
PRAISE FOR PROGRESSIVE DELIVERY

“Progressive Delivery is one of those practices that seems simple on the

surface but whose waters run deep.…Come for the practices, stay for the

reframing of how to think about and improve your organization. Progressive

Delivery just might be the catalyst that enables organizations to change.”

—Nathen Harvey, DORA Lead and Developer Advocate,

 Google Cloud

“Progressive Delivery presents a working guide for people who are inter-

ested in building adaptively, responsibly, and agentically in the midst of

rapid change.…�is approach centers human decision-making, clarity of

purpose, and collaborative goals, which have too often been lacking from

out-of-the-box technology approaches.”

—Dr. Cat Hicks, Software Research Scientist,

Catharsis Consulting

“�is book is written by the strategists who pioneered Progressive

Delivery…�e text steps between the four pillars of a delivery framework

and corresponding case studies from big real-world teams. Ultimately, this

is a call to action on why tech has to serve up customer happiness and not

just process metrics.”

—Alexis Richardson, CEO and Cofounder,

Con�gHub

“�is book builds on existing paradigms and sage wisdom to introduce the

concept of Progressive Delivery. Get your highlighter ready, there’s some

good stu� in here!”

—Katie McLaughlin, Senior Developer Relations Engineer,

Google Cloud

“From thought leaders in the industry, an invigorating new model for how

(and why) to deliver software.”

—Rachel Chalmers, Cofounder of

Generationship.ai

IT Revolution

Portland, Oregon

James Governor, Kim Harrison,

Heidi Waterhouse & Adam Zimman

Build The

Right Thing

For The

Right People

At The

Right Time

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2025 by James Governor, Kimberly Harrison, Heidi Waterhouse, and Adam Zimman

All rights reserved. For information about permission to reproduce selections from this book,

write to Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210.

First Edition

Printed in the United States of America

30 29 28 27 26 25 1 2 3 4 5 6 7 8 9 10

Cover and book design by D.Smith Creative, LLC

Library of Congress Control Number: 2025012420

Paperback: 9781950508976

Ebook: 9781950508983

Audio: 9781950508990

For information about special discounts for bulk purchases or for information on

booking authors for an event, please visit our website at www.ITRevolution.com.

Dedication

To our families, for putting up with us.

To our friends, for encouraging us.

To our colleagues, for inspiring us.

CONTENTS

Preface xi

Introduction xv

Chapter 1: Progressive Delivery 1

Chapter 2: Abundance 17

Chapter 3: Case Study: Sumo Logic 37

Chapter 4: Autonomy 45

Chapter 5: Case Study: GitHub 73

Chapter 6: Alignment 81

Chapter 7: Case Study: Adobe 109

Chapter 8: Automation 121

Chapter 9: Case Study: AWS 139

Chapter 10: Future Proo�ng 147

Chapter 11: Case Study: Disney 173

Chapter 12: Ouroboros 183

Bibliography 199

Notes 203

Acknowledgments 207

About the Authors 211

ix

xi

PREFACE

Like many good stories, this one begins with rage.

It’s a Tuesday evening at 6:17 p.m. You’re making dinner. Your phone rings

and you answer. Your parents are in hysterics. “We’re trying to transfer

money between accounts, and we can’t �gure out how to log in to the bank

website!” After a few minutes of calming them down and trying to under-

stand the situation, you realize their bank rolled out a new website, moved

the location of the login screen, and implemented mandatory multi-factor

authentication. You spend the next two hours helping them navigate the

new interface and set up an authenticator app on their phone. By this point

your dinner has burned and cooled into a charred mass. Technology has

jerked your parents forward.

It’s Friday at 9:52 p.m. You open the app on your phone to adjust the alarm

on the “smart” speakers in your bedroom and your children’s rooms. You

need to ensure you’re all up to make it to the airport on time the next day

for your �ight to Boston. When the app opens, it’s di�erent. You think,

“Oh, cool, a new update. Looks nice, lots of rounded corners, etc.” �en

xii PREFACE

you start looking for the alarm control settings. After twenty minutes of

tapping on every section of the screen, you �nally go to Google to �nd out

where the alarm control moved to, only to learn through numerous Reddit

threads that the new app removed all ability to see or change alarms in your

system. �e comments then inform you there is no way to revert or roll

back the app version. You spend the next hour trying to set up alarm clocks

in all the bedrooms without waking the kids, your partner, or the dog. Tech-

nology has jerked your family forward.

It’s Monday at 8:27 a.m. You need to hop on a video call at 9 a.m. to prep

your boss’s boss for a meeting with the CEO about budget justi�cation.

You open the app for your video conference, and there is a pop-up win-

dow informing you that you need to update the app before continuing. You

download the update, install it, and restart the app. You’re able to get into

the meeting at 9:06 a.m. and apologize for being late. You share a recap of

the situation and are about to share your proposal when another pop-up

window appears on your screen with the message, “For security and com-

pliance, your computer will shut down and update in 3…2…1.” By the time

your laptop �nishes updating, it is now 9:12 a.m. Your budget request was

not approved. Why can’t technology do a better job delegating control of

when changes occur?

It’s Wednesday at 9:41 a.m., and your CEO just �ipped a feature �ag for

that cool new idea your team implemented from the main stage of your

company’s conference in front of a live audience of over �ve thousand

users. Instantaneously, the user interface for hundreds of thousands of

users changes. You’ve spent months working on this redesign, building

and testing in production to ensure everything would work and had 100%

feature parity. Over the next few hours, the reactions and reviews from

users start to appear online. Half of the reviews are from happy users who

 PREFACE xiii

love the new interface and �nd the enhancements intuitive. But the other

half are from users who are frustrated because you changed the work�ow

they used. Some are even having legal challenges because of contractual

obligations around training timelines. Within days you hear this divide is

showing up in sales meetings with customers as well. Some companies love

the new vision and direction, while others are threatening to cancel con-

tracts because of the disruption the change caused to their business. You

could roll back the new user experience for everyone, but then the happy

users would be angry (they really like the new design). On the other hand,

keeping it on risks losing the users who were not ready for the change. You

want to deliver the right product, but the readiness for something new

varies across your user base.

It’s Friday at 04:09 UTC, and you push out a routine content con�gura-

tion change to 100% of your globally distributed enterprise customers. Due

to a bug in your content validation system, your change passed validation

despite containing problematic content data. Within hours your change has

caused the crash of 8.5 million devices. �e resulting economic impact from

this incident is estimated at $5.4 billion. Your development practices would

bene�t from a more progressive approach to software delivery.

