards in the rest of this book are so important.

Without proper supervision, taste-testing, and kitchen practices, your AI

sous chef can transform from your greatest productivity asset into your worst

nightmare. And when that nightmare happens, you may become the reason

for the executives banning AI chefs from the restaurant chain.

�ese concerns about AI’s potential downsides aren’t just based on per-

sonal experience—they’re now showing up in data. �e work Gene did on

the State of DevOps Reports continues at Google’s DORA research group.

DORA’s 2024 report dropped a surprising �nding: Every 25% increase in

GenAI adoption correlates with 7% worse stability (more outages and longer

recovery times) and a 1.5% slowdown in throughput (deployment frequency

and lead times).1

�is �nding certainly supports the sobering stories we shared above.

However, we call the �nding the “DORA anomaly” because it’s at odds with

our common experience that vibe coding can also increase throughput and

preserve stability. �is led to us starting a joint research project in early 2025,

and we hope to create additional guidance on what factors are needed to vibe

code well. (More on this in Part 4.)

Every big new technology has growing pains, marked by mishaps and

even disasters before safety features and good practices emerge. You can

reduce the risk through careful task decomposition, rigorous veri�cation,

strategic checkpointing, and more, as we show you later in this book. We’ve

made these mistakes, so you don’t have to—and we’ve developed battle-tested

approaches to ensure your vibe coding journey delivers all the FAAFO bene-

�ts without the downsides.

“These Seem Like Pretty Rookie Mistakes”

Many people we admire and whose opinions we trust gave us wonderful feed-

back on this book. However, several people told us: You two are experienced

engineers, having either built large-scale systems at Amazon or Google or

40 PART 1: Why Vibe Code

researched deeply e�ective so�ware delivery practices for decades. And yet

it looks like you forgot about basic things like version control or automated

testing. �ese seem like pretty rookie mistakes, and you let AI go wild and

wreak havoc on your code.

Maybe you were thinking the same thing; we’re glad that they brought

this up. We made the above mistakes despite having what we thought was a

healthy dose of caution and paranoia. However, we were like people who have

spent decades riding a horse and are then given the keys to a modern passen-

ger car. Or maybe more accurately, a modern F1 racing car. We wrecked our

car. Many, many times.

Like everyone on the planet, we have been learning to use these new

and novel tools with few, if any, antecedents. Someone used to riding horses

will have few of the required mental models, muscle memory, and habits

required to drive a car. �e good news is that the same core principles and

practices that allow us to deliver so�ware sooner, safer, and happier as we

went from one so�ware deployment per year (which was typical in the

2000s) to 136,000 deployments per day (which Amazon achieved in 2015)

can be scaled up as we go from generating a hundred lines of code a day to

thousands and beyond.

We’ll explore this deeply in Part 3, where we describe how to modify our

inner, middle, and outer development loops.

Tomorrow’s Promise vs. Today’s Reality

�e day will come when you can turn to your AI sous chef and say, “Prepare

a �ve-course meal for tomorrow’s important client,” and then walk away. �e

sous chef, deeply attuned to your culinary philosophy, �avor preferences, and

restaurant standards, could be trusted to take over completely. It understands

your explicit instructions, the unstated context, your restaurant’s history, and

your long-term vision.

When you return the next day, the meal is planned, ingredients prepped,

stations organized, and everything ready for �awless execution—just as you

would have done, or better. We believe that day is on its way. But as of mid-

2025, we’re still a long way o� from having that kind of trust. Since 2019, the

 CHAPTER 4: The Dark Side: When Vibe Coding Goes Horribly Wrong 41

time horizon of tasks AI can reliably complete has continued to double every

seven months,2 from maximum task lengths measured in seconds in 2019 to

now nearing several hours.3 Researchers project that AI will be able to com-

plete months-long so�ware tasks within the decade.

But as of mid-2025, we’re still navigating a signi�cant capability gap. Your

current AI sous chef is undoubtedly classically trained with a knife and has

read every cookbook. But when le� unsupervised on larger tasks, we’ve wit-

nessed AI coding agents:

• Transform code bases in ways that horrify their owners.

• Get trapped in endless research loops, continuously investi-

gating without completion.

• Spiral into increasingly complex solutions to �x problems in

their code.

• Overengineer simple features with unnecessary abstraction

layers.

• Create documentation that increasingly diverges from what

the code does.

• Gradually disable or bypass critical functionality as they lose

sight of the original requirements.

Understanding this gap—which continues to shrink—and learning to

work skillfully within it are crucial for e�ective vibe coding. Rather than

being discouraged by current limitations, successful practitioners adapt their

approach to maximize AI’s present capabilities while preparing for its rapid

evolution:

1. Delegate thoughtfully: Choose well-de�ned, smaller tasks

where success criteria are clear and veri�able.

2. Supervise appropriately: Monitor more closely when the task

is novel, complex, or high impact.

3. Establish guardrails: Create explicit boundaries for what AI

should and shouldn’t modify.

4. Check work regularly: Verify outputs to catch issues early,

especially for critical system components.

42 PART 1: Why Vibe Code

5. Create persistent references: Create documentation that

helps your AI assistant understand your project and prefer-

ences.

�e gap is real, but it’s also temporary. Learning to bridge it e�ectively

today is a critical part of, as Dr. Karpathy best put it, embracing the exponen-

tials. We’ll talk in great detail about what each of these means in practice in

Parts 2 and 3.

Conclusion

�e good news is that in spite of these limitations, AI coding assistants can

accelerate your development process. A carefully supervised AI can help you

achieve FAAFO bene�ts—working faster, tackling more ambitious projects,

accomplishing more autonomously, having more fun, and creating more

options.

�e gap is closing. Each advancement in AI memory, context retention,

and instruction following brings us closer to the AI ideal where we can trust

it to achieve large tasks unsupervised for a long period of time. Dr. �omas

Kwa and coauthors suggest in their paper “Measuring AI Ability to Complete

Long Tasks” that the day is coming when AIs will be able to do months of

unsupervised so�ware engineering work reliably.4 �e techniques we share

in this book not only help you work e�ectively with today’s AI tools but also

position you to take immediate advantage of any and all improvements as

they emerge.

