PRAISE FOR PROGRESSIVE DELIVERY

“Progressive Delivery is one of those practices that seems simple on the

surface but whose waters run deep....Come for the practices, stay for the

reframing of how to think about and improve your organization. Progressive
Delivery just might be the catalyst that enables organizations to change.”

—Nathen Harvey, DORA Lead and Developer Advocate,

Google Cloud

“Progressive Delivery presents a working guide for people who are inter-
ested in building adaptively, responsibly, and agentically in the midst of
rapid change....This approach centers human decision-making, clarity of
purpose, and collaborative goals, which have too often been lacking from
out-of-the-box technology approaches.”

—Dr. Cat Hicks, Software Research Scientist,

Catharsis Consulting

“This book is written by the strategists who pioneered Progressive

Delivery...The text steps between the four pillars of a delivery framework

and corresponding case studies from big real-world teams. Ultimately, this

is a call to action on why tech has to serve up customer happiness and not
just process metrics.”

—Alexis Richardson, CEO and Cofounder,

ConfigHub

“This book builds on existing paradigms and sage wisdom to introduce the

concept of Progressive Delivery. Get your highlighter ready, there’s some
good stuff in here!”

—XKatie McLaughlin, Senior Developer Relations Engineer,

Google Cloud

“From thought leaders in the industry, an invigorating new model for how
(and why) to deliver software.”
—Rachel Chalmers, Cofounder of

Generationship.ai

PROGRESS
DELIVERY

PROGRESSIVE
DELIVERY

Build The For The At The
Right Thing Right People Right Time

James Governor, Kim Harrison,
Heidi Waterhouse & Adam Zimman

IT Revolution
Portland, Oregon

REVOLUTION

25 NW 23rd P], Suite 6314
Portland, OR 97210

Copyright © 2025 by James Governor, Kimberly Harrison, Heidi Waterhouse, and Adam Zimman

All rights reserved. For information about permission to reproduce selections from this book,
write to Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210.

First Edition
Printed in the United States of America
302928272625 12345678910
Cover and book design by D.Smith Creative, LLC
Library of Congress Control Number: 2025012420
Paperback: 9781950508976

Ebook: 9781950508983
Audio: 9781950508990

For information about special discounts for bulk purchases or for information on
booking authors for an event, please visit our website at www.ITRevolution.com.

Dedication

To our families, for putting up with us.
To our friends, for encouraging us.
To our colleagues, for inspiring us.

CONTENTS

Preface

Introduction

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:

Progressive Delivery
Abundance

Case Study: Sumo Logic
Autonomy

Case Study: GitHub
Alignment

Case Study: Adobe
Automation

Case Study: AWS

Chapter 10: Future Proofing
Chapter 11: Case Study: Disney
Chapter 12: Ouroboros

Bibliography

Notes

Acknowledgments
About the Authors

xi

Xv

17
37
45
73
81
109
121
139
147
173
183

199
203
207
211

PREFACE

Like many good stories, this one begins with rage.

It’s a Tuesday evening at 6:17 p.m. You're making dinner. Your phone rings
and you answer. Your parents are in hysterics. “We're trying to transfer
money between accounts, and we can’t figure out how to log in to the bank
website!” After a few minutes of calming them down and trying to under-
stand the situation, you realize their bank rolled out a new website, moved
the location of the login screen, and implemented mandatory multi-factor
authentication. You spend the next two hours helping them navigate the
new interface and set up an authenticator app on their phone. By this point
your dinner has burned and cooled into a charred mass. Technology has

jerked your parents forward.
kkk

It’s Friday at 9:52 p.m. You open the app on your phone to adjust the alarm
on the “smart” speakers in your bedroom and your children’s rooms. You
need to ensure you're all up to make it to the airport on time the next day
for your flight to Boston. When the app opens, it’s different. You think,

“Oh, cool, a new update. Looks nice, lots of rounded corners, etc.” Then

Xi

Xii PREFACE

you start looking for the alarm control settings. After twenty minutes of
tapping on every section of the screen, you finally go to Google to find out
where the alarm control moved to, only to learn through numerous Reddit
threads that the new app removed all ability to see or change alarms in your
system. The comments then inform you there is no way to revert or roll
back the app version. You spend the next hour trying to set up alarm clocks
in all the bedrooms without waking the kids, your partner, or the dog. Tech-

nology has jerked your family forward.

It’s Monday at 8:27 a.m. You need to hop on a video call at 9 a.m. to prep
your boss’s boss for a meeting with the CEO about budget justification.
You open the app for your video conference, and there is a pop-up win-
dow informing you that you need to update the app before continuing. You
download the update, install it, and restart the app. You're able to get into
the meeting at 9:06 a.m. and apologize for being late. You share a recap of
the situation and are about to share your proposal when another pop-up
window appears on your screen with the message, “For security and com-
pliance, your computer will shut down and update in 3...2...1.” By the time
your laptop finishes updating, it is now 9:12 a.m. Your budget request was
not approved. Why can’t technology do a better job delegating control of

when changes occur?

It’s Wednesday at 9:41 a.m., and your CEO just flipped a feature flag for
that cool new idea your team implemented from the main stage of your
company’s conference in front of a live audience of over five thousand
users. Instantaneously, the user interface for hundreds of thousands of
users changes. You've spent months working on this redesign, building
and testing in production to ensure everything would work and had 100%
feature parity. Over the next few hours, the reactions and reviews from

users start to appear online. Half of the reviews are from happy users who

PREFACE xiii

love the new interface and find the enhancements intuitive. But the other
half are from users who are frustrated because you changed the workflow
they used. Some are even having legal challenges because of contractual
obligations around training timelines. Within days you hear this divide is
showing up in sales meetings with customers as well. Some companies love
the new vision and direction, while others are threatening to cancel con-
tracts because of the disruption the change caused to their business. You
could roll back the new user experience for everyone, but then the happy
users would be angry (they really like the new design). On the other hand,
keeping it on risks losing the users who were not ready for the change. You
want to deliver the right product, but the readiness for something new

varies across your user base.
*kk

It’s Friday at 04:09 UTC, and you push out a routine content configura-
tion change to 100% of your globally distributed enterprise customers. Due
to a bug in your content validation system, your change passed validation
despite containing problematic content data. Within hours your change has
caused the crash of 8.5 million devices. The resulting economic impact from
this incident is estimated at $5.4 billion. Your development practices would

benefit from a more progressive approach to software delivery.
kkk

These are just a few stories that we have lived where the rapidly increasing
rate of change has led to a technological jerk felt by users. Where some
might be justified in their frustration, we want to channel the rage and start

to build the right product for the right people at the right time.

INTRODUCTION

For the past thirty years, technologists have spent an immense amount of
time and effort getting better at making software. We have refined how we
deliver it, how we support it, how we build it, how we store it, how we run
it, and even how we talk about it. The cloud is our environment, and the
network is our foundational metaphor.

Technologists can create miracles and wonders with software, but
without a user, none of that matters. Without users, we can’t make money,
change the world, or provide anyone with any value. Users are the other
side of the software delivery equation, and they often get overlooked or
undervalued in the process.

All of the work we’ve done to improve the software creation and deploy-
ment process in the last thirty years is effectively invisible to the user. On
one hand, this is good. We don’t want to share our struggles with our cus-
tomers. But what does this evolution in the software development life cycle
look like from the user’s perspective? Let’s flip the mirror.

What looks like deployment from our side looks like a release from the
user side. This release is essentially a demand, a push, from us to them that
requires a change in their behavior. We may ask them to update, or we may
thrust updates upon them. But unlike greatness, update notifications are
very persistent. The more often we want users to accept our changes, the

more change we ask them to adapt to, even if it’s very tiny.

XV

XVi INTRODUCTION

Progressive Delivery takes the DevOps idea of breaking the wall
between silos to its logical conclusion: We need to knock down the wall
between software users and software makers.

We already have the tools we need for this demolition—automation
across all layers of the stack, configuration as code, monitoring, observabil-
ity, telemetry, feature flags, security built into the software development
life cycle (SDLC), and, yes, data collection.

We can see how people use our software, or don’t, if we only care to
look. Once we understand how users truly engage with our software, we
can package and parse that knowledge and use it to create software that
better fits the user’s needs and desires. In other words, we can understand
software in the context of it actually being used, not just designed.

In our thirty years of improving software delivery, the part we’ve been
missing is how our software affects the people who use it. Figure 0.1 con-
denses all the very real and important technical advances of coding, testing,
and shipping as “making software” (on the left) and expands out all the
ways our users can interact with what we’ve made (on the right). On top are
user behaviors and on the bottom are the tools we share with users to make

those behaviors possible.

\ntegrate

Extend

Making Software

Settings
Change process

FIGURE 0.1: Software Acceptance and Use After Delivery

INTRODUCTION Xvii

We, as software developers, are at the core, pushing or offering
deployments and our users accepting them. Feature flags can customize
the behavior of forcing or accepting changes. Settings can modify the soft-
ware’s environment. APIs can extend the program’s data and behavior to
a different format. Integration occurs when the user elects to use other
software to interact with our software to meet their needs.

This progression reflects how the control point of software behavior
shifts further away from the software creator (developer) and more toward
the software consumer (user). It may seem counterintuitive that the “inte-
grate/change process” is on the outer loop, since this seems pretty techni-
cal, but that’s actually the point where our software interacts with the user’s
software. After all, our software is not the only tool our users are using to
get their work done, so this ripple intersects with the ripples of dozens of

other software products in the user’s unique ecosystem (see Figure 0.2).

coc

FIGURE 0.2: User’s Software Ecosystem Has Many Interactions

Why We Wrote This

Any new way of describing the world requires context. It requires a commu-

nity. It is a set of ideas and practices that are packaged up and it often has

xviii INTRODUCTION

a moment that helps to crystallize things. The software industry has spent
the last thirty years trying to get better at writing software.

We (the developer community) have talked about continuous delivery
and Agile. We have gotten much better at testing and shifted testing left.
We have done many things, but we have never managed to do them for
everybody. We’re always promising a bright future...if only. The commu-
nity working on user-centricity in the future already needs to make it a
mainstream phenomenon. To make this new model accessible, we must
name it and talk about it.

In 2017, James Governor had an intuition based on a conversation
with Sam Guckenheimer, who worked at Microsoft. After hearing about the
application routing processes Microsoft used for rolling out services, James
realized that one part of the puzzle, which Microsoft called “progressive
experimentation,” was really about a broader phenomenon—Progressive
Delivery. The impact of a basket of technologies and approaches applies to
the entire SDLC. From there, our group came together—James Governor,
Adam Zimman, Heidi Waterhouse, and Kimberly Harrison—and began to
talk about, contextualize, and advance these ideas.