�ese are just a few stories that we have lived where the rapidly increasing

rate of change has led to a technological jerk felt by users. Where some

might be justi�ed in their frustration, we want to channel the rage and start

to build the right product for the right people at the right time.

xv

INTRODUCTION

For the past thirty years, technologists have spent an immense amount of

time and e�ort getting better at making software. We have re�ned how we

deliver it, how we support it, how we build it, how we store it, how we run

it, and even how we talk about it. �e cloud is our environment, and the

network is our foundational metaphor.

Technologists can create miracles and wonders with software, but

without a user, none of that matters. Without users, we can’t make money,

change the world, or provide anyone with any value. Users are the other

side of the software delivery equation, and they often get overlooked or

undervalued in the process.

All of the work we’ve done to improve the software creation and deploy-

ment process in the last thirty years is e�ectively invisible to the user. On

one hand, this is good. We don’t want to share our struggles with our cus-

tomers. But what does this evolution in the software development life cycle

look like from the user’s perspective? Let’s �ip the mirror.

What looks like deployment from our side looks like a release from the

user side. �is release is essentially a demand, a push, from us to them that

requires a change in their behavior. We may ask them to update, or we may

thrust updates upon them. But unlike greatness, update noti�cations are

very persistent. �e more often we want users to accept our changes, the

more change we ask them to adapt to, even if it’s very tiny.

xvi INTRODUCTION

Progressive Delivery takes the DevOps idea of breaking the wall

between silos to its logical conclusion: We need to knock down the wall

between software users and software makers.

We already have the tools we need for this demolition—automation

across all layers of the stack, con�guration as code, monitoring, observabil-

ity, telemetry, feature �ags, security built into the software development

life cycle (SDLC), and, yes, data collection.

We can see how people use our software, or don’t, if we only care to

look. Once we understand how users truly engage with our software, we

can package and parse that knowledge and use it to create software that

better �ts the user’s needs and desires. In other words, we can understand

software in the context of it actually being used, not just designed.

In our thirty years of improving software delivery, the part we’ve been

missing is how our software a�ects the people who use it. Figure 0.1 con-

denses all the very real and important technical advances of coding, testing,

and shipping as “making software” (on the left) and expands out all the

ways our users can interact with what we’ve made (on the right). On top are

user behaviors and on the bottom are the tools we share with users to make

those behaviors possible.

FIGURE 0.1: Software Acceptance and Use After Delivery

Making Software

Customize

Modify

Extend

Integrate

A
cc

ept Release

Push/Pull

Feature Flags

Settings

APIs

Change Process

 INTRODUCTION xvii

We, as software developers, are at the core, pushing or o�ering

deployments and our users accepting them. Feature �ags can customize

the behavior of forcing or accepting changes. Settings can modify the soft-

ware’s environment. APIs can extend the program’s data and behavior to

a di�erent format. Integration occurs when the user elects to use other

software to interact with our software to meet their needs.

�is progression re�ects how the control point of software behavior

shifts further away from the software creator (developer) and more toward

the software consumer (user). It may seem counterintuitive that the “inte-

grate/change process” is on the outer loop, since this seems pretty techni-

cal, but that’s actually the point where our software interacts with the user’s

software. After all, our software is not the only tool our users are using to

get their work done, so this ripple intersects with the ripples of dozens of

other software products in the user’s unique ecosystem (see Figure 0.2).

FIGURE 0.2: User’s Software Ecosystem Has Many Interactions

Why We Wrote This

Any new way of describing the world requires context. It requires a commu-

nity. It is a set of ideas and practices that are packaged up and it often has

US

xviii INTRODUCTION

a moment that helps to crystallize things. �e software industry has spent

the last thirty years trying to get better at writing software.

We (the developer community) have talked about continuous delivery

and Agile. We have gotten much better at testing and shifted testing left.

We have done many things, but we have never managed to do them for

everybody. We’re always promising a bright future…if only. �e commu-

nity working on user-centricity in the future already needs to make it a

mainstream phenomenon. To make this new model accessible, we must

name it and talk about it.

In 2017, James Governor had an intuition based on a conversation

with Sam Guckenheimer, who worked at Microsoft. After hearing about the

application routing processes Microsoft used for rolling out services, James

realized that one part of the puzzle, which Microsoft called “progressive

experimentation,” was really about a broader phenomenon—Progressive

Delivery. �e impact of a basket of technologies and approaches applies to

the entire SDLC. From there, our group came together—James Governor,

Adam Zimman, Heidi Waterhouse, and Kimberly Harrison—and began to

talk about, contextualize, and advance these ideas.

We all have a history of communicating with multiple stakeholders in

the industry, helping them understand complex ideas and make them more

broadly applicable. We have decades of experience and now we’re bringing

it together to bear on this new idea. Progressive Delivery takes all the good-

ness of the cloud and all the things that were not there when some of the

original works in continuous integration/continuous delivery (CI/CD) were

written and makes them applicable for now and into the future.

With continuous delivery and even late-stage Agile, there was the idea

of the separation of deployment from release. With Progressive Delivery,

though, we are adding that larger community in the context of our con-

sumer. In Progressive Delivery, we now have deployment, release, and

adoption. (See Figure 0.3.) �at user cycle is representative of adoption,

and that is the part we need to incorporate back into how we’re thinking

about our software delivery. We’ve gotten signi�cantly better at shipping

software, but helping people adopt that software and feel good about it…

that’s where we need to do a lot of work.

 INTRODUCTION xix

FIGURE 0.3: Deployment vs. Release and Who’s Impacted

As Dr. Cat Hicks notes, “A successful software builder wants to create

a successful, positive relationship to the change they’re introducing.”1 We

want users involved and happy. �e truth is that di�erent people are going

to adopt software at di�erent paces, and we’re always going to be in an envi-

ronment that is a mixture of the old and the new.

�e �rst key breakthrough is understanding that the cloud changed

everything because of its opportunities to increase autonomy, alignment,

abundance, and automation. Particularly abundance. �ere are things we

could do with the cloud that we could never do before. But the second most

important breakthrough, the crucial breakthrough, is closing the third loop.