In Part 2, we’ll explore detailed strategies for working within current

constraints, including techniques for supervision and quality control. For

now, approaching your AI with a clear-eyed understanding of both its poten-

tial and its limitations will help you maximize its bene�ts while avoiding the

pitfalls that come with a sous chef who sometimes can’t remember where the

trash can is and improvises.

43

CH APTER 5

AI IS CHANGING

ALL KNOWLEDGE WORK

S
o far, we’ve been focused on how AI is changing the world for so�ware

professionals. But the ripples of this revolution are spreading wider,

touching nearly every corner of knowledge work. In this chapter, we’ll explore

this broader transformation because understanding the big picture is key to

navigating your own path within it.

Let’s look beyond AI’s impact on coding to its impact on professions

ranging from �nancial analysis and legal research to writing and design. We’ll

make parallels with the Industrial Revolution and the dawn of the internet.

AI is a force reshaping how work gets done, and who is doing that work. It’s

recon�guring the jobs themselves, as well as the skills that matter.

We’ll show highlights from the famous “OpenAI Jobs Report,” discuss

historical precedents with thinkers like Tim O’Reilly, and share some provoc-

ative scenarios of explosive economic growth (as well as some less rosy

futures).

You’ll see why we’re optimistic that, for those of us able to adapt, AI can

help us escape drudgery and engage with more meaningful challenges. It will

also reinforce why embracing vibe coding unlocks more of those FAAFO

bene�ts—fast, ambitious, autonomous, fun, and optionality—in everything

you do.

Disruption Outside of Software

If you’re reading this, chances are you’re a knowledge worker—be it so�ware

developer, infrastructure and operations, product manager, UX designer,

44 PART 1: Why Vibe Code

�nancial number-cruncher, artist, you name it. Your job involves thinking,

analyzing, creating, and communicating. You use computers as a big part of

your job.

If that’s you, then your job is going to change. A groundbreaking 2023

study by Dr. Daniel Rock and his colleagues, colloquially called the “OpenAI

Jobs Report,” delivered some shocking news: Researchers estimated that 80%

of US workers could see AI impact at least 10% of their tasks, potentially

more.1 �ey hinted that automating cognitive tasks could create far more eco-

nomic value than automating physical labor ever did. However, they found

that the jobs most exposed were high-wage knowledge workers—mathema-

ticians, tax preparers, �nancial analysts, writers, and web designers. Wow.

�ey found that only thirty-four occupations were “safe.” �ese jobs

required physical manipulation and specialized equipment operation, like

motorcycle mechanics, short-order cooks, and �oor sanders. Or, as our col-

league Brendan Hopper, Group CTO at Commonwealth Bank of Australia,

described it, “moving atoms for a living.”2 �ese roles depend on manual dex-

terity and real-time physical feedback that LLMs cannot augment.

�e most a�ected (i.e., least safe) tier included so�ware developers, along-

side lawyers and other information wranglers. AI sous chefs are becoming

adept at writing code, cra�ing documentation, analyzing systems, research-

ing legal precedents, summarizing depositions, and churning out reports.

Oh, how fortunes change. We remember the days, not so long ago, when

many of us knowledge workers watched automation impact millions of man-

ufacturing jobs,3 perhaps sitting in our $2,000 ergonomic chairs and sipping

our $10 cappuccinos, smugly assuring each other that “our” creative, complex

work could never be automated.

Knowledge-work jobs may not be automated away for a long time, but…

as Dr. Andrew Ng, one of the founders of Google Brain and now at Stanford

University, said, “AI won’t replace people, but maybe people [who] use AI will

replace people [who] don’t.”4

Now, does this sound bleak? We don’t think so. We genuinely believe

this revolution is fantastic news for our profession. It promises to help us

escape the drudgery, the repetitive tasks, the parts of building so�ware that

drain our energy and joy. As our tie-dyed friend Dr. Erik Meijer provocatively

declared, “We are likely the last generation of developers who will write code

by hand…But let’s have fun doing it!”5 �at’s the spirit we want to capture.

 CHAPTER 5: AI Is Changing All Knowledge Work 45

We want to teach you to harness these powerful new tools. We want you to

learn vibe coding so you can write better code faster, be more ambitious, and

rediscover the fun in creating so�ware.

Beyond the Junior Developer Debate:
AI’s True Impact on Engineering Teams

Traditional professional kitchens have a clear hierarchy: Head chefs design

the menu and oversee operations, experienced line cooks handle complex

dishes, and new apprentices learn by starting with simple tasks like chopping

vegetables and washing dishes.

For decades, we’ve organized so�ware engineering teams in the same

way: Senior principal engineers design project architecture, mid-level engi-

neers build complex features, and junior developers learn by handling small,

contained tasks. �is hierarchy shaped how we hired, trained, and promoted

engineers. It’s how most of us learned the ropes.

AI, being super fast, changes everything. Let’s visualize this using a “task

tree.”* Big company goals form the trunk, branching into major features,

which then sprout smaller branches and �nally leaves—individual functions,

tests, documentation bits. Historically, those leaf nodes were the proving

ground for junior talent.

Many have noted that AIs excel at these leaf-node tasks. Tasks that once

took a junior developer days might now be handled in hours by a senior

engineer guiding an AI assistant. Steve’s head of AI trained and deployed a

machine learning model in an a�ernoon. Had it been done the previous year,

it would have been a two-month summer intern project. �is observation

partly inspired Steve’s June 2024 “Death of the Junior Developer” post.6 In

the FAAFO model, senior engineers can do things faster and more autono-

mously, which (we thought at the time) cuts the junior developers out.

But the reality is more nuanced and, frankly, more interesting than a sim-

ple replacement story. Unlike what we thought, everyone in the organization

will be using AI.

* In reality, we know that this task tree is actually a task graph—a directed, hopefully acyclic, depen-

dency graph.

46 PART 1: Why Vibe Code

Junior developers will not become redundant. Far from it. �eir role is

evolving. Instead of primarily executing leaf-node tasks, they might become

the “station leads” of the kitchen, who help integrate contributions from

non-engineers across the company. We’re seeing a fascinating trend where

people outside traditional engineering roles—UX designers, product manag-

ers, infrastructure operations—use AI to contribute directly to the code base.

A junior engineer, like a junior doctor, is still highly trained and can be super

valuable in helping this new generation of budding “�eld medics” contribute

directly to the code.