We all have a history of communicating with multiple stakeholders in
the industry, helping them understand complex ideas and make them more
broadly applicable. We have decades of experience and now we’re bringing
it together to bear on this new idea. Progressive Delivery takes all the good-
ness of the cloud and all the things that were not there when some of the
original works in continuous integration/continuous delivery (CI/CD) were
written and makes them applicable for now and into the future.

With continuous delivery and even late-stage Agile, there was the idea
of the separation of deployment from release. With Progressive Delivery,
though, we are adding that larger community in the context of our con-
sumer. In Progressive Delivery, we now have deployment, release, and
adoption. (See Figure 0.3.) That user cycle is representative of adoption,
and that is the part we need to incorporate back into how we're thinking
about our software delivery. We’ve gotten significantly better at shipping
software, but helping people adopt that software and feel good about it...

that’s where we need to do a lot of work.

INTRODUCTION Xix

Deploy Release Adopt

FIGURE 0.3: Deployment vs. Release and Who’s Impacted

As Dr. Cat Hicks notes, “A successful software builder wants to create
a successful, positive relationship to the change they’re introducing.”* We
want users involved and happy. The truth is that different people are going
to adopt software at different paces, and we’re always going to be in an envi-
ronment that is a mixture of the old and the new.

The first key breakthrough is understanding that the cloud changed
everything because of its opportunities to increase autonomy, alignment,
abundance, and automation. Particularly abundance. There are things we
could do with the cloud that we could never do before. But the second most
important breakthrough, the crucial breakthrough, is closing the third loop.
It’s not enough to have DevOps as two loops; we need to bring the user into
the heart of what we are doing. That is the prize and the opportunity. That’s

what makes Progressive Delivery different.

Who Should Read This Book

Progressive Delivery is a holistic framework for an entire organization. It is
intended to bring together the business, the builders, and the users in a way
that honors everyone. But change really starts at the source, the builders.

This book is primarily written from the perspective of enabling software

XX INTRODUCTION

developers, who are at the front line of creating change, to create an envi-
ronment where the right software gets delivered to the right people at the
right time.

We say, “build the right thing for the right users at the right time.” We
start with “build” because until you build the software you can’t deliver it.
And how you build directly impacts your options at the time of delivery
and your ability to observe adoption. Generative Al and vibe coding may
be shifting the cost of building all variations to a nominal fee, but the cycle
still starts with understanding the right thing to build. We need to start the
conversation around how we are building to properly enable our teams to
deliver to the right users at the right time.

Whether you are an engineering lead, a product owner, or an executive,
this book is intended to expose you to the latest in software delivery think-
ing. Throughout the book, we also discuss how software creation and deliv-
ery affect other groups, who we call constituents (more on this below). We
want to provide some useful ways to change your thinking about software
delivery and some practical questions and techniques to make that delivery
progressive, inclusive, and future proof.

When we talk about the collective of people who use and make our
software and those who market, sell, and distribute it, we could use the
traditional expression “stakeholders,” but mostly, we prefer to think about

that constellation of people as constituents.

« A stakeholder is a person who cares about the outcomes. In a
very literal sense, stakeholders have a stake in the success of the
product. This can be a developer whose job performance is tied to
the product, an investor, or company management.

+ A constituent is someone who contributes to success. This can
include developers, support, marketing, users, and IT depart-

ments.

We need to treat users as participants in our work rather than as

objects. We're doing something with them, not to them.

INTRODUCTION XXi

How to Read This Book

This book is a layer cake of theory and practice. The theory chapters provide
explanations for what we are seeing in the industry, what you can look for
in your organization, and questions to ask yourself about your alignment
with Progressive Delivery. The corresponding case study chapters demon-
strate a particular aspect of Progressive Delivery in action, but, of course,
other elements also make their way in. Read through the book and focus on
the parts that line up with your current experience. Then go through and
use the questions at the end of the chapters to consider how you want to

tweak the practices and behaviors in your organization.
Tools and Patterns

These tools and patterns are ways that we have seen organizations prac-
tice Progressive Delivery. Many of them flow into each other or relate to
each other, but we are listing them in alphabetical order for ease of refer-
ence. We're introducing these concepts here as they’ll come up throughout
the book and form a foundation to engage in moving toward a Progressive

Delivery approach.

Blast Radius
This is a way to describe how much effect a change will have. It is often
coupled with ring deployment or canary deployments. Changes with a
small blast radius limit the impact of changes since only a few people will be
affected. Limiting the blast radius also provides an early feedback loop on

changes from the user perspective.

Blue-Green Deployments
Blue-green deployments are often used in a “breaking change” scenario. If a
software change is going to change how data is stored and communicated,
the blue-green pattern helps prevent data loss. A second full system is set

up that mirrors the original system, and traffic is directed to both systems

XXii INTRODUCTION

simultaneously to check that the data is all being stored properly and that
the new system is robust. Only then is the older system shut down. Varia-
tions on this pattern include load migration and traffic shaping. The pattern

is also related to sunsetting.

BEFORE EEHT <L0AD BALANCER

B BEE

B

[0
[T
[

B

=
=

[
[

B

[
[0
[

T BEE E

FIGURE 0.4: Progression of a Blue-Green Deployment

B

=
E
E

Canary Testing
Derived from the use of canaries in coal mines as an early warning for
poor air quality, a canary test rolls out a software change to a small group
of monitored users and checks their response and experience. In the coal
mining story, the canary stops singing and faints if it loses oxygen. Since

canaries are very small, it’s a sensitive indicator. In the same way, canary

INTRODUCTION Xxiii

testing is a sensitive test that can indicate general safety for the group, but
only if it is well-monitored. Canary tests are often administered by feature

flags and may be part of a ring deployment strategy.

% %ROUTER % % % %ROUTER % %
‘= | =l

58S EEE

FIGURE 0.5: Canary Deployment

Used to Evaluate Viability of a Change Before Exposing to All Users

Constituents
Software is not just a set of computer instructions. It is a web of rela-
tionships between people, processes, and systems. The constituents of a
Progressive Delivery system include the developers, the product team, the
businesses that create and consume the software, the environment, and
the users. For example, a healthcare record system is created by a product
team and developers, sold by marketers and salespeople, maintained by
operations and support staff, and used by insurance companies, healthcare
providers, and patients. All those people are part of the constituency of

the healthcare software.

Feature Flags
Feature flags are a way to change the behavior of software at runtime based
on conditions that may be external to the code. Feature flags can be used
to control software based on conditions such as user ID, browser language,
geographic region, software version, security permission level, A/B testing

cohort, and server.

XXiv INTRODUCTION

Feature flags frequently fall into two categories: ephemeral flags, which
are used for a finite period of time and then removed from the code base to
prevent inadvertent activation, and long-lived flags, which control aspects
of the software that will continue to be variable. For example, an ephem-
eral flag might control the phased rollout of a new feature. A long-lived flag
might control software that has a paid premium tier. Feature management
software helps organize, control, and distribute an organization’s feature

flags.

New Features Feature Flag User Segments

— S 7—;@ Deveoprment

1 Quality
Assurance

—— (OFF e ﬁ % Production

FIGURE 0.6: Feature Flag Controlling Which User Segments

Have Access to a New Feature

Observability
Observability is the combination of gathering high-cardinality data about a
system (including its users) and being able to ask unanticipated questions
about that data.

Release Impact
Much like blast radius, release impact is a way to understand the effect of a
software change. However, release impact also implies that the change may
be positive. Some implementations of release impact also include a consid-

eration of monetary effects.

INTRODUCTION XXV

Release vs. Deployment vs. Acceptance/Adoption
Deployment is the act of getting software to a place where it will be avail-
able to the users. Release is the point where users can actually use the soft-
ware and are told about it. Acceptance or adoption is when users make the

software a part of their workflows.

Ring Deployments
A ring deployment is the practice of deploying software to increasingly
larger groups of people as part of a release strategy. For example, the first
ring might be to the team, and the second ring might go to 1% of the users,
then 10% of the users, etc. At each stage, the impact is evaluated.

Early All
Adopters Users

FIGURE 0.7: Ring Deployment

Rollbacks
One way to make changes less dangerous is to ensure that they can be
reverted cleanly. Controlling releases with feature flags makes it faster and
easier to roll back to a previous state without needing to change code, espe-
cially in an urgent situation. As Thomas Dohmke, CEO of GitHub, said in

an interview with us: “The feature flag is only really useful if you can’t only

XXVi INTRODUCTION

progressively roll out, but you also need to be able to aggressively roll back.

That’s actually the key feature.”

Test in Production
In a complex modern software environment, it is impossible to fully test
every scenario before software is released. However, production is a test
environment from which we can obtain valuable information if we choose

to record and integrate it.

Sunsetting
All software has a lifespan. When software needs to be retired, some users
are ready to move on to the next thing, and some aren’t, for business or
personal reasons. Sunsetting is the act of retiring software or versions
using feature flags so there is not an abrupt cutoff but a mindful wind

down.

~ No more
. customer
- usage of
* feature/
. product

General End of End of
Availability Sales Support

FIGURE 0.8: Software End-of-Life Diagram

Progressive Delivery Is a Mindset

Empowering the user to change their experience of software is an exten-

sion of the Agile, DevOps, and CI/CD philosophies. Our collaboration circle

INTRODUCTION XXVii

grows wider as our ability to understand and incorporate data increases.
From the organizational side, abundance, autonomy, alignment, and auto-
mation make it easier for organizations to create and sustain software that
is flexible, responsive, and useful.

We believe that with this guide, you will be able to look at your own
organization and see places where you can improve one of the four A’s and
thus deliver value a little sooner or more accurately or make the work with

others easier.

Chapter 1
PROGRESSIVE DELIVERY

"Well, in our country,” said Alice, still panting a little, “you’d generally get to
somewhere else—if you run very fast for a long time, as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all
the running you can do, to keep in the same place. If you want to get some-
where else, you must run at least twice as fast as that!”

—Lewis Carroll, Through the Looking-Glass and What Alice Found There

In physics, a jerk isn’t just someone cutting you off in traffic—it’s the rate
at which acceleration changes. Technically known by physicists as the third
derivative of position, it’s the feeling that makes you grab for the subway
pole when the train lurches or brace yourself during an elevator’s sudden
start. It’s that moment when steady, predictable motion becomes a jolt,

defying your expectations of smooth acceleration.
jerk (/jurk/): The rate of change of an object’s acceleration over time.

We feel this same jerk in our digital lives, where change itself is acceler-
ating. The history of technology has been hallmarked by an ever-increasing
velocity of transformation.

As Alvin Toffler warned in 1970, change is “a concrete force that
reaches deep into our personal lives, compels us to act out new roles, and
confronts us with the danger of a new and powerfully upsetting psycho-

»1

logical disease.” He called this phenomenon “future shock,” and nothing
in our current environment suggests the pace Toffler found dizzying fifty
years ago will slow down.