It’s not enough to have DevOps as two loops; we need to bring the user into

the heart of what we are doing. �at is the prize and the opportunity. �at’s

what makes Progressive Delivery di�erent.

Who Should Read This Book

Progressive Delivery is a holistic framework for an entire organization. It is

intended to bring together the business, the builders, and the users in a way

that honors everyone. But change really starts at the source, the builders.

�is book is primarily written from the perspective of enabling software

Ops UserDev

Deploy Release Adopt

xx INTRODUCTION

developers, who are at the front line of creating change, to create an envi-

ronment where the right software gets delivered to the right people at the

right time.

We say, “build the right thing for the right users at the right time.” We

start with “build” because until you build the software you can’t deliver it.

And how you build directly impacts your options at the time of delivery

and your ability to observe adoption. Generative AI and vibe coding may

be shifting the cost of building all variations to a nominal fee, but the cycle

still starts with understanding the right thing to build. We need to start the

conversation around how we are building to properly enable our teams to

deliver to the right users at the right time.

Whether you are an engineering lead, a product owner, or an executive,

this book is intended to expose you to the latest in software delivery think-

ing. �roughout the book, we also discuss how software creation and deliv-

ery a�ect other groups, who we call constituents (more on this below). We

want to provide some useful ways to change your thinking about software

delivery and some practical questions and techniques to make that delivery

progressive, inclusive, and future proof.

When we talk about the collective of people who use and make our

software and those who market, sell, and distribute it, we could use the

traditional expression “stakeholders,” but mostly, we prefer to think about

that constellation of people as constituents.

• A stakeholder is a person who cares about the outcomes. In a

very literal sense, stakeholders have a stake in the success of the

product. �is can be a developer whose job performance is tied to

the product, an investor, or company management.

• A constituent is someone who contributes to success. �is can

include developers, support, marketing, users, and IT depart-

ments.

We need to treat users as participants in our work rather than as

objects. We’re doing something with them, not to them.

 INTRODUCTION xxi

How to Read This Book

�is book is a layer cake of theory and practice. �e theory chapters provide

explanations for what we are seeing in the industry, what you can look for

in your organization, and questions to ask yourself about your alignment

with Progressive Delivery. �e corresponding case study chapters demon-

strate a particular aspect of Progressive Delivery in action, but, of course,

other elements also make their way in. Read through the book and focus on

the parts that line up with your current experience. �en go through and

use the questions at the end of the chapters to consider how you want to

tweak the practices and behaviors in your organization.

Tools and Patterns

�ese tools and patterns are ways that we have seen organizations prac-

tice Progressive Delivery. Many of them �ow into each other or relate to

each other, but we are listing them in alphabetical order for ease of refer-

ence. We’re introducing these concepts here as they’ll come up throughout

the book and form a foundation to engage in moving toward a Progressive

Delivery approach.

Blast Radius

�is is a way to describe how much e�ect a change will have. It is often

coupled with ring deployment or canary deployments. Changes with a

small blast radius limit the impact of changes since only a few people will be

a�ected. Limiting the blast radius also provides an early feedback loop on

changes from the user perspective.

Blue-Green Deployments

Blue-green deployments are often used in a “breaking change” scenario. If a

software change is going to change how data is stored and communicated,

the blue-green pattern helps prevent data loss. A second full system is set

up that mirrors the original system, and tra�c is directed to both systems

xxii INTRODUCTION

simultaneously to check that the data is all being stored properly and that

the new system is robust. Only then is the older system shut down. Varia-

tions on this pattern include load migration and tra�c shaping. �e pattern

is also related to sunsetting.

FIGURE 0.4: Progression of a Blue-Green Deployment

Canary Testing

Derived from the use of canaries in coal mines as an early warning for

poor air quality, a canary test rolls out a software change to a small group

of monitored users and checks their response and experience. In the coal

mining story, the canary stops singing and faints if it loses oxygen. Since

canaries are very small, it’s a sensitive indicator. In the same way, canary

1

<LOAD BALANCER

SERVERS>

BEFORE

AFTER

2

3

4

5

 INTRODUCTION xxiii

testing is a sensitive test that can indicate general safety for the group, but

only if it is well-monitored. Canary tests are often administered by feature

�ags and may be part of a ring deployment strategy.

FIGURE 0.5: Canary Deployment

Used to Evaluate Viability of a Change Before Exposing to All Users

Constituents

Software is not just a set of computer instructions. It is a web of rela-

tionships between people, processes, and systems. �e constituents of a

Progressive Delivery system include the developers, the product team, the

businesses that create and consume the software, the environment, and

the users. For example, a healthcare record system is created by a product

team and developers, sold by marketers and salespeople, maintained by

operations and support sta�, and used by insurance companies, healthcare

providers, and patients. All those people are part of the constituency of

the healthcare software.

Feature Flags

Feature �ags are a way to change the behavior of software at runtime based

on conditions that may be external to the code. Feature �ags can be used

to control software based on conditions such as user ID, browser language,

geographic region, software version, security permission level, A/B testing

cohort, and server.

ROUTER ROUTER

xxiv INTRODUCTION

Feature �ags frequently fall into two categories: ephemeral �ags, which

are used for a �nite period of time and then removed from the code base to

prevent inadvertent activation, and long-lived �ags, which control aspects

of the software that will continue to be variable. For example, an ephem-

eral �ag might control the phased rollout of a new feature. A long-lived �ag

might control software that has a paid premium tier. Feature management

software helps organize, control, and distribute an organization’s feature

�ags.

FIGURE 0.6: Feature Flag Controlling Which User Segments

Have Access to a New Feature

Observability

Observability is the combination of gathering high-cardinality data about a

system (including its users) and being able to ask unanticipated questions

about that data.

Release Impact

Much like blast radius, release impact is a way to understand the e�ect of a

software change. However, release impact also implies that the change may

be positive. Some implementations of release impact also include a consid-

eration of monetary e�ects.

New Features Feature Flag User Segments

Development

Production

Quality

Assurance

ON

ON

OFF

 INTRODUCTION xxv

Release vs. Deployment vs. Acceptance/Adoption

Deployment is the act of getting software to a place where it will be avail-

able to the users. Release is the point where users can actually use the soft-

ware and are told about it. Acceptance or adoption is when users make the

software a part of their work�ows.