So�ware delivery is evolving into a vibrant ecosystem, where all roles

are now contributing to the code. One UX designer we know, Daniel, was

frustrated by a missing feature and built it himself (along with tests) with AI’s

help, impressing the engineering team.

We hear more and more stories like Daniel’s. We believe junior develop-

ers will increasingly work with these creative professionals and knowledge

workers, including helping them and integrating their work, because most of

it would have been done by junior developers in the past. �is makes them a

good resource for helping less technical people perform that work.

Vibe coding is starting to happen anywhere in the organization where

people are waiting for developers or engineers. In the past, these people were

either stuck, had to use outside vendors, or had to escalate up the hierarchy.

Now, they can create the so�ware themselves—building prototypes, �xing

issues, and maybe building features (or at least starting them).

Senior engineers will become responsible for more because what can be

accomplished will be greater (ambitious), and they’ll be responsible for the

contributions of many people, all armed with AI.

With the vision we see unfolding of all knowledge workers beginning

to vibe code, engineers still have important roles, though they will be dif-

ferent. O�ering a pragmatic perspective amid these shi�ing roles, Dave

Cohen, VP of Engineering at UTR Sports (and a former engineering leader

at Facebook and Google), gives advice we all should �nd heartening:

Don’t worry, engineers—the current generation of AI tools won’t

replace you anytime soon…7

 CHAPTER 5: AI Is Changing All Knowledge Work 47

There Will Be More Developer Jobs, Not Fewer

We talked with Tim O’Reilly recently, who invented the term “Web 2.0” and

is famous for his publishing empire, which has taught us many essential skills.

We got onto the topic of AI coding, and he reminded us that we’ve seen this

movie before. Every single time we’ve had a signi�cant leap in programming

technology, people predict the programmer apocalypse:

• “High-level languages will kill assembly programmers!”

• “Visual Basic will replace professional developers!”

• “Low-code platforms will make developers obsolete!”

• “No-code tools mean the end of so�ware engineering!”

However, each time programming got easier, we needed more pro-

grammers. Easier tools meant more people could build so�ware, which cre-

ated new categories of applications, which spawned new industries, which

required…you guessed it…more developers.

Look at what happened with the web. HTML was dead simple compared

to C++. Everyone and their grandmother could make a webpage. It did the

opposite of killing programming jobs. It exploded the demand for so�ware,

creating millions of new programming jobs across countless new businesses.

Dr. Matt Beane, author of �e Skill Code and famous for his work on

studying the “novice optional problem,” speculated on the variety of new

roles that could emerge in the so�ware creation process. We talk more about

his prediction of what new so�ware roles might get created in Part 4, based

on his study of the latest roles that were created in ful�llment centers as more

work was automated.

Furthermore, existing roles will all become enhanced with AI. A security

engineer is still a security engineer, for instance, but they will be using AI to

automate a lot of the job. Security engineers have always wanted to imple-

ment �xes directly in the code, but it’s not always feasible for them to know

every language and framework at the company. With AI, they can con�dently

make security �xes and add defenses across the company’s code, provided the

work is reviewed by an appropriately leveled engineer.

48 PART 1: Why Vibe Code

�is pattern of AI role augmentation starts to capture Scott Belsky’s

notion of “collapsing the stack” we mentioned earlier—where Daniel, the

UX designer, is proving that he, too, can be an engineer, and he can start

to work his way up in engineering experience by building so�ware with his

own hands. Likewise, professional engineers no longer need to wait on or be

blocked by UX designers; engineers can take on many UX responsibilities in

less user-critical scenarios.

�e UX designer role seems to be broadening—a UX++ role that strad-

dles the line between designer and engineer. Daniel gives us a glimpse of a

world where UX specialists implement the UX layer themselves rather than

relying on developers. In this new world, people will vastly prefer working

with UX designers who participate in development rather than sitting on the

sidelines in Figma, opening tickets for developers to resize panes and move

buttons.

So, what does this mean for jobs, precisely? Will everyone need to learn

to code? Let’s study a comparable situation that unfolded with photography

and see if we can learn anything from it.

When digital cameras �rst appeared, professional photographers sco�ed,

convinced that mastering f-stops, lighting, and �lm chemistry was the only

real path to capturing great images. Yet over the following decade, an unex-

pected shi� occurred: Digital photography didn’t shutter the profession—it

blew open the doors. Suddenly, anyone with a smartphone was an amateur

photographer, creating billions more photographs.* �is explosion in pho-

tography birthed new industries—social media in�uencers, image-sharing

networks, online portfolios—and dramatically expanded the overall demand

for professional imagery.

�e same dynamic will likely unfold with so�ware creation. As vibe cod-

ing tools become increasingly intuitive and widespread—and eventually, as

easy to use as smartphones—so�ware development moves from a specialized

discipline accessible only to highly trained engineers, toward something any-

one with a good idea can go a�er.

We’ve already seen teenage vibe coders building robust gaming apps—

something once reserved for industry veterans. In this environment, so�ware

* Wes Roth presented an outstanding description of the phenomenon. �ere were nearly two trillion

photos taken in 2024.8

 CHAPTER 5: AI Is Changing All Knowledge Work 49

will become as ubiquitous as photos and videos, an everyday medium for

communication, collaboration, and creativity.

As you might still hire a professional photographer for demanding shoots,

there will always be a critical need for highly skilled so�ware engineers in

areas that demand exceptional resilience, security, and enterprise-level scal-

ability. (Say, so�ware for airplanes or CT scanners.)

Get ready for a world where so�ware becomes another form of creative

expression, and where the millions of little features that someone needs, lan-

guishing in a bug backlog, can be built and implemented by anyone.

Our math here is simple and optimistic: When you lower barriers, more

people create stu�. And those creations—whether digital photos or so�ware

apps—create new markets, opportunities, and yes, more jobs.

Could AI Lead to
 Annual 100% Global GDP Growth?

Some economists and AI researchers are making a bold, almost ludicrous

claim: that AGI could eventually double global GDP every year.9 We’re talking

about a 100% annual growth rate when the global economy has been putter-

ing along at 2–3% for nearly a century.

Let’s put this into perspective: Before the Industrial Revolution, eco-

nomic growth barely existed. We had roughly 0.01% annual growth for thou-

sands of years. �en the Industrial Revolution arrived, and growth jumped

to 1–2%.10 �at 100–200x increase completely transformed human existence.

