
VIBE CODING FAILURE

PATTERNS AND SOLUTIONS

A Field Guide for Vibe Coding Disasters and Recovery

From the Book Vibe Coding: Building Production-Grade So�ware With GenAI, Chat, Agents, and Beyond

by Gene Kim and Steve Yegge, Published by IT Revolution, 2025.

UNIVERSAL EMERGENCY PROCEDURES:

When in doubt:

1. STOP all AI agents immediately

2. Assess which loop the problem belongs to

3. Check version control status

4. Create backup before attempting �xes

5. Start with simplest solution �rst

6. Document the incident for future prevention

AI coding assistants can generate code faster than humans can write it, but this speed

comes with new categories of failure that didn’t exist in traditional development. �is guide

catalogs the most common disaster patterns that emerge when working with AI across the

three developer loops described in Vibe Coding—from immediate coding mistakes that

can be caught in seconds to architectural catastrophes that can destroy weeks of work.

Each pattern includes the warning signs to watch for, immediate response procedures

to limit damage, and prevention strategies to avoid the problem entirely. �e patterns are

organized by timeframe: Inner Loop failures happen in seconds to minutes during active

AI collaboration, Middle Loop failures emerge over hours to days as context degrades and

multiple agents interact, and Outer Loop failures develop over weeks to months when

architectural boundaries break down. Use this as both a diagnostic tool when something

feels wrong and an emergency response manual when disasters strike.

Security Levels

Critical Can destroy code/data High Breaks functionality

Medium Reduces quality Low Minor annoyance

“TESTS ARE PASSING” LIE High

Symptoms:

• Claims “All tests green” but code doesn’t compile

• Claims tests exist when none were written

• Reports success a�er making changes that break

everything

Immediate Solution:

• Run tests yourself independently

• Have AI demonstrate by running tests in front of

you

• Never commit based on AI claims alone

Prevention:

• Set up automatic test running on �le save

• Make “show me the test output” your default

response

INNER LOOP FAILURES (Seconds to Minutes)

CONTEXT AMNESIA Medium

Symptoms:

• AI forgets instructions from 5 minutes ago

• Repeats same mistakes a�er corrections

• Ignores project-speci�c rules

Immediate Solution:

• Stop and quiz AI: “What are you working on?”

• Re-state critical constraints

• Clear context and start fresh if necessary

Prevention:

• Monitor context window usage

• Keep tasks small and focused

• Proactively clear context at 50% capacity

INSTRUCTION DRIFT Medium

Symptoms:

• AI gradually deviates from original requirements

• Starts “improving” things you didn’t ask for

• Adds features beyond scope

Immediate Solution:

• Interrupt and redirect: “Stop. Focus only on X”

• Re-read original speci�cation together

• Use smaller, more speci�c tasks

Prevention:

• Write explicit acceptance criteria

• Use “surgical” task de�nitions

• Regular check-ins: “Are we still on track?”

DEBUG LOOP SPIRAL High

Symptoms:

• AI adds more logging instead of �xing root cause

• Creates increasingly complex debug attempts

• Floods context with verbose logging output

Immediate Solution:

• Take manual control of debugging

• Use actual debugger instead of print statements

• Start new session with simpli�ed problem

Prevention:

• Set debug attempt limits

• Prefer debugger over logging

• Use “tracer bullet” approach for complex

problems

MULTI-AGENT DEADLOCK High

Symptoms:

• Agents waiting for each other’s output

• Circular dependencies in task assignments

• No agent can make progress

Immediate Solution:

• Manually break the dependency cycle

• Assign 1 agent as “primary” for shared resources

• Sequence dependent tasks explicitly

Prevention:

• Map task dependencies before assignment

• Use “tracer bullet” approach for integration

• Regular coordination check-ins

Security Levels

Critical Can destroy code/data High Breaks functionality

Medium Reduces quality Low Minor annoyance

ELDRITCH CODE HORROR Critical

Symptoms:

• 3,000+ line functions that “work” but are

incomprehensible

• Everything connected to everything else

• Changing one line breaks distant components

Immediate Solution:

• Stop all feature work immediately

• Implement comprehensive tests before refactoring

• Modularize in small, tested increments

Prevention:

• Enforce modular boundaries from day one

• Regular architecture reviews

• “Code elegance” checks a�er each AI session

EMERGENCY PROTOCOL:

• If you can’t understand code AI wrote, stop every-

thing. �is technical debt that will compound

exponentially.

MIDDLE LOOP FAILURES (Hours to Days)

AGENT WORKSPACE COLLISION High

Symptoms:

• Multiple agents modifying same �les

• Port con�icts from parallel services

• Agents working in wrong directories/branches

Immediate Solution:

• Pause all agents and assess workspace state

• Manually resolve con�icts before continuing

• Reassign clear, non-overlapping territories

Prevention:

• Color-code terminal windows by workspace

• Use di�erent Git branches per agent

• Maintain agent coordination document

MEMORY TATTOO DECAY Medium

Symptoms:

• AI can’t resume previous work e�ectively

• Keeps re-solving already-solved problems

• Progress documents become stale or incorrect

Immediate Solution:

• Create fresh speci�cation from current state

• Clean up outdated documentation

• Re-establish context with working examples

Prevention:

• Regular “tattoo” maintenance

• Date-stamp all progress documents

• Delete plans immediately when completed

STEWNAMI (WORKSPACE CHAOS) High

Symptoms:

• Changes in one area break completely unrelated

features

• Impossible to track which agent made which

changes

• Merge con�icts spanning hundreds of �les

Immediate Solution:

• Freeze all agent activity

• Use AI to perform heroic merge recovery

• Restructure workspace boundaries before resuming

Prevention:

• Clear workspace partitioning from the start

• Regular branch hygiene

• Coordination documentation

Security Levels

Critical Can destroy code/data High Breaks functionality

Medium Reduces quality Low Minor annoyance

BRIDGE TORCHING (API BREAKAGE) Critical

Symptoms:

• AI changes function signatures without warning

• Removes or renames APIs other code depends on

• “Improvements” that break existing functionality

Immediate Solution:

• Roll back changes immediately

• Audit all API dependencies

• Implement version compatibility layer

Prevention:

• Golden rule: “You cannot break existing function-

ality”

• API compatibility tests in CI/CD

• Accretion-only development philosophy

EMERGENCY PROTOCOL:

• API breakage = customer impact. Prioritize roll-

back over �x-forward unless damage is already

done.

OUTER LOOP FAILURES (Weeks to Months)

REPOSITORY DELETION DISASTER Critical

Symptoms:

• AI deletes “unused” branches containing work

• Whole directories disappear

• Git history becomes corrupted or lost

Immediate Solution:

• STOP - don’t make any more Git operations

• Check Git re�og for recovery options

• Use AI to perform “Git surgery” recovery

Prevention:

• Push to remote frequently

• Never let AI delete branches without manual

approval

• Regular backup veri�cation

EMERGENCY PROTOCOL:

• Emergency recovery commands:

git reflog --all git fsck --lost-found
git show-branch --all

ORGANIZATIONAL PROCESS GRIDLOCK High

Symptoms:

• AI productivity gains negated by approval processes

• Multiple manual review gates

• Deploy times measured in weeks

Immediate Solution:

• Create “fast lane” for low-risk changes

• Automate security and compliance checks

• Use data to demonstrate safety of smaller deploy-

ments

Prevention:

• Invest in automated testing/security

• Build organizational AI readiness

• Train AI to work within existing constraints