These technological jerks reshape our personal worlds in profound
ways. For someone born in the 1940s, a telephone represents stable tech-

nology—pick it up, dial, talk. For those born in the 2000s, the “phone”

CHAPTER 1

function might be the least-used app on their device. Everything from how
we get our news to how we pay for coffee has become a digital experience
that updates without warning, consent, or control. The global infrastruc-
ture we built in the twentieth century—networks of satellites, fiber-optic

cables, and physical goods transfer—has compressed adoption timelines

from decades to months. (See Figure 1.1.)

Adoption Rate

100%
I~

= Electricity

s (IS

o Ratlio
B Fridge

80%

i .: s Tl ViSION
S s \ir Travel
.: Color Television
Credit Card
--------- Microwave
--------- Video Games

60%

40% v

20% J

Cell Phone
Internet
----- Digital Camera
----- MP3 Player
N HDTV
N Social Media
‘e eee-- Smartphone
= = = =Tablet

Yo
L S DY

FIGURE 1.1: Adoption Rate of New Technologies from 1900 to 2012

Source: “The Topic We Should All Be Paying Attention to (in 3 Charts),” BlackRock Blog,
December 11, 2015, https://web.archive.org/web/20160304140915/https://www
.blackrockblog.com/2015/12/11/economic-trends-in-charts/.

In 1962, Everett Rogers captured the varied human response to this
technological acceleration in Diffusion of Innovations, mapping out how new
technologies ripple through society—from eager innovators who embrace
the bleeding edge to early adopters, then the early and late majorities, and,
finally, the cautious laggards who hold onto the familiar.? Geoffrey Moore

PROGRESSIVE DELIVERY 3

later expanded this insight in Crossing the Chasm, revealing the treacherous
gap between early enthusiasm and mainstream acceptance.?

Yet our relationship with change isn’t simple. A developer might be the
earliest adopter of a new operating system on their phone but continue to
use a code editor that was built in 1976.* We are all early adopters in one
area but laggards in another, picking our way through an increasingly com-
plex technological landscape.

In our professional lives, these jerks multiply. Software dashboards
proliferate—one for time tracking, another for performance metrics, and
yet another for project management. Each makes perfect sense to its cre-
ators, but collectively they create a dizzying acceleration. When we ask col-
leagues to adapt to interface changes, we're asking them to absorb another
jerk in their already dynamic workflow.

Organizations feel these forces of change even more acutely. They must
innovate rapidly to stay competitive—ask Sears about the cost of failing
to adapt to Amazon—while managing the increased risks of outages, user
frustration, and business disruption. Traditional change management sys-
tems excel at handling smooth, predictable acceleration but falter when
confronting these technological jerks.

The solution isn’t to slow down—it’s to give people more control over
their rate of change. Every time we allow users choice, whether in personal
tools or workplace software, we enable them to manage their own acceler-
ation. Some choices can be elegantly wrapped—such as advanced settings
hidden behind a simplified interface—making people partners in the soft-
ware experience rather than subjects of it.

This is where Progressive Delivery comes in: a methodology that rec-
ognizes different users need different rates of change. As software build-
ers, we can release as quickly as we want while letting users choose when
to incorporate changes into their lives and workflows. It’s about building
systems that are both dynamic and respectful, systems that recognize the
human need to sometimes grab the pole and steady ourselves before the

next technological jerk arrives.

“«_»

* Both “vi” and “Emacs” were first created in 1976 and remain two of the most popular code edit-
ing applications today.

4 CHAPTER 1

The cost of mismanaging rollouts is all around us. Microsoft found itself
forced to extend Windows 10 support when organizations balked at upgrad-
ing to Windows 11.

A tiny npm package called left-pad created a cascading failure that
affected thousands of projects. A security company called CrowdStrike,
which tens of thousands of organizations relied on, caused a major outage
by pushing a breaking misconfiguration to 100% of their audience all at
once. The cost of poor software delivery practices can run into the billions.
It gets kind of expensive when the entire airline industry is grounded. These
cases demonstrate what happens when rollouts are not effectively managed.
And, really, as an industry, we should be doing better by now.

The signs of this mismatch are clear in any organization: declining user
engagement, unused new features, the proliferation of third-party work-
arounds, and spikes in support requests. But these symptoms also point
toward solutions. By understanding how different users and organizations
absorb change—from early adopters to cautious laggards—we can create
systems that respect their varying needs for stability and innovation.

Over the past century, we've seen adoption rates for new technologies
compress dramatically. While television, computing, and other technolo-
gies required decades to reach mass adoption, the latest software-driven
innovations can become mainstream in months (see Figure 1.2). This accel-
eration isn’t slowing down—just look at ChatGPT.

As software builders, we're both agents and victims of this acceleration.
Our code is just one thread in a vast tapestry of interdependent systems,
each evolving at its own pace. When we push changes too fast or too fre-
quently, we risk creating that jarring moment—that technological jerk—
for our users. The impact depends on how quickly they’re already adapting
to change: What feels like a gentle nudge to an early adopter might throw a
late majority user off balance entirely. We are not the only ones asking our
users to adapt to changes—they use more than just our software, both at
work and at home.

Throughout this chapter, we’ll explore how Progressive Delivery pro-
vides a framework for managing technological change that respects both

the need for innovation and the human experience of adaptation. By

PROGRESSIVE DELIVERY 5

understanding how to deliver the right changes to the right users at the
right time, we can turn the jarring experience of technological jerk into
a more controlled and intentional acceleration. Let’s start by examining
exactly what Progressive Delivery means in practice and how it emerged as

a response to these challenges.

Percent Ownership

100

/”_/— / / Airplane Telephone
90 Radio IN
Microwave A . / //
80 / Electricity
VCR .
70 / Automobhile

\ [/ //
: I/
30 Internet Pc / ':' % \//
N IV
" .""[:eIIPhane // /

X

0 HHI‘““I“‘‘I‘“‘I‘“"“‘‘I‘‘“"“‘I““"‘‘‘I‘‘“"‘‘‘I‘‘“"‘‘‘I‘“"““I‘“"‘‘‘‘I‘“"‘“‘I““"“‘I““"“‘I
1 10 20 30 40 50 60 70 80 90 100 110 120
Years Since Product Invented

FIGURE 1.2: Years Since Technology Introduction
to Reach Mass Ownership

Source: Federal Reserve Bank of Dallas, 1996 Annual Report: The Economy at Light Speed, https://
web.archive.org/web/20161224074319/https://www.dallasfed.org/~/media/documents/fed/
annual/1999/ar96.pdf.

Toward a Practice of Progressive Delivery

Everywhere we look, we find new devices and services that offer replace-
ments or enhancements to every aspect of our lives. But with these
improvements come new challenges. If your device or application doesn’t
work, how does it get fixed? How long does it take? What if that software
is running in your car? Or the locks on your house? Or the pump for your

insulin? Is your software doing what you need, when you need it?

6 CHAPTER 1

Different stakeholders want to move at different rates—factories want
to run consistently all year, but consumers have times when they want to
buy back-to-school clothes or holiday presents. Software developers want
to be able to show delivered products before their performance reviews.
Sales teams are driving toward quarterly and yearly goals. These stakehold-
ers need a way to collaborate, not just coexist.

At its core, Progressive Delivery is a set of software delivery prac-
tices to deliver the right software to the right users at the right time in
a way that is sustainable for everyone. Yes, everyone. This includes execu-
tives in the boardroom, leaders managing departments, engineers, design-
ers, product teams, marketers, partners, and, most importantly, the actual
product users. While this book is focused on software developers and how
they can benefit from Progressive Delivery methods, Progressive Delivery
is for all these stakeholders and constituents.

Progressive Delivery is not about tools or certifications. It’s about what
you care about and where your organization places focus. It’s more of a lens
than a prescription. Products are not static entities but thriving conversa-
tions where building, use, and retirement are all visible and trackable.

From a more nuanced perspective, Progressive Delivery can mean dif-

ferent things for different constituents:

+ For the user or consumer of technology, Progressive Delivery is a
user experience that minimizes technological jerk.

+ For the company delivering a digital experience, Progressive
Delivery is a set of practices that enable teams to move at a sus-
tainable pace.

« For those tasked with building and delivering modern software,
Progressive Delivery is a development practice that builds upon

the core tenets of continuous integration and continuous deliv-
ery (CI/CD).

Progressive Delivery specifically adds two core tenets to that of CI/CD:

PROGRESSIVE DELIVERY 7

1.Release progression: progressively increasing the number of
users who can see (and are impacted by) new features.
2.Radical delegation: progressively delegating the control of

access to a feature to the owner who is closest to the outcome.

In essence, Progressive Delivery is the practice of delegating control to
the user while retaining a clear vision and plan for the product. It’s a way to
understand what you're already doing regardless of the technology change
happening in front of you, so you can do it more effectively.

Progressive Delivery asks the following key questions:

« What is “finished?” When is a product or feature truly complete,
and how do we define success?

« What do we expect to happen? What are our hypotheses about
how users will interact with the new features?

« What if users want a different cadence of change? How do we
accommodate diverse user preferences?

+ How are we stewarding the information we collect? How do we
gather and analyze user feedback?

+ How are we incorporating feedback? How do we use feedback to
improve the product?

« Who are all of our constituents? We must recognize and consider

the needs of all stakeholders, not just the loudest voices.

In the history of software development, Progressive Delivery rep-
resents the logical next step in a long line of improvements. According to

Carlos Sanchez, who wrote the following while working at CloudBees:

Progressive Delivery is the next step after Continuous Delivery, where new
versions are deployed to a subset of users and are evaluated in terms of correct-
ness and performance before rolling them to the totality of the users and rolled

back if not matching some key metrics.*

8 CHAPTER 1

Figure 1.3 shows the evolution of software development methods.
While not comprehensive, it shows how our understanding of delivery can
be additive. Specification-driven delivery (also known as waterfall) plus
Agile gets us test-driven delivery (TDD). When we add operations and
maintenance into the scope of TDD, we get DevOps. Adding automation
to DevOps results in CI/CD. Progressive Delivery includes all the former

models the way a pearl encapsulates its former layers.

progressive DelivEry

s\'“we" DE//”G,

ﬂ
Specification-
Driven Delivery

+Agile

+Delivery
+Automatio®

+Delegation

FIGURE 1.3: The Evolution of Software Development Methods

Of course, as software makers have been optimizing how to build soft-
ware—through innovations in tooling and craft with continuous delivery
and DevOps practices—they have exacerbated the problem of user adop-
tion. Even if a team can deploy on demand, a user probably will not adopt
releases multiple times a day.