Ring Deployments

A ring deployment is the practice of deploying software to increasingly

larger groups of people as part of a release strategy. For example, the �rst

ring might be to the team, and the second ring might go to 1% of the users,

then 10% of the users, etc. At each stage, the impact is evaluated.

FIGURE 0.7: Ring Deployment

Rollbacks

One way to make changes less dangerous is to ensure that they can be

reverted cleanly. Controlling releases with feature �ags makes it faster and

easier to roll back to a previous state without needing to change code, espe-

cially in an urgent situation. As �omas Dohmke, CEO of GitHub, said in

an interview with us: “�e feature �ag is only really useful if you can’t only

Dev
Internal
Users

Early

Adopters

All

Users

xxvi INTRODUCTION

progressively roll out, but you also need to be able to aggressively roll back.

�at’s actually the key feature.”2

Test in Production

In a complex modern software environment, it is impossible to fully test

every scenario before software is released. However, production is a test

environment from which we can obtain valuable information if we choose

to record and integrate it.

Sunsetting

All software has a lifespan. When software needs to be retired, some users

are ready to move on to the next thing, and some aren’t, for business or

personal reasons. Sunsetting is the act of retiring software or versions

using feature �ags so there is not an abrupt cuto� but a mindful wind

down.

FIGURE 0.8: Software End-of-Life Diagram

Progressive Delivery Is a Mindset

Empowering the user to change their experience of software is an exten-

sion of the Agile, DevOps, and CI/CD philosophies. Our collaboration circle

General

Availability

No more

customer

usage of

feature/

product

End of

Sales

End of

Support
Removal

of Code

End of

Extended

Support

 INTRODUCTION xxvii

grows wider as our ability to understand and incorporate data increases.

From the organizational side, abundance, autonomy, alignment, and auto-

mation make it easier for organizations to create and sustain software that

is �exible, responsive, and useful.

We believe that with this guide, you will be able to look at your own

organization and see places where you can improve one of the four A’s and

thus deliver value a little sooner or more accurately or make the work with

others easier.

1

Chapter 1

PROGRESSIVE DELIVERY

”Well, in our country,” said Alice, still panting a little, “you’d generally get to

somewhere else—if you run very fast for a long time, as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all

the running you can do, to keep in the same place. If you want to get some-

where else, you must run at least twice as fast as that!”

—Lewis Carroll, �rough the Looking-Glass and What Alice Found �ere

In physics, a jerk isn’t just someone cutting you o� in tra�c—it’s the rate

at which acceleration changes. Technically known by physicists as the third

derivative of position, it’s the feeling that makes you grab for the subway

pole when the train lurches or brace yourself during an elevator’s sudden

start. It’s that moment when steady, predictable motion becomes a jolt,

defying your expectations of smooth acceleration.

jerk (/jurk/): The rate of change of an object’s acceleration over time.

We feel this same jerk in our digital lives, where change itself is acceler-

ating. �e history of technology has been hallmarked by an ever-increasing

velocity of transformation.

As Alvin To�er warned in 1970, change is “a concrete force that

reaches deep into our personal lives, compels us to act out new roles, and

confronts us with the danger of a new and powerfully upsetting psycho-

logical disease.” He called this phenomenon “future shock,”1 and nothing

in our current environment suggests the pace To�er found dizzying �fty

years ago will slow down.

�ese technological jerks reshape our personal worlds in profound

ways. For someone born in the 1940s, a telephone represents stable tech-

nology—pick it up, dial, talk. For those born in the 2000s, the “phone”

2 CHAPTER 1

function might be the least-used app on their device. Everything from how

we get our news to how we pay for co�ee has become a digital experience

that updates without warning, consent, or control. �e global infrastruc-

ture we built in the twentieth century—networks of satellites, �ber-optic

cables, and physical goods transfer—has compressed adoption timelines

from decades to months. (See Figure 1.1.)

FIGURE 1.1: Adoption Rate of New Technologies from 1900 to 2012

Source: “�e Topic We Should All Be Paying Attention to (in 3 Charts),” BlackRock Blog,

December 11, 2015, https://web.archive.org/web/20160304140915/https://www

.blackrockblog.com/2015/12/11/economic-trends-in-charts/.

In 1962, Everett Rogers captured the varied human response to this

technological acceleration in Di�usion of Innovations, mapping out how new

technologies ripple through society—from eager innovators who embrace

the bleeding edge to early adopters, then the early and late majorities, and,

�nally, the cautious laggards who hold onto the familiar.2 Geo�rey Moore

Telephone

Electricity

Cars

Radio

Fridge

Television

Air Travel

Color Television

Credit Card

Microwave

Video Games

PC

Cell Phone

Internet

Digital Camera

MP3 Player

HDTV

Social Media

Smartphone

Tablet

100%

60%

40%

80%

20%

0%

19
00

19
30

19
10

19
20

19
40

19
50

19
60

19
70

19
80

19
90

20
10

20
00

A
d
o
p
ti

o
n
 R

a
te

 PROGRESSIVE DELIVERY 3

later expanded this insight in Crossing the Chasm, revealing the treacherous

gap between early enthusiasm and mainstream acceptance.3

Yet our relationship with change isn’t simple. A developer might be the

earliest adopter of a new operating system on their phone but continue to

use a code editor that was built in 1976.* We are all early adopters in one

area but laggards in another, picking our way through an increasingly com-

plex technological landscape.

In our professional lives, these jerks multiply. Software dashboards

proliferate—one for time tracking, another for performance metrics, and

yet another for project management. Each makes perfect sense to its cre-

ators, but collectively they create a dizzying acceleration. When we ask col-

leagues to adapt to interface changes, we’re asking them to absorb another

jerk in their already dynamic work�ow.

Organizations feel these forces of change even more acutely. �ey must

innovate rapidly to stay competitive—ask Sears about the cost of failing

to adapt to Amazon—while managing the increased risks of outages, user

frustration, and business disruption. Traditional change management sys-

tems excel at handling smooth, predictable acceleration but falter when

confronting these technological jerks.

�e solution isn’t to slow down—it’s to give people more control over

their rate of change. Every time we allow users choice, whether in personal

tools or workplace software, we enable them to manage their own acceler-

ation. Some choices can be elegantly wrapped—such as advanced settings

hidden behind a simpli�ed interface—making people partners in the soft-

ware experience rather than subjects of it.