�e Industrial Revolution created a virtuous economic cycle that had

never existed before. Steam power and mechanization exponentially reduced

the cost of production across manufacturing and agriculture, allowing com-

panies to o�er goods at lower prices while maintaining their pro�ts. As these

goods became broadly a�ordable, demand exploded.

�is surge in demand prompted businesses to scale production, creat-

ing more jobs and higher wages. Workers with increased purchasing power

bought more goods, reinforcing the cycle. Each technological breakthrough—

from the steam engine to the assembly line—ampli�ed these e�ects through-

out the economy.

50 PART 1: Why Vibe Code

So, when people talk about AI potentially causing another 30x jump in

growth rates, there de�nitely seems to be historical precedent. �at’s only

one-third of what happened pre- and post-Industrial Revolution! �ink

about what happens when production costs drop across industries simulta-

neously. When computing got cheap, we did unprecedented things—we cre-

ated smartphones, cloud computing, and whole digital ecosystems nobody

predicted.

As the cost of production drops across energy, manufacturing, health-

care, and education simultaneously, new goods and services will be rapidly

created, with so�ware being developed not over a year but over a weekend.

�is accelerated pace will be driven by a growing number of individuals

creating new so�ware. As more people innovate and build, new things will

become possible, demand will explode, and economic output will go through

the roof.

Who knows if it will happen. �ere are obstacles—resource constraints,

energy requirements, political resistance. But we don’t think the argument is

completely crazy, and that’s what makes it fascinating. We could be witness-

ing the beginnings of an economic transformation that makes the Industrial

Revolution look like a minor speed bump in human history.

�ere are risks. AI could lead to algorithmic micromanagement of devel-

opers, analogous to what we’ve seen in gig work and warehouses. But that’s

exactly why the “head chef ” mindset we advocate is so important—you stay

in control of the tools, rather than letting them control you.

As Mat Velloso, VP of Llama Developer Platform at Meta’s Super

Intelligence Lab and formerly of Google DeepMind, said, “When AIs started

beating humans in chess, we assumed it was game over. But then they learned

that if you team an AI with a human, that team can beat AI alone. �ere’s

something beautiful about that analogy in this world: Devs will be teaming

up with AI, not being replaced by it.”11

Conclusion

Today’s AI has plenty of limitations. It makes up function names that don’t

exist, forgets what it was doing halfway through a task, and occasionally

 CHAPTER 5: AI Is Changing All Knowledge Work 51

insists with complete con�dence that 2+2=5. But focusing on AI’s current

limitations is like judging the automobile industry on the 1908 Model T.

Here’s what it means to embrace the exponentials, again from Mat

Velloso: “�is year, very likely AI will surpass human ability in coding. It’s

happening. Just like it crossed the bar in many other things before (playing

Chess, Go, etc.).”12

Whether that happens this year or in the years to come, the FAAFO

bene�ts will keep growing—they compound with each leap in AI capability.

When AI becomes 4x smarter, you’ll be 4x faster, but also new transforma-

tive capabilities will emerge. �ose who embrace AI collaboration now will

develop instincts and work�ows that position them to thrive as these capabil-

ities expand exponentially.

�ese trends resonate deeply with both of us. Gene has watched as tasks

that took days in 2023 now take hours in 2025, and tasks that were impossible

for him are now routine. Steve has seen problems he’d abandoned years ago

become solvable with a few strategic conversations with an AI agent.

Our message to you amid this whirlwind is to embrace it. As long as you

lean into using AI, your development life stands to get steadily better, thanks

to FAAFO. You’ll be faster, more ambitious, more autonomous, have more

fun, and gain loads of optionality. AI elevates your ideas, your ambitions. It

becomes an ampli�er for your creativity.

53

CH APTER 6

FOUR CASE STUDIES

IN VIBE CODING

B
efore we dive into the techniques and frameworks that underpin vibe

coding, we want to share with you some �eld reports of real experiences.

We’ll tell a tale of an experienced developer tackling a side project, share

two stories of world-class engineering teams solving important business

problems, and regale you about a person who hadn’t programmed in nearly

twenty years building tools to solve her problem.

�ese anecdotes are real-world demonstrations of people achieving

FAAFO. �ey give us a taste of the transformative potential that vibe coding

will inevitably deliver at scale in technology organizations.

Building OSS Firmware Uploader
for CNC Machine

We mentioned our friend Luke Burton, who spent nearly two decades at

Apple managing engineering e�orts around some iconic moments. Some of

his achievements include being responsible for the technical readiness of the

2014 WWDC introduction of the Swi� programming language to millions of

developers. Luke has worked in and around the many systems that support

iOS and MacOS, including working on improving the security of the iPhone

supply chain.

Recently, Luke’s hobby has been playing with CNC machines, which are

meticulously cra�ed devices that carve intricate metal parts with knife-edge

precision. But as Luke has become interested in modifying the CNC �rm-

ware, he’s discovered that the �rmware development environment is woefully

challenging.

54 PART 1: Why Vibe Code

Luke is one of those hobbyists who tinkers deeply with their tools. He

found that �rmware testing is typically done on the CNC machine, instead

of locally on the developer’s laptop, which would be much faster and safer.

Furthermore, uploading the �rmware requires cumbersome telnet com-

mands.* Unit tests of the �rmware seemed almost vestigial, which made mod-

ifying the code seem treacherous and unpleasant.

A�er hearing what we’ve been working on, he wondered whether vibe

coding could help him �x some of these problems. One evening, using

Claude Code, he proved to himself he could navigate and start modifying

the CNC tooling and code base. Soon a�erward, he texted us about how he

had created a Python program that automated the upload of �rmware to the

CNC machine, signi�cantly reducing the friction: “2600 lines of Python with

documentation and proper CLI �ags. It cost me $50 in Claude Code tokens,

but I’m not complaining!” It took him two hours, and he was multitasking

the whole time.

Seeing what he built, his collaborator in Germany was amazed, prompt-

ing Luke’s enthusiastic reply: “You ain’t seen nothing yet—give me 15 minutes,

and this thing will have an interactive mode with GNU readline support.”

He showed this tool to a few people, and they immediately told him, “I

NEED THIS.” �e original controller program is notorious for being unus-

able because it doesn’t allow copying and pasting, there is no “�le open” dia-

log box, the navigation keys don’t work, etc.

