VIBE CODING FAILURE
PATTERNS AND SOLUTIONS

A Field Guide for Vibe Coding Disasters and Recovery

From the Book Vibe Coding: Building Production-Grade Software With GenAI Chat, Agents, and Beyond
by Gene Kim and Steve Yegge, Published by IT Revolution, 2025.

Al coding assistants can generate code faster than humans can write it, but this speed
comes with new categories of failure that didn't exist in traditional development. This guide
catalogs the most common disaster patterns that emerge when working with AI across the
three developer loops described in Vibe Coding—from immediate coding mistakes that
can be caught in seconds to architectural catastrophes that can destroy weeks of work.

Each pattern includes the warning signs to watch for, immediate response procedures
to limit damage, and prevention strategies to avoid the problem entirely. The patterns are
organized by timeframe: Inner Loop failures happen in seconds to minutes during active
Al collaboration, Middle Loop failures emerge over hours to days as context degrades and
multiple agents interact, and Outer Loop failures develop over weeks to months when
architectural boundaries break down. Use this as both a diagnostic tool when something
feels wrong and an emergency response manual when disasters strike.

4)
UNIVERSAL EMERGENCY PROCEDURES:

When in doubt:
1. STOP all AT agents immediately
2. Assess which loop the problem belongs to
3. Check version control status
4. Create backup before attempting fixes
5. Start with simplest solution first
6. Document the incident for future prevention

INNER LOOP FAILURES (Seconds to Minutes)

/

-

(Immediate Solution:

_

(Prevention:

\

“TESTS ARE PASSING” LIE

Symptoms:
o Claims “All tests green” but code doesn’t compile
o Claims tests exist when none were written
o Reports success after making changes that break
everything

~

o Run tests yourself independently

« Have AI demonstrate by running tests in front of
you

o Never commit based on AI claims alone

o Set up automatic test running on file save
o Make “show me the test output” your default

/

-

response
(& J
J
\
INSTRUCTION DRIFT Medium
Symptoms:

(Immediate Solution:

_° Use smaller, more specific tasks

(Prevention:

L « Regular check-ins: “Are we still on track?”

o Al gradually deviates from original requirements
« Starts “improving” things you didn’t ask for
o Adds features beyond scope

~

o Interrupt and redirect: “Stop. Focus only on X”
o Re-read original specification together

AN

o Write explicit acceptance criteria
o Use “surgical” task definitions

J

/

-

CONTEXT AMNESIA

(Immediate Solution:

_° Clear context and start fresh if necessary

(Prevention:

L Proactively clear context at 50% capacity

\

Medium

Symptoms:
o Al forgets instructions from 5 minutes ago
« Repeats same mistakes after corrections
o Ignores project-specific rules

~

« Stop and quiz Al: “What are you working on?”
« Re-state critical constraints

» Monitor context window usage
o Keep tasks small and focused

J

-

/

-

\

DEBUG LOOP SPIRAL

(Immediate Solution:

« Start new session with simplified problem
_ p p

(Prevention:

_

Symptoms:
« Al adds more logging instead of fixing root cause
o Creates increasingly complex debug attempts
« Floods context with verbose logging output

~

o Take manual control of debugging
o Use actual debugger instead of print statements

J
~

o Set debug attempt limits
o Prefer debugger over logging
o Use “tracer bullet” approach for complex

problems

Security Levels

- Can destroy code/data
Medium Reduces quality

@igh Breaks functionality
@8 Minor annoyance

MIDDLE LOOP FAILURES (Hours to Days)

4 N\
ELDRITCH CODE HORROR Critical

Symptoms:
« 3,000+ line functions that “work” but are
incomprehensible
« Everything connected to everything else
« Changing one line breaks distant components

/" Immediate Solution:)
« Stop all feature work immediately

o Implement comprehensive tests before refactoring
_ Modularize in small, tested increments)

(Prevention: \

o Enforce modular boundaries from day one

o Regular architecture reviews

« “Code elegance” checks after each Al session
N\ . J
\

(" EMERGENCY PROTOCOL:
o If you can’t understand code AI wrote, stop every-
thing. This technical debt that will compound

exponentially.