�is is where Progressive Delivery comes in: a methodology that rec-

ognizes di�erent users need di�erent rates of change. As software build-

ers, we can release as quickly as we want while letting users choose when

to incorporate changes into their lives and work�ows. It’s about building

systems that are both dynamic and respectful, systems that recognize the

human need to sometimes grab the pole and steady ourselves before the

next technological jerk arrives.

* Both “vi” and “Emacs” were �rst created in 1976 and remain two of the most popular code edit-

ing applications today.

4 CHAPTER 1

�e cost of mismanaging rollouts is all around us. Microsoft found itself

forced to extend Windows 10 support when organizations balked at upgrad-

ing to Windows 11.

A tiny npm package called left-pad created a cascading failure that

a�ected thousands of projects. A security company called CrowdStrike,

which tens of thousands of organizations relied on, caused a major outage

by pushing a breaking miscon�guration to 100% of their audience all at

once. �e cost of poor software delivery practices can run into the billions.

It gets kind of expensive when the entire airline industry is grounded. �ese

cases demonstrate what happens when rollouts are not e�ectively managed.

And, really, as an industry, we should be doing better by now.

�e signs of this mismatch are clear in any organization: declining user

engagement, unused new features, the proliferation of third-party work-

arounds, and spikes in support requests. But these symptoms also point

toward solutions. By understanding how di�erent users and organizations

absorb change—from early adopters to cautious laggards—we can create

systems that respect their varying needs for stability and innovation.

Over the past century, we’ve seen adoption rates for new technologies

compress dramatically. While television, computing, and other technolo-

gies required decades to reach mass adoption, the latest software-driven

innovations can become mainstream in months (see Figure 1.2). �is accel-

eration isn’t slowing down—just look at ChatGPT.

As software builders, we’re both agents and victims of this acceleration.

Our code is just one thread in a vast tapestry of interdependent systems,

each evolving at its own pace. When we push changes too fast or too fre-

quently, we risk creating that jarring moment—that technological jerk—

for our users. �e impact depends on how quickly they’re already adapting

to change: What feels like a gentle nudge to an early adopter might throw a

late majority user o� balance entirely. We are not the only ones asking our

users to adapt to changes—they use more than just our software, both at

work and at home.

�roughout this chapter, we’ll explore how Progressive Delivery pro-

vides a framework for managing technological change that respects both

the need for innovation and the human experience of adaptation. By

 PROGRESSIVE DELIVERY 5

understanding how to deliver the right changes to the right users at the

right time, we can turn the jarring experience of technological jerk into

a more controlled and intentional acceleration. Let’s start by examining

exactly what Progressive Delivery means in practice and how it emerged as

a response to these challenges.

FIGURE 1.2: Years Since Technology Introduction

to Reach Mass Ownership

Source: Federal Reserve Bank of Dallas, 1996 Annual Report: �e Economy at Light Speed, https://

web.archive.org/web/20161224074319/https://www.dallasfed.org/~/media/documents/fed/

annual/1999/ar96.pdf.

Toward a Practice of Progressive Delivery

Everywhere we look, we �nd new devices and services that o�er replace-

ments or enhancements to every aspect of our lives. But with these

improvements come new challenges. If your device or application doesn’t

work, how does it get �xed? How long does it take? What if that software

is running in your car? Or the locks on your house? Or the pump for your

insulin? Is your software doing what you need, when you need it?

Telephone

Automobile

Electricity

Radio

VCR

Television Airplane

Microwave

PC

Cell Phone

Internet

100
Percent Ownership

Years Since Product Invented

60

70

40

50

80

90

20

30

10

0

1 10 20 30 40 50 60 70 80 90 100 110 120

6 CHAPTER 1

Di�erent stakeholders want to move at di�erent rates—factories want

to run consistently all year, but consumers have times when they want to

buy back-to-school clothes or holiday presents. Software developers want

to be able to show delivered products before their performance reviews.

Sales teams are driving toward quarterly and yearly goals. �ese stakehold-

ers need a way to collaborate, not just coexist.

At its core, Progressive Delivery is a set of software delivery prac-

tices to deliver the right software to the right users at the right time in

a way that is sustainable for everyone. Yes, everyone. �is includes execu-

tives in the boardroom, leaders managing departments, engineers, design-

ers, product teams, marketers, partners, and, most importantly, the actual

product users. While this book is focused on software developers and how

they can bene�t from Progressive Delivery methods, Progressive Delivery

is for all these stakeholders and constituents.

Progressive Delivery is not about tools or certi�cations. It’s about what

you care about and where your organization places focus. It’s more of a lens

than a prescription. Products are not static entities but thriving conversa-

tions where building, use, and retirement are all visible and trackable.

From a more nuanced perspective, Progressive Delivery can mean dif-

ferent things for di�erent constituents:

• For the user or consumer of technology, Progressive Delivery is a

user experience that minimizes technological jerk.

• For the company delivering a digital experience, Progressive

Delivery is a set of practices that enable teams to move at a sus-

tainable pace.

• For those tasked with building and delivering modern software,

Progressive Delivery is a development practice that builds upon

the core tenets of continuous integration and continuous deliv-

ery (CI/CD).

Progressive Delivery speci�cally adds two core tenets to that of CI/CD:

 PROGRESSIVE DELIVERY 7

1. Release progression: progressively increasing the number of

users who can see (and are impacted by) new features.

2. Radical delegation: progressively delegating the control of

access to a feature to the owner who is closest to the outcome.

In essence, Progressive Delivery is the practice of delegating control to

the user while retaining a clear vision and plan for the product. It’s a way to

understand what you’re already doing regardless of the technology change

happening in front of you, so you can do it more e�ectively.

Progressive Delivery asks the following key questions:

• What is “�nished?” When is a product or feature truly complete,

and how do we de�ne success?

• What do we expect to happen? What are our hypotheses about

how users will interact with the new features?

• What if users want a di�erent cadence of change? How do we

accommodate diverse user preferences?

• How are we stewarding the information we collect? How do we

gather and analyze user feedback?

• How are we incorporating feedback? How do we use feedback to

improve the product?

• Who are all of our constituents? We must recognize and consider

the needs of all stakeholders, not just the loudest voices.

In the history of software development, Progressive Delivery rep-

resents the logical next step in a long line of improvements. According to

Carlos Sanchez, who wrote the following while working at CloudBees:

Progressive Delivery is the next step after Continuous Delivery, where new

versions are deployed to a subset of users and are evaluated in terms of correct-

ness and performance before rolling them to the totality of the users and rolled

back if not matching some key metrics.4

8 CHAPTER 1

Figure 1.3 shows the evolution of software development methods.