He didn’t complete it in one step. It took patience and iteration. Claude

Code struggled to handle strangely compressed �les referenced in the origi-

nal CNC �rmware (“I couldn’t have done it any better,” he said). He eventu-

ally switched to Cursor, which used the same Claude Sonnet 3.7 model, and

fed it code from another Python program that worked. With AI’s help, he got

it working in two tries.

�is is an example of someone achieving FAAFO. Also, someone who

is clever about using multiple tools to push through to a working solution.

Furthermore, Luke’s contributions will help everyone who is helping improve

the CNC �rmware better, faster, and safer.

* In simple terms, telnet is a protocol and command-line tool that lets you connect to systems on

the network from the early days of the internet (1969). �ink of it as the unencrypted ancestor of

SSH.

 CHAPTER 6: Four Case Studies in Vibe Coding 55

Christine Hudson Returns to Coding

As we were working on the book, we got to help someone vibe code for the

�rst time. Our friend Christine Hudson did her master’s degree work in

machine learning in 2004 but hadn’t coded in ��een to twenty years. She

decided to try vibe coding.

For her �rst project, she chose to export her Google Calendar entries to

another Google account. �is is something that she would never have consid-

ered attempting before AI—the ambitious in FAAFO.

One of the �rst things we had to �gure out was which developer envi-

ronment would be best here. We preferred not to have to con�gure a local

environment. During the session, we tried Google Apps Script, Google Colab

notebooks, and terminal apps. All three of us used di�erent approaches to

implement the same task, with the goal of having something working in

ninety minutes.

Unexpectedly, Christine was not only the �rst to complete the task but

also the only one who succeeded at all. Using Google Apps Script, she suc-

cessfully exported her calendar to Google Drive as an ICS calendar �le. Steve

attempted to replicate her approach in real time but did not succeed because

of an obscure error with his authentication. Meanwhile, Gene’s approach,

using Python in a Google Colab notebook, got stuck in a similar spot, trying

to create a Google OAuth consent screen.

Steve and Gene were tangled in the barbed wire that all programmers

have to overcome: Dealing with everything the program needs to interact

with that’s out of your control—worse, when it’s external services. Every

encounter with a third-party API is a chance for a dead-end and retracing

your steps.

Christine is now a vibe coder. We’re happy that she succeeded, even

though we both fell �at on our dumb faces. We had steered Christine toward

Google Apps Script because of a crucial bene�t: It was already authenticated

and had built-in access to Google Calendar APIs. And that was the key that

unblocked her.

�is insight—knowing which path would avoid authentication complex-

ity—shows the real advantage that experienced developers have. �ey know

the broader technology landscape and have developed some judgment about

56 PART 1: Why Vibe Code

which approaches are better than others. And then they pick the wrong one,

but their student gets it right. But, hey, at least someone succeeded.

We asked Christine about how the experience felt on a scale of 1 (worst

experience ever) to 10 (best experience ever). She said there were moments

of pure joy (“+10”) when she saw the code being written for her, creating an

almost magical experience of e�ortless creation.

And how would she rate her most frustrating part? We were afraid her

experience would be a -10, and she’d never want to do this again. A�er all,

we had all struggled in frustration with external obstacles, like Christine’s

failed Google Cloud sign-ups, the countless error messages, Claude rate lim-

its, switching to ChatGPT, and not being able to upload screenshots. But no.

Christine said it had been mildly annoying, but no more so than the com-

puter troubleshooting she has to do every day.

Gene and Steve felt the frustration more than Christine did because

they wanted the experience to be seamless, and there were a lot of obstacles.

�e fun parts of coding had been accelerated, but all the rest of the time we

were stuck on miserable troubleshooting. Steve quipped that vibe coding can

sometimes be like a hellish trip to Disneyland, where all the rides and fun

parts have been compressed to half a second…and all you’re le� with is wait-

ing in line. But that wasn’t Christine’s experience at all. She found the process

ful�lling and took pride in what she built, despite the setbacks. She, too, was

experiencing FAAFO.

Let this be an inspirational case study for anyone who wants to “return

to code.” You can have as much ambition as you like, and build things you

always wanted to build, and it’s in�nitely easier than it ever was. We welcome

you back.

Adidas 700 Developer Case Study

A�er seeing Luke and Christine’s hobby projects, you might be thinking that

vibe coding is not suitable for “real work in the enterprise.” If you believe

this, you’re not alone. But this is why you need to know about the work of

Fernando Cornago, Global VP of Digital and E-Commerce Technology at

Adidas, and responsible for nearly a thousand developers.

 CHAPTER 6: Four Case Studies in Vibe Coding 57

Adidas generates nine billion euros of revenue annually and is one of the

top �ve e-commerce brands in the world. Formerly responsible for their plat-

form engineering, Fernando is passionate about providing developers with

the tools they need to be productive. In 2024 and 2025, he delivered an expe-

rience report on their 700-person GenAI developer pilot—an experiment

with vibe coding in a large-scale enterprise environment.1

�is was their second pilot. �e �rst pilot had spectacularly �opped,

with 90% of developers hating the coding assistant tool. �e reviews included

phrases such as a “total waste of time” and nothing but “�re�ghting and trou-

bleshooting.” Such was life on the trail in the pioneering days of AI-based

coding (i.e., early 2024) when the tools and models weren’t good enough to

be useful.

However, with those learnings, they tried again. �is second pilot is now

entering its second year. As we described earlier, Cornago reported that 70%

of developers experienced productivity gains of 20–30%, as measured by

increases in commits, pull requests, and overall feature-delivery velocity. Not

bad. More importantly, developers reported feeling 20–25% more e�ective

in their daily cra�. Also not too shabby, especially as this was all done before

coding agents, which are 10x more powerful and addictive.

Among the things that made Fernando most proud is that most of his

engineers report a 50% increase in what they call “Happy Time.” More pre-

cisely, that’s the amount of time developers spend on things they want to do,

which includes hands-on coding, analysis, and design. �at implies they’re

spending far less “Annoying Time”—unrewarding work such as attending

meetings, troubleshooting their environments, dealing with brittle tests, or

tedious administrative tasks.

We’ll describe the factors that di�erentiated these two groups, which

leaders need to know about, in Part 4. In short, the happier teams worked in

loosely coupled architectures. �ey had clear API boundaries, fast feedback

loops, and independence of action. Vibe coding worked well for them.