This is the crux of why users are feeling the technological jerk now more
than ever—adoption is about release cadence, not build cadence, but not all
our systems are designed to separate those. The essential added ingredient

in Progressive Delivery is delegation closer to the user.

PROGRESSIVE DELIVERY 9

This is how we continue down the path of high developer autonomy.
We build systems that decouple deployment from release, and release from
adoption, so users can operate at a more comfortable speed.

Once you start seeing the world in terms of Progressive Delivery, you
see it everywhere—ripe mangoes in Midwest supermarkets and tap-to-pay
parking meters, Calendly links, and same-day electronics delivery. User
demand drives and encourages changes to delivery infrastructure. Consider
Calendly: Setting up a meeting with someone used to require several steps,
including figuring out availability for each person. By creating software
to allow each user to independently choose a time, booking meetings has
become faster and easier.

On the provider side, this coordination requires calendar rules, time
zone awareness, email integration, and meeting location options. Similarly,
delivering fresh tropical fruit to Minnesota in February requires a sophisti-
cated transportation and distribution network and fruit varietals that are
sturdy enough to ship and store. To the user, Progressive Delivery looks like
convenience. But to a provider, Progressive Delivery takes a combination of

investment, will, and effort.

The Four A’s: A Framework for
Progressive Delivery

The evolution of Progressive Delivery has been shaped by technological
advances, much as physics has evolved to measure and manage forces of
motion. Just as physicists use measurements of jerk to understand sudden
changes in acceleration, there are four essential factors that help us mea-
sure and manage the technological jerks in our system: the four A's—abun-
dance, autonomy, alignment, and automation. The rise of virtualization,
containerization, and cloud computing led to the abundance of computing
and storage resources. This abundance of resources led to increased devel-
oper autonomy, which was further accelerated by Git, distributed contri-
bution, feature flags, and the architecture trend from monoliths toward

microservices.

10 CHAPTER 1

As autonomy increased, so did the need for focus and alignment. Teams
began to prioritize—and value—API-first development and enhanced
observability. This more loosely coupled architecture led to both the oppor-
tunity and the need for more automation and better feedback loops to man-
age the vast increase in the scale of systems and the opportunity to better
understand user behavior and needs.

We can express this relationship as an equation:

(Abundance x Autonomy)

Progressive Delivery =
(Alignment x Automation)

Abundance and autonomy form the foundation of the developer expe-
rience, much like the electrical grid supports our modern life. The fluc-
tuations of power generation and conduction are smoothed out, and we
get steady, reliable resources to use. We then get to choose how to apply
the power streaming into our homes and businesses so abundantly. In the
same way, abundance and autonomy in software development allow us to
think about more difficult and interesting problems. However, just as we
use everything from circuit breakers to dimmer switches to control the
flow of power, the forces of abundance and autonomy also need to be well-
regulated to be useful and safe.

Your “goal” for Progressive Delivery is to balance your abundance and
autonomy by leveraging alignment and automation. If abundance and
autonomy are too pronounced compared to alignment and automation,
teams tend to build brittle systems filled with features that never get used.
Conversely, if you focus too much on the user experience without address-
ing developer needs, you end up knowing what the users need, but you are
unable to deliver it quickly enough.

In this way, abundance and autonomy are all about the developer expe-
rience, or the building side of a product, while alignment and automation
are centered on the user experience, or the delivery of the product. We

could simplify this as:

Developer Experience

DProgressive Delivery =
User Autonomy

PROGRESSIVE DELIVERY 11

If abundance and autonomy are the electrical grid, delivering us power
and potential, then alignment and automation are the appliances that
transform that energy into value. Voltage on a power line is not useful
until we can convert it into light, heat, work, or video gaming minutes. Too
much power and there’s a risk to safety and property. Too little and we can’t
turn on a light or keep food cold. Alignment is what directs the current the
way we want it. Automation makes our homes run without intervention
and keeps us safe from mistakes or sudden surges. Without alignment and
automation, we would be at risk of surprises or unwanted changes.

Let’s examine each of these four pillars in detail:
Abundance

Abundance is a very large quantity of all the resources required to accom-
plish a task. In the context of Progressive Delivery, this centers around the
developer experience. When building digital systems, this can be divided
into compute resources, network bandwidth, and storage.

We can measure abundance both quantitatively (for example, how long
it takes to provision a server or database for a new project) and qualitatively
(for example, through developer surveys and interviews). Developer experi-
ence and abundance are interlinked. Abundance enables developers to work

without friction and without waiting for permission to access resources.
Autonomy

Autonomy is the ability of an individual to act independently from others.
When developing software, this independence means access to all neces-
sary resources to complete a desired task. To have a Progressive Delivery
environment, developers need to be able to innovate and build at their own
pace.

To measure autonomy quantitatively, we can track how frequently
developers are “blocked” or waiting for others to do their work. During
some stages of growth or product expansion, the rate of blocking may nat-
urally increase. We can also gain qualitative assessment through internal

surveys.

12 CHAPTER 1

Alignment

Alignment means focusing human and organizational resources responsi-
ble for developing software to work in the same direction. In Progressive
Delivery, alignment is one of the two ways to wrangle abundance and
autonomy. Both alignment and automation are centered around the user
experience.

We can measure alignment through qualitative user surveys and inter-
views, as well as by monitoring usage rates and patterns in feature adop-
tion and workflow completion. The exact method for gathering quantitative
and qualitative data about user impact will vary with the software and the
users, but it should be as broad as the team can afford, in order to capture

multiple insights.
Automation

Automation is the identification and implementation of programmatic
processes for repetitive tasks. For Progressive Delivery, automation is the
second way to focus on abundance and autonomy. Automation supports
alignment by intentionally looking for repetitive manual tasks and creating
code to reduce effort while ensuring consistency. After all, one of the goals
of computing, and now Al, is to make automation easier and more effective.
Adoption is easier when it’s automated and part of the workflow.
Measuring automation can be done quantitatively through observ-
ability tooling, which looks at the frequency of pattern repetition as users
navigate a workflow. Qualitatively, user surveys can target questions about

repetition and “too many steps” to accomplish frequent tasks.

Balancing Developer and User Experience

The benefit to adopting Progressive Delivery is that it is not an abrupt trans-
formative moment but an evolution that works with what you're already

doing well and gives you pointers to what could be improved. The cost of a

PROGRESSIVE DELIVERY 13

“transformation initiative” is often denoted in millions, and the outcome
may not be at all aligned to benefit the people who are implementing the
changes and those consuming the result.

Just as electrical engineers need to balance variable generation and
transmission with safe, reliable, controlled delivery, Progressive Delivery
works to balance the surge and ebb of developer innovation with the mea-
sured and incremental pace of user acceptance. The goal is not to eliminate
change or even acceleration, but to make it as smooth and acceptable as
possible. The separation between deployment and release acts as a trans-
former, modulating the flow down to something a household can use safely,
while still retaining the capacity to serve other households.

Progressive Delivery addresses the challenge of the pace of innova-
tion by making a hard separation between the deployment of code to the
production environment and the release of features to users. This separa-
tion allows for the business to have two priorities that are loosely coupled:

developer autonomy and user adoption. (See Figure 1.4.)

High Developer Autonomy
A

Continuous Progressive
Delivery Delivery
Low Alignment High Alignment
with User Adoption with User Adoption
Waterfall Agile

v

Low Developer Autonomy

FIGURE 1.4: How Software Development Life Cycles Balance Developer
Autonomy with User Adoption

14 CHAPTER 1

Motivation and Sustainable Growth

Similarly, product teams as a whole need to know that there is a user
demand for what they are building, and companies need to be able to situ-
ate themselves in an ecosystem of production and consumption. All of this
alignment is much easier when the goal is something that can be commu-
nicated to everyone.

Dan Pink’s Drive posited that humans are intrinsically motivated by
autonomy, mastery, and purpose.® This theory fits well with what we know
about burnout from Dr. Christina Maslach’s work, where lack of autonomy
and purpose and conflicts in moral values create a kind of moral injury.5
Being able to connect our labor to the value that other people find in our
work is a known way to stay engaged and happy.

We know that stasis is dangerous for companies—if you're not in touch
with how your environment is changing, you're at a high risk of being
passed by a competitor or becoming irrelevant. We also know that growth
at all costs is a risky goal, especially in a post-ZIRP* world. Company growth

needs to be sustainable or have sustainability on the horizon.
Finding the Middle Road

There are so many business metrics out there, and while we will give you
a few more, the metric is not the goal any more than the map is the terri-
tory. If we measure people on something easily measured without repeat-
edly asking why they need to increase that measurement and the intended
effect, then we get compliance but not cooperation.

So how do we find that middle road of making something useful, flex-

ible, and sustainable?

+ By delivering the right product to the right person at the right

time.

* ZIRP: zero-interest-rate phenomenon. In this case, the behavior of companies when it is ef-
fectively free to borrow money. Although associated with the economic term zero-interest-rate
policy, it is specific to how low borrowing costs affected risk estimation around investing in
software and venture-backed startups.

PROGRESSIVE DELIVERY 15

+ By avoiding overbuilding and over-optimizing.
+ By working with the resources easily available.
+ By making sure that we are addressing real needs our users value,

not just what the loudest people are asking for.

If change is an inevitable part of our lives, both as producers and con-
sumers, how do we make that change meaningful and useful instead of
pointless motion without progress? To answer that question, we need to
know what the point is—what are we trying to accomplish with what we’re
making, and what are the people who use it trying to accomplish? Without
these purposes clearly in mind, we can never be sure that we’re making the

right thing.

Conclusion

Each of the four A’s of Progressive Delivery reinforces and enables progress
in the others. None of them is something that can be fully finished. Moore’s
Law continues to provide an abundance of resources. You can always auto-
mate a little more, or a realignment will reveal a way for a team to become
more autonomous. Even autonomy continues to increase and expand in the
face of coding assistants.

Change is a part of our lives every day. We tend to think of it as good
change, like increases in capacity or learning, or bad change, like aging and
decay. Change is stressful because it forces us to learn new habits and pat-
terns and ways of doing things. The larger and faster a change is from a
single point of view, the harder it is to adapt to it. Jared Spool, cofounder of
Center Centre, said in the article “The Quiet Death of the Major Re-Launch,”

There’s another way to build a new architecture with a whole new site without
the risks of a re-launch....I explained that re-launches are a thing of the past.
There was a time when sites launched in cycles, living from one major redesign
to the next. Each new redesign would bring a whole new look, a whole new user

experience....However, the best sites have replaced this process of revolution

16 CHAPTER 1

with a new process of subtle evolution. Entire redesigns have quietly faded

away with continuous improvements taking their place.”