While not comprehensive, it shows how our understanding of delivery can

be additive. Speci�cation-driven delivery (also known as waterfall) plus

Agile gets us test-driven delivery (TDD). When we add operations and

maintenance into the scope of TDD, we get DevOps. Adding automation

to DevOps results in CI/CD. Progressive Delivery includes all the former

models the way a pearl encapsulates its former layers.

FIGURE 1.3: �e Evolution of Software Development Methods

Of course, as software makers have been optimizing how to build soft-

ware—through innovations in tooling and craft with continuous delivery

and DevOps practices—they have exacerbated the problem of user adop-

tion. Even if a team can deploy on demand, a user probably will not adopt

releases multiple times a day.

�is is the crux of why users are feeling the technological jerk now more

than ever—adoption is about release cadence, not build cadence, but not all

our systems are designed to separate those. �e essential added ingredient

in Progressive Delivery is delegation closer to the user.

Te
st-

Driven Delivery

DevOps

CI/CD

Progressive Delivery

Specification-

Driven Delivery

+Agile

+Delivery

+Automation

+Delegation

 PROGRESSIVE DELIVERY 9

�is is how we continue down the path of high developer autonomy.

We build systems that decouple deployment from release, and release from

adoption, so users can operate at a more comfortable speed.

Once you start seeing the world in terms of Progressive Delivery, you

see it everywhere—ripe mangoes in Midwest supermarkets and tap-to-pay

parking meters, Calendly links, and same-day electronics delivery. User

demand drives and encourages changes to delivery infrastructure. Consider

Calendly: Setting up a meeting with someone used to require several steps,

including �guring out availability for each person. By creating software

to allow each user to independently choose a time, booking meetings has

become faster and easier.

On the provider side, this coordination requires calendar rules, time

zone awareness, email integration, and meeting location options. Similarly,

delivering fresh tropical fruit to Minnesota in February requires a sophisti-

cated transportation and distribution network and fruit varietals that are

sturdy enough to ship and store. To the user, Progressive Delivery looks like

convenience. But to a provider, Progressive Delivery takes a combination of

investment, will, and e�ort.

The Four A’s: A Framework for
Progressive Delivery

�e evolution of Progressive Delivery has been shaped by technological

advances, much as physics has evolved to measure and manage forces of

motion. Just as physicists use measurements of jerk to understand sudden

changes in acceleration, there are four essential factors that help us mea-

sure and manage the technological jerks in our system: the four A’s—abun-

dance, autonomy, alignment, and automation. �e rise of virtualization,

containerization, and cloud computing led to the abundance of computing

and storage resources. �is abundance of resources led to increased devel-

oper autonomy, which was further accelerated by Git, distributed contri-

bution, feature �ags, and the architecture trend from monoliths toward

microservices.

10 CHAPTER 1

As autonomy increased, so did the need for focus and alignment. Teams

began to prioritize—and value—API-�rst development and enhanced

observability. �is more loosely coupled architecture led to both the oppor-

tunity and the need for more automation and better feedback loops to man-

age the vast increase in the scale of systems and the opportunity to better

understand user behavior and needs.

We can express this relationship as an equation:

Progressive Delivery =
 (Abundance x Autonomy)

 (Alignment x Automation)

Abundance and autonomy form the foundation of the developer expe-

rience, much like the electrical grid supports our modern life. �e �uc-

tuations of power generation and conduction are smoothed out, and we

get steady, reliable resources to use. We then get to choose how to apply

the power streaming into our homes and businesses so abundantly. In the

same way, abundance and autonomy in software development allow us to

think about more di�cult and interesting problems. However, just as we

use everything from circuit breakers to dimmer switches to control the

�ow of power, the forces of abundance and autonomy also need to be well-

regulated to be useful and safe.

Your “goal” for Progressive Delivery is to balance your abundance and

autonomy by leveraging alignment and automation. If abundance and

autonomy are too pronounced compared to alignment and automation,

teams tend to build brittle systems �lled with features that never get used.

Conversely, if you focus too much on the user experience without address-

ing developer needs, you end up knowing what the users need, but you are

unable to deliver it quickly enough.

In this way, abundance and autonomy are all about the developer expe-

rience, or the building side of a product, while alignment and automation

are centered on the user experience, or the delivery of the product. We

could simplify this as:

Progressive Delivery =
 Developer Experience

 User Autonomy

 PROGRESSIVE DELIVERY 11

If abundance and autonomy are the electrical grid, delivering us power

and potential, then alignment and automation are the appliances that

transform that energy into value. Voltage on a power line is not useful

until we can convert it into light, heat, work, or video gaming minutes. Too

much power and there’s a risk to safety and property. Too little and we can’t

turn on a light or keep food cold. Alignment is what directs the current the

way we want it. Automation makes our homes run without intervention

and keeps us safe from mistakes or sudden surges. Without alignment and

automation, we would be at risk of surprises or unwanted changes.

Let’s examine each of these four pillars in detail:

Abundance

Abundance is a very large quantity of all the resources required to accom-

plish a task. In the context of Progressive Delivery, this centers around the

developer experience. When building digital systems, this can be divided

into compute resources, network bandwidth, and storage.

We can measure abundance both quantitatively (for example, how long

it takes to provision a server or database for a new project) and qualitatively

(for example, through developer surveys and interviews). Developer experi-

ence and abundance are interlinked. Abundance enables developers to work

without friction and without waiting for permission to access resources.

Autonomy

Autonomy is the ability of an individual to act independently from others.

When developing software, this independence means access to all neces-

sary resources to complete a desired task. To have a Progressive Delivery

environment, developers need to be able to innovate and build at their own

pace.

To measure autonomy quantitatively, we can track how frequently

developers are “blocked” or waiting for others to do their work. During

some stages of growth or product expansion, the rate of blocking may nat-

urally increase. We can also gain qualitative assessment through internal

surveys.

12 CHAPTER 1

Alignment

Alignment means focusing human and organizational resources responsi-

ble for developing software to work in the same direction. In Progressive

Delivery, alignment is one of the two ways to wrangle abundance and

autonomy. Both alignment and automation are centered around the user

experience.