�is tale demonstrates how vibe coding requires creating an environ-

ment where developers can do their best work. With the right architecture

and fast feedback loops, vibe coding can increase developers’ productivity

and satisfaction with their jobs. And these happy developers can best achieve

organizational goals.

58 PART 1: Why Vibe Code

Elevating Developer Productivity
at Booking.com

Booking.com is one of the largest online travel agencies, with a team of more

than three thousand developers. Bruno Passos is Group Product Manager,

Developer Experience. His mission is to eliminate developer roadblocks so

his teams can do their best work. Over the past year, Bruno has been heavily

involved in Booking.com’s GenAI innovation e�orts within engineering—

another example of vibe coding at enterprise scale.2

Booking.com has a storied history of a culture of experimentation, where

almost every feature decision is tested, typically through feature �ags—a

practice that involves deploying multiple versions of a feature to production

and then measuring which one best achieves the desired business goals. One

downside is that the code base is full of never-used functionality behind dis-

abled feature �ags, legacy code, and old experiments.

�e result was developers spending 90% of their time on frustrating toil

rather than productive coding. �is became one of the focus areas for using

Sourcegraph’s AI code assistant and search tools. �eir developers reported a

30% boost in coding e�ciency, with signi�cantly lighter merge requests (70%

smaller) and reduced review times.

In Part 4, we’ll discuss more of the strategies and tactics Bruno used to

achieve these results. Booking.com’s creative strategies included educational

initiatives that transformed skeptical developers into enthusiastic daily users.

�ey also held days of training with each business unit to help ensure devel-

opers knew enough to be successful.

Initially, Booking.com’s developer uptake of vibe coding and coding

assistant tools was uneven. Some developers embraced their new AI partner;

others didn’t see the bene�ts. Bruno’s team soon realized the missing ingredi-

ent was training. When developers learned how to give their coding assistant

more explicit instructions and more e�ective context, they found up to 30%

increases in merge requests and higher job satisfaction.

Bruno’s leadership de�ned short-, medium-, and long-term goals

focused on faster merges, higher-quality code, and reduction of technical

debt. Sourcegraph and its specialized agents enabled developers to commit

30% more merge requests, with smaller di�s, and reduced review times.

 CHAPTER 6: Four Case Studies in Vibe Coding 59

Bruno emphasized that tools alone weren’t enough. �ey supported

development teams across the enterprise with targeted, hands-on hackathons

and workshops. As a result, initially hesitant developers became enthusiastic

daily vibe coders who are �nding FAAFO.

Conclusion

�ese four case studies—spanning from hobby projects to enterprise-scale

implementations—illustrate the transformative potential of vibe coding

across di�erent contexts and skill levels. Luke’s CNC �rmware project demon-

strates how individual developers can achieve ambitious goals with newfound

e�ciency. Christine’s return to coding a�er a twenty-year hiatus reveals how

vibe coding can make programming accessible and enjoyable again for those

who had previously stepped away. �e Adidas and Booking.com implemen-

tations show how large organizations can systematically improve developer

productivity, happiness, and business outcomes when the right conditions are

present.

As we move forward in this book, we’ll explore the techniques and

frameworks that can help you and your organization harness this revolution-

ary approach to so�ware development.

61

CH APTER 7

WHAT SKILLS TO LEARN

T
he world is trying to �gure out what changes and what doesn’t change

when every developer is using AI on everything they’re working on, and

which skills are the most important in this new world.

Because tools will evolve rapidly, core traditional so�ware engineering

principles will play at least as large a role, if not larger. �us, it’s essential to:

• Create fast and frequent feedback loops for validation and

control.

• Create modularity to reduce complexity, enable parallel work,

and explore options.

• Embrace learning in a world where everything changes fast.

• Master your cra� to thrive in an environment where all knowl-

edge work will be changing in a short timeframe.

Learning these techniques will be critical for everyone in knowledge

work, not just developers and vibe coders.

Creating Fast and Frequent Feedback Loops

�e faster a system goes, and the more consequential the risks of failure, the

faster and more frequent feedback you need. When a system is slow-moving,

and nothing too bad happens when you make a mistake, you can get away

with feedback loops that are slow and infrequent. For instance, in most cases,

no one minds if a so�ware build takes a few minutes longer than usual, so

we can tolerate longer feedback cycles. However, as you speed a system up,

such as when we increase code generation speeds by 10x or more, we need

62 PART 1: Why Vibe Code

feedback cycles to speed up just as much, if not more. Feedback loops are the

stabilization force that allows us to stay in control and steer the system toward

our goals.*

Let’s compare two chefs: Chef Isabella runs her kitchen with a fanati-

cism for feedback. �ermometers are checked, dishes are tasted at every stage

by multiple cooks, servers relay customer reactions instantly, and specials

undergo trial runs before hitting the main menu. When a slightly o�-putting

aroma wa�s from the paella, she catches it before it reaches a customer. Her

kitchen adapts when things go wrong during every service. She experiments

with menus throughout the season and maintains her restaurant’s stellar rep-

utation.

On the other hand, Chef Vincent is equally skilled but operating in a

feedback vacuum. Dishes go untested until they land on the table, cooks work

in silos, and servers don’t bother giving feedback anymore. When that batch

of questionable seafood makes it out, the results are predictable: unhappy

(and unwell) diners, scathing reviews, and maybe a visit from the health

inspector. Vincent’s failure isn’t one of skill but of process—a failure to build

in (let alone act on) rapid feedback.

For instance, in our stories when AI-generated code generation spiraled

out of control, we didn’t create fast and frequent enough feedback. Our old

habits proved to be wildly insu�cient. You keep things safe and under con-

trol by building incrementally, testing frequently, and validating relentlessly.

By doing so, you build trust in your AI partner and minimize rework—that

soul-sucking and most expensive type of work. It doesn’t mean progress has

to be strictly linear. You can explore multiple paths in parallel, like an army of

ants searching for the best route to food, but each path needs its own frequent

checkpoints.

In fact, as Gene and his colleagues Jez Humble and Dr. Nicole Forsgren

found in �e State of DevOps Reports—a cross-population study that spanned

36,000 respondents over six years—that fast feedback loops, through CI/CD,

were one of the most signi�cant predictors of performance.1

* �e Nyquist stability criterion from control theory tells us that to maintain control over any sys-

tem, our feedback must operate at least twice as fast as the system itself. AI-assisted development

requires proportionally faster feedback loops as generation speeds increase, a bit like how a race car

driver needs faster re�exes at higher speeds.