The way we build software has evolved to make it trivial to push changes
to our users. But just because it’s easy to change things doesn’t always mean
it’s the right time or situation to do so. This is where Progressive Delivery
shines—by providing a framework that balances capability with responsi-
bility, speed with sustainability.

In physics, understanding jerk helps engineers design better systems—
from elevator controls to autonomous vehicles. Similarly, understanding
the forces of technological change through Progressive Delivery helps us
build better software systems that respect both the need for rapid inno-
vation and users’ capacity to adapt to change. Modern software delivery
works because we have an abundance of software and network resources,
the autonomy to find the best path to solve a problem, the alignment to
work within a distributed system, and the automation to preserve our
energy for novel and challenging tasks. Through Progressive Delivery, we
can ensure that this malleability serves both the creators and consumers of

technology, making change not just possible but purposeful.

Chapter 2
ABUNDANCE

If quantity forms the goals of our feedback loops, if quantity is the center

of our attention and language and institutions, if we motivate ourselves,
rate ourselves, and reward ourselves on our ability to produce quantity, then
quantity will be the result. You can look around and make up your own mind
about whether quantity or quality is the outstanding characteristic of the
world in which you live.

—Donella H. Meadows, Thinking in Systems: A Primer

In physics, potential energy is the energy that is stored in a system. As we
have explained, jerk is the sudden, unexpected change in acceleration that
throws us off balance. Abundance, for developers and builders of software,
is how many resources you have available—technological potential energy.
This potential energy powers your innovation. When used responsibly,
abundance can provide steady acceleration and help avoid the jerk caused
by exposing too much change too quickly to your users.

Over the past fifty years or so, our society has moved from an environ-
ment where technology was a scarce resource to one of abundance, where
technology is not only cheap but all-pervasive. This transition represents a
fundamental shift in the world of software development—from a world of
constrained motion to one of technological momentum.

Prices of memory, compute, and storage continue to drop as maxi-
mum densities continue to climb. We're all familiar with Moore’s Law, first
described by Gordon Moore, Intel’s cofounder, in 1965. He predicted that
the number of transistors on a single computer chip would double roughly
every two years with a negligible increase in cost.! This exponential growth
creates a form of technological inertia—a mass and velocity that, once

in motion, becomes difficult to slow down or redirect. Though this initial

17

18 CHAPTER 2

observation was in relation to compute, the same growth of density has
been roughly equivalent for both memory and storage as well.

At the time of this writing, a 1-terabyte hard drive costs less than $30.
Phones are considerably more powerful than mainframes were twenty
years ago. The cloud made, and continues to make, this abundance acces-
sible to anyone with a credit card. High-speed networking and 5G have
removed bandwidth as a limitation in most regions. Software, too, is
cheap. (Or even free, as in a puppy, which may have no up-front cost but
a lot of maintenance expenses.) Open source has driven an abundance
revolution in software. Each of these developments adds mass to the techno-
logical momentum that organizations must now harness rather than resist.

So, what does all this abundance mean in the context of Progressive
Delivery? And how can we harness this momentum without creating dis-

ruptive jerks in our systems and for our users? Let’s define it clearly:

a-bun-dance (/a'band(a)ns/): More than enough of all the resources required
to accomplish a task.

In the context of Progressive Delivery, abundance (along with auton-
omy) forms the foundation of a better developer experience, much like the
electrical grid supports our modern life. This translates to better product
management and applications and services that users can adopt at their

own pace. Itis part of the foundation that absorbs the shock of rapid change.

Historical Context of Abundance

Historically, software delivery was defined by resource constraints—a world
of low technological mass and high friction. Like trying to push a heavy
object across a rough surface, every movement requires significant force.
Waterfall methodologies were partly a response to this lack of resources.
You had to get things right (in theory, at least) the first time, with specifica-
tions and infrastructure requirements defined up front.

In this constrained environment, change was expensive and jerky—

each new project represented a major acceleration from a standing start.

ABUNDANCE 19

(Another way to look at this is if you graph innovation, waterfall is a step
function, Agile made the steps smaller, and continuous delivery allowed
the steps to smooth out to a curve.) Teams were split into different func-
tional groups, each with their own infrastructure—developers needed
access to development servers; test and QA had their own servers, storage,
and so on; and production was a separate team with its own infrastruc-
ture and tools. High availability incurred huge costs—each extra “9” of
availability added an order of magnitude to system cost. There was a great
deal of replication and a lot of time spent waiting for permission. A devel-
opment team could wait literally months to have resources provisioned
to start a new project or application, creating a stop-start motion full of

technological jerks.
The Abundance Transition

Think of the abundance transition we’ve made since 1995, when the inter-
net revolution kicked into gear. In the late 1990s, a growing startup would
need to raise literally millions of dollars simply to operate at scale, includ-
ing funding for databases, application servers, testing, storage, network-
ing gear, and marketing. At the time, hiring and staffing weren’t the major
costs; infrastructure was. Even developer tools were a significant expense,
costing hundreds if not thousands of dollars. The Eclipse project—a free,
open-source IDE—wasn’t launched until 2001. Mercury Interactive was
charging customers hundreds of thousands of dollars for licenses to use
its testing products for e-commerce applications. Infrastructure abundance
enabled and required a change in working practices.

The Agile Manifesto was published in 2001, but the concepts intro-

duced in that movement became widely adopted as the cloud took off.

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on

the left more.?

20 CHAPTER 2

All of this comes from an abundance mindset. When Jez Humble and
David Farley introduced the concept of deployment pipelines in Continuous
Delivery, published in 2010, the cloud was just taking off.? In the interven-
ing years, abundance has supercharged those practices.

In 2005, Daniel Terhorst-North and Jez Humble introduced the idea of
blue-green deployments as a response to a client having significantly differ-
ent test and production environments.* They wanted to be able to smoke
test in one environment, the “shadow,” which replicated production, before
moving workloads over. This approach came from an abundance mindset
and is now a common practice thanks to cloud abundance and automation
capabilities. The cloud doesn’t just enable abundance; it does so with pow-
erful automation built in.

Abundance and automation enable Progressive Delivery by providing

new ways of working.
Virtualization, Abundance, and Cloud Computing

The mainstream availability of virtualization was another jerk for software
developers. While virtualization was initially positioned for IT efficiency,
driving greater resource utilization, it also underpinned a new approach to
resource availability. The same server could be used for development, test,
QA, or production, so separate teams were not fighting over scarce resources.
Organizations also began to collapse functional silos. Plus, sophisticated
automation meant environments could be treated as ephemeral rather than
built for (long-term) purpose. Automation enabled abundance.

This trend accelerated and expanded with the emergence of cloud com-
puting. While the cloud was originally composed of virtual machines, we
now also use container-based architectures, enabling ever-greater granular-
ity of compute resources.

As resources became more abundant, the ability to incorporate soft-
ware into everything became more economical. The cost of developing more
value and delivering it to users dropped precipitously. A single individual
can build and deploy an application. That autonomy and agency are now

a baseline expectation for software, not an exception. What became more

ABUNDANCE 21

important was understanding user needs and figuring out how to meet

them in a commercially viable way.
What About On-Prem?

The cloud is an exemplar of digital abundance, but sometimes costs are hid-
den. Many organizations are currently considering repatriating some work-
loads because they are concerned with performance or the spiraling costs
of cloud hosting.

When we consider abundance in the context of Progressive Delivery,
two critical factors emerge: First, simplified management is a form of abun-
dance. The cloud doesn’t just mean more infrastructure, but more managed
services as well. If developers don’t have to worry about how to manage
databases, then they have more choice and capability available to focus on
the way they are adding business value.

Second, the evidence indicates that cloud infrastructure provides the
optimal environment for Progressive Delivery. The cloud is the key under-
pinning for abundance, autonomy, and automation. No other platform
comes close.

Though organizations can implement Progressive Delivery patterns
and practices using on-premises infrastructure, the cloud—as delivered by
hyperscalers such as AWS, Microsoft Azure, and Google Cloud—is the most
flexible environment for software delivery. In terms of automation capabil-
ity, network routing, and the flexibility to clone and fork infrastructure, the
cloud is more flexible than on-premises.

For organizations with on-premises requirements, Kubernetes and
container-based infrastructures provide a viable alternative (they're called
“cloud native” for a reason). While it’s certainly possible to implement
Progressive Delivery patterns using these technologies alongside modern
automation tools like Ansible and HashiCorp Terraform, the effort is sub-
stantial. Platform engineering teams must build and maintain much of what
cloud providers deliver as managed services. This additional work—creating
infrastructure, managing scaling, implementing security—represents sig-

nificant overhead that detracts from focusing on customer value.

22 CHAPTER 2

The willingness to embrace cloud services stands as a strong indicator
of an organization’s commitment to abundance thinking. It signals a prior-
itization of developer productivity and innovation speed over traditional
infrastructure control patterns. Even in organizations that have physical
or security constraints, virtualized systems and containers allow for more
flexibility outside of a capital-expenditure budget.

There will always be outliers, and if your business is operating physical
infrastructure at the scale of a public cloud provider, your teams will defi-

nitely benefit from the same Progressive Delivery practices.

Key Principles and Applications

In physics, potential energy becomes useful only when it’s transformed into
kinetic energy, ideally with a controlled, reliable flow. Abundance trans-
forms the physics of software delivery in much the same way that modern
electrical grids transformed society. It’s not merely about generating more
power; it’s about fundamentally changing how that power is distributed,
regulated, and used.

Abundance includes tangible resources like compute, storage, and band-
width, but its true power comes from the transformative shift in mindset
from “Why do you need that?” to “Is there any reason you shouldn’t have
that?” This represents a profound rebalancing of forces in the system. Just
as an electrical grid with sophisticated transformers and load balancers can
maintain steady power through demand spikes without brownouts, organi-
zations with abundance thinking can absorb the jerks of rapid innovation
without disrupting their forward momentum.

In the resource-scarce past, restricting access made economic sense.
Like power rationing during shortages, the friction of approval processes
protected valuable assets. Today, however, the cost of testing often exceeds
the cost of the resources themselves. When a “test machine” represented
hardware worth more than a developer’s weekly compensation plus ded-
icated internal support, careful gatekeeping was justified. Now, when the

same capability might represent just $0.73 of a multi-thousand-dollar

ABUNDANCE 23

cloud invoice, the friction of approval creates unnecessary resistance, like
forcing users to file paperwork before turning on a light switch.

The following principles exemplify how abundance thinking transforms
the physics of software delivery, creating a reliable power grid of innovation
that delivers consistent value while smoothing out potentially disruptive

technological jerks.
From Getting to Using

When resources are scarce, organizations expend enormous energy simply
acquiring what they need—the “getting” phase consumes attention, bud-
get, and time. Abundance fundamentally shifts this equation. Sufficiency
lets us change our focus from getting to using—from acquiring infrastruc-
ture to creating value with it. It’s the difference between struggling to gen-
erate enough electricity and being able to focus on what you can build with
reliable power.