We can measure alignment through qualitative user surveys and inter-

views, as well as by monitoring usage rates and patterns in feature adop-

tion and work�ow completion. �e exact method for gathering quantitative

and qualitative data about user impact will vary with the software and the

users, but it should be as broad as the team can a�ord, in order to capture

multiple insights.

Automation

Automation is the identi�cation and implementation of programmatic

processes for repetitive tasks. For Progressive Delivery, automation is the

second way to focus on abundance and autonomy. Automation supports

alignment by intentionally looking for repetitive manual tasks and creating

code to reduce e�ort while ensuring consistency. After all, one of the goals

of computing, and now AI, is to make automation easier and more e�ective.

Adoption is easier when it’s automated and part of the work�ow.

Measuring automation can be done quantitatively through observ-

ability tooling, which looks at the frequency of pattern repetition as users

navigate a work�ow. Qualitatively, user surveys can target questions about

repetition and “too many steps” to accomplish frequent tasks.

Balancing Developer and User Experience

�e bene�t to adopting Progressive Delivery is that it is not an abrupt trans-

formative moment but an evolution that works with what you’re already

doing well and gives you pointers to what could be improved. �e cost of a

 PROGRESSIVE DELIVERY 13

“transformation initiative” is often denoted in millions, and the outcome

may not be at all aligned to bene�t the people who are implementing the

changes and those consuming the result.

Just as electrical engineers need to balance variable generation and

transmission with safe, reliable, controlled delivery, Progressive Delivery

works to balance the surge and ebb of developer innovation with the mea-

sured and incremental pace of user acceptance. �e goal is not to eliminate

change or even acceleration, but to make it as smooth and acceptable as

possible. �e separation between deployment and release acts as a trans-

former, modulating the �ow down to something a household can use safely,

while still retaining the capacity to serve other households.

Progressive Delivery addresses the challenge of the pace of innova-

tion by making a hard separation between the deployment of code to the

production environment and the release of features to users. �is separa-

tion allows for the business to have two priorities that are loosely coupled:

developer autonomy and user adoption. (See Figure 1.4.)

FIGURE 1.4: How Software Development Life Cycles Balance Developer

Autonomy with User Adoption

High Developer Autonomy

Continuous

Delivery

Progressive

Delivery

Waterfall Agile

Low Developer Autonomy

Low Alignment

with User Adoption

High Alignment

with User Adoption

14 CHAPTER 1

Motivation and Sustainable Growth

Similarly, product teams as a whole need to know that there is a user

demand for what they are building, and companies need to be able to situ-

ate themselves in an ecosystem of production and consumption. All of this

alignment is much easier when the goal is something that can be commu-

nicated to everyone.

Dan Pink’s Drive posited that humans are intrinsically motivated by

autonomy, mastery, and purpose.5 �is theory �ts well with what we know

about burnout from Dr. Christina Maslach’s work, where lack of autonomy

and purpose and con�icts in moral values create a kind of moral injury.6

Being able to connect our labor to the value that other people �nd in our

work is a known way to stay engaged and happy.

We know that stasis is dangerous for companies—if you’re not in touch

with how your environment is changing, you’re at a high risk of being

passed by a competitor or becoming irrelevant. We also know that growth

at all costs is a risky goal, especially in a post-ZIRP* world. Company growth

needs to be sustainable or have sustainability on the horizon.

Finding the Middle Road

�ere are so many business metrics out there, and while we will give you

a few more, the metric is not the goal any more than the map is the terri-

tory. If we measure people on something easily measured without repeat-

edly asking why they need to increase that measurement and the intended

e�ect, then we get compliance but not cooperation.

So how do we �nd that middle road of making something useful, �ex-

ible, and sustainable?

• By delivering the right product to the right person at the right

time.

* ZIRP: zero-interest-rate phenomenon. In this case, the behavior of companies when it is ef-

fectively free to borrow money. Although associated with the economic term zero-interest-rate

policy, it is speci�c to how low borrowing costs a�ected risk estimation around investing in

software and venture-backed startups.

 PROGRESSIVE DELIVERY 15

• By avoiding overbuilding and over-optimizing.

• By working with the resources easily available.

• By making sure that we are addressing real needs our users value,

not just what the loudest people are asking for.

If change is an inevitable part of our lives, both as producers and con-

sumers, how do we make that change meaningful and useful instead of

pointless motion without progress? To answer that question, we need to

know what the point is—what are we trying to accomplish with what we’re

making, and what are the people who use it trying to accomplish? Without

these purposes clearly in mind, we can never be sure that we’re making the

right thing.

Conclusion

Each of the four A’s of Progressive Delivery reinforces and enables progress

in the others. None of them is something that can be fully �nished. Moore’s

Law continues to provide an abundance of resources. You can always auto-

mate a little more, or a realignment will reveal a way for a team to become

more autonomous. Even autonomy continues to increase and expand in the

face of coding assistants.

Change is a part of our lives every day. We tend to think of it as good

change, like increases in capacity or learning, or bad change, like aging and

decay. Change is stressful because it forces us to learn new habits and pat-

terns and ways of doing things. �e larger and faster a change is from a

single point of view, the harder it is to adapt to it. Jared Spool, cofounder of

Center Centre, said in the article “�e Quiet Death of the Major Re-Launch,”

�ere’s another way to build a new architecture with a whole new site without

the risks of a re-launch.…I explained that re-launches are a thing of the past.

�ere was a time when sites launched in cycles, living from one major redesign

to the next. Each new redesign would bring a whole new look, a whole new user

experience.…However, the best sites have replaced this process of revolution

16 CHAPTER 1

with a new process of subtle evolution. Entire redesigns have quietly faded

away with continuous improvements taking their place.7

�e way we build software has evolved to make it trivial to push changes

to our users. But just because it’s easy to change things doesn’t always mean

it’s the right time or situation to do so. �is is where Progressive Delivery

shines—by providing a framework that balances capability with responsi-

bility, speed with sustainability.

In physics, understanding jerk helps engineers design better systems—

from elevator controls to autonomous vehicles. Similarly, understanding

the forces of technological change through Progressive Delivery helps us

build better software systems that respect both the need for rapid inno-

vation and users’ capacity to adapt to change. Modern software delivery

works because we have an abundance of software and network resources,

the autonomy to �nd the best path to solve a problem, the alignment to

work within a distributed system, and the automation to preserve our

energy for novel and challenging tasks. �rough Progressive Delivery, we

can ensure that this malleability serves both the creators and consumers of

technology, making change not just possible but purposeful.