 CHAPTER 7: What Skil ls to Learn 63

In Part 2, we’ll give you practical techniques for:

• Creating fast feedback loops.

• Leveraging AI to perform validation tasks and making checks

faster and less error-prone than manual review alone.

• Ensuring you’re building the right thing (validation) and

building the thing right (veri�cation).

• Using feedback to steer your project e�ectively, perhaps

toward that elusive product-market �t.

To achieve FAAFO, you must have the skills and processes to build trust

in what your AI collaborator creates. Trust us �rst: Going fast without feed-

back is dangerous.

Creating Modularity

While fast feedback provides a control mechanism for moving quickly and

safely, modularity partitions our system. It allows us to do work in parallel,

creating independence of action. It makes the system more resilient, and it

enables the low-risk exploration of alternative solutions (i.e., options).

In high-pressure and high-intensity situations, modularity can be the

di�erence between a well-run professional kitchen and utter pandemonium.

It’s the principle that allows di�erent parts of a system to operate and evolve

independently, and it directly impacts whether your team thrives or burns

out.

Dr. Dan Sturtevant and his colleagues did research that showed how

developers working in tangled, non-modular systems are 9x more likely to

quit or be �red.2 And again, �e State of DevOps Reports showed that a mod-

ular architecture was also a top predictor of performance.3

Alexander Embiricos from the ChatGPT Codex team described how an

engineer using AI tools achieved excellent “commit velocity” building a new

system from scratch. But when they ported it “into the monolith that is the

overall ChatGPT code base that has seen ridiculous hypergrowth” (that is, a

system with architectural problems) the results changed dramatically. Despite

64 PART 1: Why Vibe Code

having the “same engineers, same tooling,” their “commit rate just plummets.”

�is real-world example shows that even at OpenAI, architectural constraints

a�ect developers using AI too.4

Let’s revisit Chefs Isabella and Vincent. Isabella’s kitchen is a model of

modularity. Each station—pastry, grill, sauce—is distinct, with its own space,

tools, and responsibilities. Chefs work independently, experimenting within

their domain without causing system-wide meltdowns. When the pastry chef

tries a new technique, the grill chef isn’t dodging �ying �our. Communication

between stations is clear and standardized. �is independence allows them to

work in parallel, combining elements from di�erent stations to create excit-

ing new dishes reliably.

Contrast this to Chef Vincent’s kitchen, which is a war zone of entan-

glement. Shared tools vanish, cooks bump elbows, and chefs and servers

collide. A simple task requires navigating a maze of dependencies. Forget

parallel work; chefs literally wait in line, blocked by others. His talented

team is hampered not by lack of skill, but by the sheer friction of the system.

Yes, sometimes new “dishes” emerge, but usually by accident when ingredi-

ents crash into each other. We’ve seen code bases like this, where developers

(and their AI partners) can’t touch anything without triggering explosions

elsewhere.

We want modularity in our code and projects, because it enables the

independence of action for coding agents (and people) to work in parallel.

We want to have them work on di�erent tasks—refactoring a module, imple-

menting a feature, writing tests—without causing horrendous merge con�icts

(or worse, subtly) or breaking unrelated functionality.

Good modularity also builds resilience. Like cloud so�ware designed to

handle failing disks, a modular system contains failures; if one module has a

problem, the blast radius is limited. You can o�en isolate or replace it without

taking down the whole system.

Modularity also unlocks optionality, a cornerstone of FAAFO. It allows

you to explore di�erent solutions in parallel. If you want to try three di�erent

caching strategies, you can build them as alternative modules. If you need to

experiment with a new UI component, you can develop multiple versions.

Keeping your system modular gives you freedom.

In Part 2, we’ll describe techniques such as:

 CHAPTER 7: What Skil ls to Learn 65

• Task decomposition and breaking complex problems into

smaller, manageable components with clear interfaces.

• Working with multiple agents simultaneously to enable work

to happen in parallel without creating interference, or worse,

giant merge con�icts.

• Branch management and version control strategies to explore

multiple options.

• Agent contention detection to discover when agents are inter-

fering with each other’s work.

• Enabling experimentation and exploration by creating mod-

ules, where you can try a bunch of things, mix and match, and

pick the best combination.

Later, we’ll touch on a formula (NK/t) that helps quantify this power

of parallel experimentation. And naturally, the faster your feedback loops,

the more experiments you can run, increasing your chances of �nding the

best approach. In short, modularity helps achieve more in all of the FAAFO

dimensions.

Embrace (or Re-Embrace) Learning

We’ve already talked about the importance of architecture and fast feedback

loops in your AI-assisted kitchen. But there’s a third, equally crucial element

that underpins everything, especially when your sous chef is an AI: You have

to become re-accustomed to learning. AI is changing so rapidly that it is

going to take constant learning and practice, at least for a while, to develop

the good judgment you need—by taking risks, learning from mistakes, and

adapting.

�ink about our chefs again. Chef Isabella brings in new sous chefs,

complete with their eccentricities, who are o�en challenging to wrangle.

However, she knows that this is the future and becomes a relentless learner.

She experiments (which can result in surprises or failures), does controlled

trials, and seeks out other head chefs who are on their own journey. And with

her new team, she learns to create ever more ambitious dining experiences

66 PART 1: Why Vibe Code

that meet her customers’ increasingly demanding tastes. And somehow, it’s

more fun than before.

On the other hand, Chef Vincent tries working with these new sous chefs

a couple of times. One overcooked the �sh, one de�ated the sou�é, and one

accidentally set their dish on �re. Vincent posts pictures of these culinary

calamities on social media, ridiculing these strange new chefs, earning him

his ��een minutes of internet fame. But in time, he �nds himself le� behind

as the culinary and dining world changes rapidly around him.

You might be surprised to learn that learning is learnable. You can

improve your ability to learn at any time in your life. It’s coachable, teach-

able, and you can make your brain become more neuroplastic and adaptable

through focus and lifestyle changes. Personally speaking, we have learned

more in the last year or two than we have at any point in our careers—at an

age, to be frank, when learning isn’t as easy anymore.