As technology matures, it changes from an end in itself to a way to get
things done. We shouldn’t think about infrastructure itself, but rather how
to use it to build an app that delivers value to users. The existence of new
abundance, like the cloud, puts this kind of thinking into stark relief.

AWS talks about avoiding undifferentiated heavy lifting as a core prin-
ciple. From the AWS Well-Architected Framework:

Stop spending money on undifferentiated heavy lifting: AWS does the heavy
lifting of data center operations like racking, stacking, and powering servers. It
also removes the operational burden of managing operating systems and appli-
cations with managed services. This permits you to focus on your customers

and business projects rather than on IT infrastructure.”

We don’t need to get information technology (IT) because IT is all
around us. The question is how we use IT to get from A to B to C, how we
make progress in delivering applications and services. “Getting” is undiffer-
entiated heavy lifting. “Using” is creating new services and new value for

customers.

24 CHAPTER 2

Abundance and Alignment: Giving the User Options

In our equation of how the four A’s balance, we use alignment (along with
automation) to constrain abundance and autonomy from runaway growth.
This is intended to help teams avoid building beyond the needs of the users
and delivering features that never get used. Progressive Delivery can also
include putting the user in charge of when they choose to adopt a new
service. IT creates options alongside product management, but the user
decides when to adopt them.

Just as modern electrical systems offer user-controlled switches rather
than centrally regulated power, Progressive Delivery separates the avail-
ability of features from their activation. Imagine if the power company con-
trolled the dimmer switch in your living room. Instead, we generate and
transmit the capability, but users control when to flip the switch.

For example, software developers can use a blue-green deployment to
test new services before moving all customers over to them. This capability
also enables product teams to strategically roll out features to different user
segments. Smart organizations today increasingly allow users to decide
when they start using a service or feature.

Google introduced Gmail Labs on June 5, 2008—an option in Gmail
that allowed users to test new features and provide feedback to Google.
This was a fundamental step forward in cloud-based product management.

More recently, Microsoft has adopted similar approaches. Outlook, for
example, now has a “Try the new Outlook” toggle in the upper-right corner
of the classic Outlook window. Here, the user is firmly in charge of when
and how they adopt a set of new features. This is a great example of modern
Progressive Delivery practices.

With Atlassian, for some new features (like new boards and issue
transitions), users can opt into the new experience (and give feedback) or
stay in the classic mode for a period of time. Atlassian did a great job of
transitioning users from the old issues editor to the new using Progressive
Delivery patterns, including phased rollouts and extensive user feedback.

The good news? These same experimental patterns pioneered by major
corporations are accessible to everyone. What once required massive engi-

neering investments has become standardized practice, with powerful

ABUNDANCE 25

platforms making implementation straightforward. The automation infra-
structure has evolved dramatically, transforming capabilities that teams
once had to build from scratch. Feature flagging systems, for instance, have
gone from custom-built solutions to robust, off-the-shelf products with
thriving ecosystems.

We can all take advantage of abundance.

The bad news? Today, many of us still force updates on users that annoy
them at best and, at worst, break the core experience entirely. In January
2025, Sonos CEO Patrick Spence was forced to resign after an app update
in 2024 broke core user workflows, such as sleep timers, adding songs to
a queue, and managing WiFi connectivity.® Users were rightly furious,
responding to a fundamental misalignment between the brand and the
market.

While it’s clear we should use feature flags and give users options,
abundance goes even further. With abundant resources, running two ser-
vice versions simultaneously becomes a real possibility. You can maintain
the current version for mainstream users while offering the next version to
early adopters and supporting the legacy version for those who aren’t ready
to migrate.

This transforms Progressive Delivery into a strategic service manage-
ment approach. We gain the power to be deliberate about managing tech-
nical debt, gracefully sunsetting outdated features rather than abruptly
removing them. These decisions shift from a purely technical concern to a
business alignment question.

At its core, Progressive Delivery puts users in control of their experi-
ence. When users complain about forced updates, they’re often expressing
frustration at their lack of agency. By giving them a choice in when and
how they adopt changes, we create happier users and opportunities for new

business models built on flexible, user-driven rollouts.
Abundance, Elasticity, and Optionality
In a world of digital abundance, we ask questions that embrace a variety

of possibilities and users. We’ve moved from simple motion to complex

adaptive systems that can absorb and dampen technological jerks. Thus,

26 CHAPTER 2

we can build with customization and optionality in mind, understanding
that resources are not universal, and users may indeed be resource con-
strained.

Abundance creates technological shock absorbers—we expect spikes
in usage but also work to optimize and harmonize workloads when we
see that work focus has shifted. We sometimes shut things down because
abundance is most effective when we can clearly distinguish between what
drives us toward our goals and what no longer delivers value. This adapt-
ability allows our systems to maintain steady momentum even when faced
with external forces trying to jerk them in different directions.

In an abundance world, we don’t need to choose between A and B;
instead, we can test an entire range of possible outcomes or options simul-
taneously. In a world with elastic response to demand, you don’t need to
own a whole datacenter to handle the spike in traffic from the Super Bowl.
Instead, you can rent that capacity from a content delivery network (CDN)
as you need it, both around predictable and unpredictable events.

Elastic scale serves in both building and operating software. During
development, it enables thorough testing with production-like loads—a
capability previously unimaginable for most organizations. Consider the
challenge of stress-testing a major system. How do you create a production
replica of a major production system and then generate a huge amount of
load across it? With cloud abundance, you can spin up environments on
demand without massive capital investment.

An abundant software world isn’t just about raw capacity and volume—
it’s directed capacity. Like an electrical grid that doesn’t just generate power
but delivers it precisely where and when needed, abundance provides both
the resources and the frameworks to guide their use. Opinionated guidance
and well-established patterns give teams confidence when doing novel or

unusual things, ensuring they are heading in the right direction.
Recognizing Abundance Constraints

Despite this progress and abundance, not all organizations have a true

abundance mindset. You can spot this by examining how decisions are

ABUNDANCE 27

made in your environment. When teams must justify small experiments,
when accessibility features are dismissed as “too expensive,” or when time
tracking becomes more important than user outcomes, these are symptoms
of scarcity thinking, not an abundance mindset.

The most telling example is in how your organization responds to new
ideas. If the immediate reaction is “Can we do that? Is it allowed?” then
you're likely operating without an abundance mindset. Other signs of low

abundance might include:

+ a heavy process burden in requesting additional resources
- exaggerated organizational fear of (small) failure
+ resistance to any change because of potential costs

+ zero-sum thinking—*“If that person gets more, I will get less.”

If you are in an organization with abundance constraints, do what you
can to create local abundance. If the organization is too resistant to creating
abundance, they are probably not organizationally prepared to work toward

Progressive Delivery.

Abundance Is Additive

Another aspect of software abundance is that we all stand on the shoul-
ders of giants. As software developers, we depend on languages, packages,
libraries, and other dependencies that have been written by others. It
doesn’t make sense to write our own stacks, from the machine code on up,
when the software is available to us at our fingertips. In fact, few of us write
compilers or new programming languages.

At every level of software, we are building on the work of others, and
we benefit from the abundance of this work. Because we can use the work
and standards of others, our software fits with other software, and we
don’t have to re-create it. Like the modern electrical grid, we don’t gener-
ate our own power or build transformers from scratch; we simply connect
to standardized outlets, focusing our energy on what we’ll do with that

powetr.

28 CHAPTER 2

Consider a typical web application today: It might use React for the
front end (created by Facebook), run on Node.js (developed by Joyent),
store data in MongoDB (from MongoDB Inc.), authenticate users with
AuthO (by Okta), process payments via Stripe, and deploy automatically
through GitHub Actions. Each component represents thousands of engi-
neering hours that the development team doesn’t need to replicate. Abun-
dance means there is almost always code at hand for solved problems,
which means we are free to work on unsolved problems—the unique value
our application provides to users.

Al is accelerating this abundance dramatically. Generative Al (GenAlI) is
itself based on abundance. Large language models (LLMs) were trained on
vast datasets, and now they’re generating code on behalf of developers. Al
is not just finding software to build solutions with,; it’s generating the solu-
tions themselves. Some people flinch away from the thought of having so
many dependencies on other teams and companies—and indeed LLMs—
but we already exist in a mesh of dependencies

This abundance also creates challenges, such as the danger of poten-
tial vulnerabilities in third-party libraries. But Progressive Delivery allows
security testing to be added to our pipelines before deployment and again
before rollout. It’s another layer of security. Management of dependencies
is a key aspect of modern software testing, and Progressive Delivery maps

to it quite well.

Benefits of Abundance

Engineering teams once had limited access to the software they needed to
build and deploy new services and applications. This software is now effec-
tively free, available on GitHub and other repositories, with marginal costs
of zero. This transition is akin to moving from a system with high friction
and little mass to one with low friction and increasing mass, resulting in
significant momentum. Once set in motion, development becomes harder

to stop than to continue.

ABUNDANCE 29

Distributed version control systems have removed developer depen-
dence on central repositories, again enabling abundance. The availability
of managed services means we’re not even constrained by the cost of man-
aging infrastructure. Cloud resource limitations are effectively a thing of
the past—unless you count cost. This abundance has enabled entirely new
ways of working—a fundamental change in the physics of development
that transformed jerky stop-start motion into smooth continuous delivery.

We can measure abundance both quantitatively and qualitatively. A
quantitative measurement would be how long it takes to go from request to
allocation for a particular resource. What resources are available to devel-
opers and developer teams? A qualitative measurement uses surveys and
interviews to ask developers if they have the resources they need to accom-
plish their tasks.

Today, Apple sets the bar for local machine performance. A common
proxy for abundance is the availability of recent model MacBook Pros. (If
your developers can’t use the machines they want for work, then abun-
dance may be in question.) Of course, some developers and organizations
prefer Windows, and that’s totally fine. In that case, can a developer get the
latest AMD or Intel processors, or even ARM-based machines, and all the
RAM they desire?

Abundance within boundaries does not mean abundance without con-
straints. You can’t build anything without understanding constraints and
making trade-offs. These constraints are often expressed as costs, but the
classic aphorism “Good. Cheap. Fast. Pick two.” is another expression of
constraints. Time is inelastic, and there are some things we can’t just pay
to speed up—some jerks in the system cannot be entirely eliminated, only
managed.

But abundance frees software developers to do their best work. It
removes the need to wait for permission. Organizations should get out of
the way, where possible, and allow builders to build.