S)
s ~

MEMORY TATTOO DECAY Medium

Symptoms:
o Al can’t resume previous work effectively
o Keeps re-solving already-solved problems
« Progress documents become stale or incorrect

/" Immediate Solution:)
» Create fresh specification from current state
o Clean up outdated documentation

_° Re-establish context with working examples

AN

éa Prevention:
o Regular “tattoo” maintenance
o Date-stamp all progress documents

« Delete plans immediately when completed
\ p y p J

- J

4 N\
AGENT WORKSPACE COLLISION .

Symptoms:
 Multiple agents modifying same files
« Port conflicts from parallel services
« Agents working in wrong directories/branches

[Immediate Solution:)
« Pause all agents and assess workspace state
» Manually resolve conflicts before continuing
_° Reassign clear, non-overlapping territories

AN

[Prevention:
« Color-code terminal windows by workspace
« Use different Git branches per agent

L Maintain agent coordination document)

- J

- a
High

MULTI-AGENT DEADLOCK

Symptoms:
o Agents waiting for each other’s output
« Circular dependencies in task assignments
« No agent can make progress

/" Immediate Solution:)
o Manually break the dependency cycle
o Assign 1 agent as “primary” for shared resources

J
~

« Sequence dependent tasks explicitl
K q P p y

éa Prevention:
» Map task dependencies before assignment
o Use “tracer bullet” approach for integration

« Regular coordination check-ins
N J

- J

Security Levels

- Can destroy code/data

Medium Reduces quality

@igh) Breaks functionality
@8 Minor annoyance

OUTER LOOP FAILURES (Weeks to Months)

4 N\
BRIDGE TORCHING (API BREAKAGE) -

Symptoms:
o Al changes function signatures without warning
« Removes or renames APIs other code depends on
o “Improvements” that break existing functionality

[Immediate Solution:)
» Roll back changes immediately

o Audit all API dependencies

_° Implement version compatibility layer

J
4 Prevention: N
o Golden rule: “You cannot break existing function-
ality”
o API compatibility tests in CI/CD
° Accretion-only development philosophy)
\

-

EMERGENCY PROTOCOL:
o API breakage = customer impact. Prioritize roll-
back over fix-forward unless damage is already

done.
> v,

-

\
ORGANIZATIONAL PROCESS GRIDLOCK .

Symptoms:
o Al productivity gains negated by approval processes
o Multiple manual review gates
o Deploy times measured in weeks

(Immediate Solution:)
o Create “fast lane” for low-risk changes
o Automate security and compliance checks
« Use data to demonstrate safety of smaller deploy-

\ ments J
a)

Prevention:
o Invest in automated testing/security
« Build organizational Al readiness

_° Train AT to work within existing constraints -

4 \
REPOSITORY DELETION DISASTER -

o Al deletes “unused” branches containing work

Symptoms:

» Whole directories disappear
« Git history becomes corrupted or lost

[Immediate Solution:)
o STOP - don't make any more Git operations
o Check Git reflog for recovery options

_° Use Al to perform “Git surgery” recovery

J
(Prevention: \
o Push to remote frequently
« Never let AI delete branches without manual

approval
L Regular backup verification Y,
4 EMERGENCY PROTOCOL: A
» Emergency recovery commands:
git reflog --all git fsck --lost-found
_ git show-branch --all J

- J

- a
High

STEWNAMI (WORKSPACE CHAOS)
o Changes in one area break completely unrelated

Symptoms:

features

o Impossible to track which agent made which
changes

» Merge conflicts spanning hundreds of files

/" Immediate Solution:)
o Freeze all agent activity

« Use Al to perform heroic merge recovery

Y o Restructure workspace boundaries before resuming

)
N

[Prevention:
o Clear workspace partitioning from the start
o Regular branch hygiene

L o Coordination documentation)
- o\l J
Security Levels
@B Con destroy code/data @HiGhD Breaks functionality

Medium Reduces quality

@8 Minor annoyance