Learning means doing. It means tackling problems that seem insur-

mountable. It means taking risks, patiently wading through your mistakes,

pushing until you get the outcomes you want, and troubleshooting creatively

when things go wrong. Your willingness and indeed eagerness to improve

how you learn will give you constant leverage in the next few years as AI

ascends to touch all knowledge work.

Here’s an example. When Gene �rst started vibe coding with Steve,

Gene was convinced that the then-new OpenAI o1 model would be great at

ffmpeg and could help him overlay captions onto video excerpts. �at is to

say, subtitles on YouTube clips. Two hours later, Gene ran around in circles,

typing increasingly complex ffmpeg commands.

�e AI was more than wrong; It was con�dently wrong. �inking about

that particular Sunday a�ernoon still causes Gene to clench his jaw. But he

learned an important lesson on when to give up on using AI to solve cer-

tain types of problems. It was a crummy experience, but he learned from it

because it was a crummy experience. You learn by doing.

Cultivating a learning mindset has nothing to do with innate genius.

Learning is about deliberate and intentional practice, much like Dr. Anders

Ericsson described for mastering any complex skill.5

You need:

 CHAPTER 7: What Skil ls to Learn 67

• Expert coaching: Leverage mentors, peers, and AI itself (ask-

ing it to explain concepts or critique approaches).

• Fast feedback: Build those tight veri�cation loops we dis-

cussed, so you immediately see the results of the AI’s work

and your prompts.

• Intentional practice: Consciously work on skills, like

prompt re�nement or evaluating AI suggestions in unfamil-

iar domains. Chop wood, carry water—or rather, vibe code,

review output.

• Challenging tasks: Push yourself slightly beyond your comfort

zone, using AI for problems you couldn’t solve alone yesterday.

In Part 2, we’ll describe how you can:

• Master the “count your babies” technique to systematically

verify that AI delivers everything you asked for, preventing

silent omissions that can break your systems.

• Develop your “warning signs detector” to spot AI’s subtle

shortcuts and con�dently challenge it when something feels

suspicious.

• Use AI as a world-class consultant on topics you don’t fully

understand or want to learn about.

• Cra� suitably sized tasks that �t AI’s attention span, prevent-

ing the corner-cutting that happens when its context window

gets overwhelmed.

• Implement strategic checkpointing rhythms to create a safety

net of recovery points throughout your development process.

• Deploy “tracer bullet testing” to validate whether AI can han-

dle tightly scoped technical challenges before investing signif-

icant time.

In short, achieving FAAFO becomes an exercise in “being a great learner.”

Your commitment to continuously learning how to interact with, guide, and

validate AI is what enables you to go faster, con�dently pursue ever-more

68 PART 1: Why Vibe Code

ambitious outcomes, whether working alone or as part of a team, and explore

more options.

Mastering Your Craft

At this point, we’ve equipped your kitchen with AI-powered sous chefs.

You’ve heard some stories, and by now you’re somewhat aware of both their

potential upside and their potential dangers. We’ve hinted that you’re now

the head honcho in your new role as a so�ware developer, and we’ve repeat-

edly assured you that vibe coding will be more fun than any kind of so�ware

development you’ve ever done.

But we haven’t addressed the elephant in the kitchen: None of it matters

if you don’t like cooking.

Chef Isabella thrives because she loves cooking. She may not be an expert

in all the techniques or latest tools, but she has a vision for what she wants,

she knows what’s important to her in the moment, and she can manage sous

chefs who may know speci�c areas better.

Chef Isabella lives to cook, while Chef Vincent cooks to live. He stopped

learning any new techniques ages ago. He’s satis�ed as long as the food tastes

“decent.” As a result, few people wind up going to Chef Vincent’s restaurant

because…well, his food is not that great.

Building things you love, or at least setting a determined vision and goals

for yourself, will help you �nd and acquire the skills you need. Especially with

AI there to help. All you need is the desire.

In Part 2, you’ll:

• Develop an intuitive understanding of the limitations and

strengths of these AI tools, just as great chefs know when to

trust their equipment and when to intervene.

• Get an overview of how AI code generation works, enabling

you to use AI to build things in languages you haven’t used

before.

• Learn how to pick things you love to work on, which will

naturally drive the right learning behaviors, unlike following

trends without purpose.

 CHAPTER 7: What Skil ls to Learn 69

• Transform coding from a solitary activity into a collaborative

dialogue that deepens your understanding with each itera-

tion.

• Build a creator’s mindset that focuses on meaningful out-

comes rather than getting lost in tool obsession or technical

trivia.

Our advice: �e more you throw yourself into vibe coding, the more

you’ll master your cra� of creating so�ware—and that’s the high-level goal,

isn’t it? Cook things you love, and cook di�erent cuisines, which will force

you to learn new tools and techniques. And of course, achieve ever-higher

levels of FAAFO.

Conclusion

We began this journey exploring Dr. Erik Meijer’s striking declaration that

“the days of writing code by hand are coming to an end.” It’s a provocative

statement, to be sure. But it’s probably the simplest way to describe the fun-

damental transformation happening in so�ware development. What started

with ChatGPT and other AI assistants, at �rst seemed like a toy, but has

evolved within two years into professional vibe coding, a new approach that’s

reshaping how we create so�ware.

In Part 1, we’ve examined the �ve dimensions of value that vibe coding

creates: writing code faster, being more ambitious about what you can build,

doing things autonomously or alone that once required teams, having more

fun, and exploring multiple options before committing to decisions. �ese

bene�ts combine to create a step change in what’s possible for developers at

all levels. �e economics of what’s worth building have opened up, and proj-

ects once eternally deferred are now within reach.

For both of us, these bene�ts have transformed our lives in deeply per-

sonal ways. Steve, a�er watching his beloved game Wyvern languish with

over thirty years of un�xed bugs and aspirations, saw a path forward. For

Gene, vibe coding reopened doors to coding that had seemed closed since

1998, enabling him to write more code in 2024 than in any previous year of

his career.

70 PART 1: Why Vibe Code

Hopefully we’ve convinced you why vibe coding is important. Now we’re

ready to move into the kitchen and start cooking. In Part 2, we’ll hand you the

knives, �re up the stoves, walk you through your �rst vibe coding sessions,

and then step you through the theory and fundamentals to do it well.