This tension between the concept of instantly responsive software and
the time, effort, resources, and underlying physical systems that support

it is the core of Progressive Delivery’s problem. What is meaningful to

30 CHAPTER 2

deliver? What adds value? What supports the other parts of the structure?
What do we need to change and streamline to iteratively improve the act of
delivering and the experience of receiving?

Abundance enabled a Cambrian explosion that has changed how we
think about software and product delivery. Organizations don’t have a sin-
gle integrated monolithic technology stack and may not even have a cen-
tral technology administration. Instead, different parts of the organization
solve the problem at hand that is closest to them, without needing to ask

for permission. Abundance enables autonomy and radical delegation.

Challenges and Considerations of Abundance

Abundance can come with its own problems. When something is cheap,
we tend to value it less. Abundance can also lead to problems of scale in
disposal and management. Abundance creates its own form of inertia—
objects in motion tend to stay in motion, even when that motion is no
longer serving our goals. Just as a heavy vehicle with momentum requires
more sophisticated braking systems, our systems of abundance require
more sophisticated governance to prevent runaway acceleration.

Abundance can lead to carelessness in how we use resources. In the
boom times, when resources are cheap, we don’t meter them. Then, when
resources are more constrained, we don’t have the systems to use them effi-
ciently. People raised in well-watered areas do not build the habits of water
conservation that people raised in drought areas do. In a ZIRP software
boom, there is little incentive to cap spending on resources since the focus
is on growth.

Without proper control systems, the technological momentum we’ve
built can cause destructive jerks as competing forces pull in different direc-
tions. Abundance is great, but it comes at a cost, even if the costs seem
lower. For example, what will it cost to move or transfer your data from one
vendor to another? Will your abundance prove illusory in the future when

your development or deployment stack changes?

ABUNDANCE 31

An organization that doesn’t track cloud spending allows users to take
advantage of digital abundance but is wasting money that could be better
spent. Abundance and autonomy can lead to runaway spending. The cloud,
for example, which began as a phenomenon driven by individuals with
credit cards, is now a trillion-dollar industry. It has even spawned a FinOps
foundation to help organizations spend wisely in abundance settings. Fin-

Ops being:

an operational framework and cultural practice which maximizes the business
value of cloud, enables timely data-driven decision making, and creates finan-
cial accountability through collaboration between engineering, finance, and

business teams.”

While we’re not going to delve deeply into cost management here—
there are many other great books on the subject—it’s worth noting how the

organization talks about its role.

FinOps is all about removing blockers; empowering engineering teams to
deliver better features, apps, and migrations faster; and enabling a cross-
functional conversation about where to invest and when. Sometimes a busi-
ness will decide to tighten the belt; sometimes it'll decide to invest more. But

now teams know why they're making those decisions.®

Another way to look at abundance and runaway costs is the current
debate about cloud repatriation. Some now argue that running on-premises
infrastructure is cheaper than using hyperscale cloud services. This idea was
expressed most pithily by venture capital firm Andreessen Horowitz in a
2022 post, “The Cost of Cloud, a Trillion Dollar Paradox,” which claimed:
“You're crazy if you don’t start in the cloud; you're crazy if you stay on it.”

Whether you agree with this thesis or not, it gets to the paradox of
cloud abundance. Convenience can increase direct costs, so it’s important
to be intentional. If abundance enables Progressive Delivery, your ability

to get the right product to the right customer at the right time, then that’s

32 CHAPTER 2

worth investing in. In some cases, enterprises will decide these costs are
not, in fact, worth it. For example, in late 2024, GEICO announced a signif-
icant cloud repatriation effort.*

Not all costs are monetary, such as environmental impact and access
problems that are not role-based. Not everyone has the same access to
the servers and bandwidth that technologists often take for granted. Just
because it worked on your WiFi network doesn’t mean it will work well,
and at a reasonable cost, in all parts of the world. Progressive Delivery can
enable you to understand differences in infrastructure ubiquity and work
with them, testing in different regions and on different networks. Oper-
ating in a gracefully degraded state is an important way to make sure soft-
ware is accessible to as many people as possible.

Abundance also often leads to data management problems. The instinct
to “store everything” doesn’t necessarily improve analysis quality and often
increases cost.

Think of your data lake as an actual hydroelectric reservoir. When prop-
erly channeled, it generates tremendous power for your organization. But
just like a real dam, sediment accumulates over time. Without proper man-
agement, your data lake fills with silt—outdated information, duplicate
records, and irrelevant metrics—making your data lake shallower and less
valuable. Just as reservoir managers must properly control flow and waste,
data stewards must establish retention policies and quality controls.

The challenge is compounded because the inflow of data is only partially
under our control, and its original quality varies widely. With abundance,
the question shifts from “Can we store this?” to “Should we store this, and
for how long?” Observability provides a clear example of the challenges of
abundance. While unlimited data collection offers unprecedented insights,
it comes with substantial costs, particularly when dealing with high-
cardinality datasets.

High-cardinality fields—attributes like userlds or shoppingCartlds
that might have hundreds of thousands of unique values—can dramatically
increase storage requirements and processing overhead. When organiza-

tions complain about excessive charges from observability vendors, they’re

ABUNDANCE 33

often experiencing the downside of abundance thinking: collecting every-
thing without strategic filtering. The issue isn’t necessarily the vendor’s
pricing model, but rather the absence of thoughtful indexing strategies or
the accumulation of data that provides minimal analytical value.

Abundance made modern observability possible in the first place. It
enabled the collection and analysis of logs, metrics, and system traces at a
scale previously unimaginable. However, this capability shift created a new
pain point where observability vendors now compete primarily on cost effi-
ciency rather than just feature sets.

This balance between data abundance and cost management is partic-
ularly critical for Progressive Delivery. Observability provides an essential
feedback loop when testing services in production through feature flags or
canary deployments. Without comprehensive and queryable monitoring,
teams lack the confidence to implement progressive rollout strategies.

The observability industry has responded to this tension with inno-
vative approaches. Increasingly, observability platforms are being built on
efficient open-source data lakes like ClickHouse or proprietary platforms
like Snowflake. These solutions enable cost-effective querying across com-
modity object storage instead of relying on specialized (and expensive)
time-series databases—another example of abundance driving innovation

in response to its own challenges.

Getting Started with Abundance

In a world where technological jerks have become the norm—where soft-
ware updates can disrupt workflows without warning, and new platforms
emerge seemingly overnight—abundance offers both a challenge and a
solution. The same acceleration that creates jarring experiences for users
can also provide the resources to smooth these transitions.

Software now permeates nearly every aspect of our lives, from morning
alarms to evening entertainment. Each interaction represents a potential

moment of technological jerk—an unexpected acceleration that can either

34 CHAPTER 2

delight or disorient. Progressive Delivery helps manage these moments by
leveraging abundance not just as raw computing power, but as a compre-
hensive approach to change management.

The abundance mindset transforms the fundamental question from
“Do we have enough resources?” to “How can we best direct our virtually
unlimited resources to create smooth, controlled acceleration rather than
jarring jerks?” As we build software, we need to think past pure capacity
and bring in the wisdom to build in ways that respect users’ need for sta-
bility amid innovation—that is, how to build the right thing for the right
people at the right time.

Evaluating for Abundance

As you begin to look at your software development practices through the
lens of Progressive Delivery, understanding abundance is important. What
does abundance mean in your organization?

Here are some questions to consider as you evaluate and work to better

understand what abundance means for your team:

« What is the most constraining factor in your environment?

+ How much time does it take to provision a resource?

« What is the cost of doing something in time, worked hours, or
money? How often is this activity performed per day/week? By
how many people?

+ How do you handle excess capacity?

+ If you had infinite capacity in one place, where would you put it?

+ What do you rely on that is mission-critical?

+ What is your fail-safe mode? If something goes wrong, what hap-
pens?

+ What are your core dependencies? Which are homegrown versus
outsourced? (What do you build versus buy?)

+ Do you offer developers choice and budget in their tooling, and
do you have constraints on the interoperability of their choices?

+ Do you encourage developers to use Al tools, and do you provide

a budget accordingly?

ABUNDANCE 35

« What is the abundance you are building versus the abundance
you're renting?

+ Is there a way to prune things automatically without repeated
human cognitive cost?

+ How would you deliver to a mobile app that doesn’t always have
internet? (Abundance is not always universal.)

+ Are you limited by what you can do or what it would cost to do it?
Tools and Processes That Enable Abundance

Many organizations use the following tools and patterns to help them suc-
cessfully manage abundance. For those interested in furthering their prac-

tices, here are some to consider:

+ cloud-native computing
« elastic scaling

+ open-source software

+ observability

+ release progression

+ testing in production

+ blue-green deployments

+ A/B testing and experimentation

While this list is by no means exhaustive, it is a starting place to explore
as you consider what abundance means for you. Furthermore, not all of
these will necessarily solve every use case. Rather, it’s important to evaluate
your needs using the list of questions we shared earlier. From there, you can

begin to explore what tools and practices will support you in your efforts.

Conclusion

It’s important to remember that abundance through the lens of Progressive
Delivery is not using everything all at once. It is accurately understanding

specific needs and building for those needs. Abundance is not just capacity

36 CHAPTER 2

and volume; it’s the ability for capacity and volume to be well-directed. This
is alignment on the builder/developer side of the equation. We have cho-
sen to incorporate this into abundance since this type of alignment is more
about the resources used to build a company, and not about the software
being delivered to users.

Just as a skilled driver harnesses the momentum of a vehicle to navigate
smoothly without jarring accelerations or jerky stops, Progressive Delivery
harnesses the inertia of technological abundance to deliver change in a way
that users can absorb. It transforms the potentially disruptive force of rapid
technological change into a smooth, controlled acceleration that propels
organizations forward without throwing their users off balance. In a world
where technological jerk has become commonplace, abundance, properly
managed, becomes a stabilizing force that allows us to move quickly with-
out losing our traction.

Now that we've explored the concept of abundance in Progressive
Delivery, let’s explore a case study that illustrates these principles in prac-
tice. We'll see how abundance, generally, and the cloud, specifically, enabled

software organizations to do things that were not possible before.

Chapter 3
CASE STUDY: SUMO LOGIC

Sumo Logic is a great example of a company built as cloud-enabled abun-
dance arrived on the market, which influenced all of their decision-making
and architectural approaches. It was founded in 2010 by a team with expe-
rience in log management, big data, and security. They set out to create
a cloud-first software-as-a-service (SaaS) log analytics company, built on
AWS and designed to monitor events generated by cloud-based services.

Cloud-based monitoring is different from traditional on-premises
approaches because you don’t have direct access to hardware metrics,
because, for example, the servers are running in the cloud. APIs, however,
are publishing huge amounts of data about system and application perfor-
mance. In this example, data became the problem rather than instrumenta-
tion, so the company focused squarely on data management. Data volumes
led to an abundance mindset, which also played into the company becom-
ing an advanced Progressive Delivery case study.

Sumo Logic was acquired by Francisco Partners in a private equity
transaction valued at $1.7 billion in February 2023. By then, it had carved

out a solid position as a leader in cloud-based log management.

Situation

The first AWS primitives arrived in 2006. Launched in 2010, Sumo Logic

was in a position to build an architecture from scratch on top of AWS, which

37

38 CHAPTER 3

was swiftly maturing. Sumo Logic used its own product to provide observ-
ability, enabling feedback loops as it built, tested, and deployed new ser-
vices.

This timing is significant in the context of abundance. As discussed in
Chapter 2, the software industry has been shifting from a scarcity mindset
to an abundance mindset since the late 1990s. Sumo Logic emerged at a
perfect moment to take full advantage of the abundance the cloud provided,
without the legacy constraints that hampered established enterprises.

AWS was a capable platform, but Sumo Logic still had to build a lot
of its own infrastructure. For example, it built its own feature flag system
and even its own infrastructure-as-code provisioning system. So, while it
was building a very sophisticated automated infrastructure for building,
testing, and deploying the platform, it was also incurring a fair amount of
technical debt. This represents the “getting to using” transition description
in Chapter 2. Building their own tools was still necessary, but they were
focusing on how to use infrastructure rather than simply acquiring it.

There were several key architectural decisions at Sumo Logic that

enabled Progressive Delivery and testing in production, including:

+ Adopting a service-oriented architecture (SOA) approach, with
loosely coupled services that could be updated and scaled inde-
pendently. This provided flexibility for progressive rollouts.

+ Implementing feature flags and shadow deployments to test
changes in production without impacting all customers. This
allowed Sumo Logic to experiment and validate changes before
full rollouts.

« Focusing on observability and cost optimization to understand
the impact of changes and manage the costs of the cloud infra-

structure.

These decisions directly embody the key principles and applications
of abundance. The SOA approach means different services can scale and
be tested independently while also allowing multiple versions of a service

to run simultaneously. Sumo Logic practices canary deployment and then

CASE STUDY: SUMO LOGIC 39

looks at what sort of customers choose to use the new feature. This practice
is made possible by their extensive use of feature flags.

As Bruno Kurtic, cofounder of Sumo Logic, told us: “We roll out a new
service to 5% of our customers first. What sort of users choose to use this
feature? We roll out the service then leverage our logs to understand the
behaviors of the system and users. Logs are integral to understanding how
new code is being shipped, how you do A/B testing in production. We do
testing in production.”

Finally, Sumo Logic’s observability focus means it is constantly using
feedback loops, understanding user behaviors, and adjusting system behav-
ior accordingly. A key lesson here is that logs are integral to understanding
how new code is being shipped and can underpin A/B testing in production,
aligning the needs of users, developers, and product owners. Sumo Logic’s
approach, and focus on optionality and observability, underpinned by the
abundance of system resources, enables them to align releases with actual

user needs and behaviors.
Giving Developers Their Own Production Infrastructure

One of the best examples of cloud-enabled abundance at Sumo Logic was
how it provided images to developers. Technical leadership wanted to avoid
“But it worked on my machine.” finger-pointing between operations and
developers, so the development environment had to be as close to produc-
tion as possible. Therefore, Sumo Logic built a minimal layer for “personal
deployments” on AWS that allowed developers to easily test their code in
what was effectively a production environment, including all of the micro-
services—a “mini-Sumo.”

This approach perfectly embodies “from getting to using.” In the
pre-abundance era, developers would have spent significant time acquiring
and configuring test environments or working in test environments that
did not closely mimic production. At Sumo Logic, they could work in an
environment that was as close to production as possible.

Cloud abundance represents a dramatic transformation from the his-

torical context, where development, test, QA, and production teams were

40 CHAPTER 3

split into functional silos, each with their own infrastructure, and develop-
ers had local machines that didn’t replicate these infrastructures at all.

This streamlined development environment greatly improved the
developer experience and the ability to test changes. This abundance also
empowered autonomy, allowing any developer to spin up a full Sumo Logic
stack, ideally just for an hour or so.

However, giving all developers their own Sumo Logic could get expen-
sive quickly if developers didn’t turn these instances off. After all, abun-
dance needs to be ephemeral to be cost-effective. At first, it was about
reminding developers to turn these mini-Sumos off, but naturally, the com-
pany soon built a set of scripts, which became an internal app, to go out and
kill clusters that weren’t being used. They called it Reaper.

Autonomy driven by abundance is great, but automation was needed
to keep things under control, enabling alignment between the needs of the

engineer, the platform owner, and the CFO.
Cloud Bursts and Feature Optionality

Another facet of the need to maintain alignment between the business
and the availability of resources is consumption-based scaling. Sumo Logic
was architected to scale elastically, taking advantage of cloud resources
as its customers’ workloads grew. The cloud allows organizations to take
advantage of hyperscaler abundance, even for customers that are extremely
“bursty” from a workload perspective, such as online gaming companies.
Think of the growth of Pokémon GO or Fortnite. Load testing should rep-
licate this kind of workload fluctuation, where customers might create so
much extra traffic that they effectively create a distributed denial of service
(DDoS) traffic pattern by accident. But even with load testing, a truly unex-
pected success can drive resource utilization well above expectations.
Sumo Logic built feature optionality into its core architecture. In order
to handle system load, Sumo Logic can turn any feature in its platform on
or off. The company can also turn any feature in its platform on and roll it
out to one specific customer in a particular region for a particular use case

to test it before wider deployment. Here the cloud advantage underpin-

CASE STUDY: SUMO LOGIC 41

ning Progressive Delivery is about easy access to sophisticated networking,

which is a form of abundance in its own right.
Progressive Delivery for Machine Learning

Driven by infrastructure abundance, Sumo Logic can conduct shadow tests
of new machine learning models in production, something that would have
been unthinkable in the pre-cloud era.

For example, a customer might complain that Sumo Logic’s pattern
recognition wasn’t working. The danger here is that if the company changes
the algorithm for other customers, it might break their experience. There-
fore, Sumo Logic needed to silently spin up a couple of clusters and test the
algorithm’s performance.

Sumo Logic does candidate testing of each service it rolls out. To do
this, they have a shadow copy of Sumo Logic that is used for testing, indus-
try regulations, and so on. The entire infrastructure is replicated—this is
literally testing in production, driven by abundance.

The clone was deployed in a different datacenter with a different set
of engineers, which also created some interesting management overheads.
This full system replication exemplifies the technological inertia we dis-
cussed in Chapter 2—the ability to build momentum and stability through
abundance. By maintaining parallel systems, Sumo Logic creates a coun-
terbalance to technological jerk, absorbing changes rather than being dis-

rupted by them.

Complications

Abundance led to sprawl being a key issue, alongside technical debt. Thus,
Sumo Logic made extensive use of feature flags. Over time, however, there
were so many feature flags that the entire system became unwieldy. What
began as a mechanism enabling flexibility became an issue for engineering.
The Sumo Logic team ended up rewriting the feature flag system to make it

better adapted to modern software engineering practices with version con-

42 CHAPTER 3

trol and a Git-based workflow. Today, they would likely choose a packaged
third-party feature flag solution. Not all abundance arrives at once, and any
startup incurs technical debt.

By 2015, it was clear Sumo Logic needed to reduce infrastructure costs
overall. So, it spun up a group, which included a data scientist, tasked with
reducing infrastructure costs, and called them the Prosperity Team. This
effort was a dramatic success, increasing margins for cost to serve from
around 30% to over 70%.

Abundance always needs to be managed. You need to be intentional, or
costs get out of control. The question becomes how to maintain cost con-
trols and avoid sprawl while allowing abundance to underpin alignment

with the business goals of a fast-growing startup.

Question

It’s currently commonplace to say that every company is a software com-
pany. But if that’s the case, there is a whole set of practices associated with
being a software company that are really tough: managing open-source
infrastructure at scale, or dealing with software dependencies, or keep-
ing current with common vulnerabilities and exposures (CVEs). We all get
blamed for poor customer experiences—software companies certainly do.
But in terms of managing your own estate and identifying what is actually
a competitive advantage, that’s a thorny set of engineering questions with
no simple set of answers.

As Christian Beedgen, one of Sumo Logic’s founders, put it during an

interview with James Governor in February of 2025,

Our declarative deployment system was a competitive advantage...until it
wasn't. Because it was bespoke, and we had to maintain it. Over time Sumo
Logic hired new people with a different set of expectations about industry
standard infrastructure, such as HashiCorp or LaunchDarkly. These folks
also had skills using these platforms. So, abundance, in the case of venture

capital, meant Sumo Logic could do some incredible core engineering work.

CASE STUDY: SUMO LOGIC 43

But it is possible to over-engineer things, and managing technical debt is

always hard.

Beedgen’s observation highlights the transition Sumo Logic made from
building its own provisioning and feature flagging management tools to
adopting industry standards. This illustrates both the benefits of abun-
dance and the challenges of maintaining bespoke solutions in an ecosystem

increasingly built on shared platforms.

Summary: Abundance as
the Organizational Forcing Factor

Abundance is a powerful forcing factor enabling new organizational
practices, working methods, and workflows in tech. Two of the main ben-
eficiaries of digital abundance are the developer and the engineering orga-
nization because of the autonomy it gives them. Abundance removes the
need to ask for permission, removes bottlenecks, and allows engineers
to get on with their work—no more time waiting for infrastructure to
be provisioned. Of course, greater autonomy requires new management
approaches to enable alignment, which we’ll explore in upcoming chap-
ters.

Sumo Logic exemplifies this transformation. Their “mini-Sumo” envi-
ronments eliminated wait times for developers. Their elastic architecture
removed the permission bottlenecks for scaling. Their shadow deployment
capabilities allowed for testing without traditional approval gates. Each of
these innovations demonstrates how abundance transformed the physics
of their software delivery, from the jerky stop-start motion of the scarcity
era to the smooth Progressive Delivery enabled by abundance.

Autonomy, derived from abundance, allows organizations to move
faster, ship more products, and roll out new services more quickly. It also
reduces the likelihood of burnout, by increasing agency for developers and
users. This radical delegation, as explained more in future chapters, is a fun-

damental improvement in working culture.

44 CHAPTER 3

The Sumo Logic case study provides a concrete example of both the
possibilities and challenges of abundance as a foundational pillar of Pro-
gressive Delivery. Their journey from founding in 2010 to acquisition in
2023 spans the maturation of cloud abundance, demonstrating how organi-
zations can harness technological inertia to create momentum while devel-
oping the necessary controls to prevent the destructive jerks of unmanaged

acceleration.