17

Chapter 2

ABUNDANCE

If quantity forms the goals of our feedback loops, if quantity is the center

of our attention and language and institutions, if we motivate ourselves,

rate ourselves, and reward ourselves on our ability to produce quantity, then

quantity will be the result. You can look around and make up your own mind

about whether quantity or quality is the outstanding characteristic of the

world in which you live.

—Donella H. Meadows, �inking in Systems: A Primer

In physics, potential energy is the energy that is stored in a system. As we

have explained, jerk is the sudden, unexpected change in acceleration that

throws us o� balance. Abundance, for developers and builders of software,

is how many resources you have available—technological potential energy.

�is potential energy powers your innovation. When used responsibly,

abundance can provide steady acceleration and help avoid the jerk caused

by exposing too much change too quickly to your users.

Over the past �fty years or so, our society has moved from an environ-

ment where technology was a scarce resource to one of abundance, where

technology is not only cheap but all-pervasive. �is transition represents a

fundamental shift in the world of software development—from a world of

constrained motion to one of technological momentum.

Prices of memory, compute, and storage continue to drop as maxi-

mum densities continue to climb. We’re all familiar with Moore’s Law, �rst

described by Gordon Moore, Intel’s cofounder, in 1965. He predicted that

the number of transistors on a single computer chip would double roughly

every two years with a negligible increase in cost.1 �is exponential growth

creates a form of technological inertia—a mass and velocity that, once

in motion, becomes di�cult to slow down or redirect. �ough this initial

18 CHAPTER 2

observation was in relation to compute, the same growth of density has

been roughly equivalent for both memory and storage as well.

At the time of this writing, a 1-terabyte hard drive costs less than $30.

Phones are considerably more powerful than mainframes were twenty

years ago. �e cloud made, and continues to make, this abundance acces-

sible to anyone with a credit card. High-speed networking and 5G have

removed bandwidth as a limitation in most regions. Software, too, is

cheap. (Or even free, as in a puppy, which may have no up-front cost but

a lot of maintenance expenses.) Open source has driven an abundance

revolution in software. Each of these developments adds mass to the techno-

logical momentum that organizations must now harness rather than resist.

So, what does all this abundance mean in the context of Progressive

Delivery? And how can we harness this momentum without creating dis-

ruptive jerks in our systems and for our users? Let’s de�ne it clearly:

a·bun·dance (/ә'bәnd(ә)ns/): More than enough of all the resources required

to accomplish a task.

In the context of Progressive Delivery, abundance (along with auton-

omy) forms the foundation of a better developer experience, much like the

electrical grid supports our modern life. �is translates to better product

management and applications and services that users can adopt at their

own pace. It is part of the foundation that absorbs the shock of rapid change.

Historical Context of Abundance

Historically, software delivery was de�ned by resource constraints—a world

of low technological mass and high friction. Like trying to push a heavy

object across a rough surface, every movement requires signi�cant force.

Waterfall methodologies were partly a response to this lack of resources.

You had to get things right (in theory, at least) the �rst time, with speci�ca-

tions and infrastructure requirements de�ned up front.

In this constrained environment, change was expensive and jerky—

each new project represented a major acceleration from a standing start.

 ABUNDANCE 19

(Another way to look at this is if you graph innovation, waterfall is a step

function, Agile made the steps smaller, and continuous delivery allowed

the steps to smooth out to a curve.) Teams were split into di�erent func-

tional groups, each with their own infrastructure—developers needed

access to development servers; test and QA had their own servers, storage,

and so on; and production was a separate team with its own infrastruc-

ture and tools. High availability incurred huge costs—each extra “9” of

availability added an order of magnitude to system cost. �ere was a great

deal of replication and a lot of time spent waiting for permission. A devel-

opment team could wait literally months to have resources provisioned

to start a new project or application, creating a stop-start motion full of

technological jerks.

The Abundance Transition

�ink of the abundance transition we’ve made since 1995, when the inter-

net revolution kicked into gear. In the late 1990s, a growing startup would

need to raise literally millions of dollars simply to operate at scale, includ-

ing funding for databases, application servers, testing, storage, network-

ing gear, and marketing. At the time, hiring and sta�ng weren’t the major

costs; infrastructure was. Even developer tools were a signi�cant expense,

costing hundreds if not thousands of dollars. �e Eclipse project—a free,

open-source IDE—wasn’t launched until 2001. Mercury Interactive was

charging customers hundreds of thousands of dollars for licenses to use

its testing products for e-commerce applications. Infrastructure abundance

enabled and required a change in working practices.

�e Agile Manifesto was published in 2001, but the concepts intro-

duced in that movement became widely adopted as the cloud took o�.

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

�at is, while there is value in the items on the right, we value the items on

the left more.2

20 CHAPTER 2

All of this comes from an abundance mindset. When Jez Humble and

David Farley introduced the concept of deployment pipelines in Continuous

Delivery, published in 2010, the cloud was just taking o�.3 In the interven-

ing years, abundance has supercharged those practices.

In 2005, Daniel Terhorst-North and Jez Humble introduced the idea of

blue-green deployments as a response to a client having signi�cantly di�er-

ent test and production environments.4 �ey wanted to be able to smoke

test in one environment, the “shadow,” which replicated production, before

moving workloads over. �is approach came from an abundance mindset

and is now a common practice thanks to cloud abundance and automation

capabilities. �e cloud doesn’t just enable abundance; it does so with pow-

erful automation built in.

Abundance and automation enable Progressive Delivery by providing

new ways of working.

Virtualization, Abundance, and Cloud Computing

�e mainstream availability of virtualization was another jerk for software

developers. While virtualization was initially positioned for IT e�ciency,

driving greater resource utilization, it also underpinned a new approach to

resource availability. �e same server could be used for development, test,

QA, or production, so separate teams were not �ghting over scarce resources.

Organizations also began to collapse functional silos. Plus, sophisticated

automation meant environments could be treated as ephemeral rather than

built for (long-term) purpose. Automation enabled abundance.

�is trend accelerated and expanded with the emergence of cloud com-

puting. While the cloud was originally composed of virtual machines, we

now also use container-based architectures, enabling ever-greater granular-

ity of compute resources.

As resources became more abundant, the ability to incorporate soft-

ware into everything became more economical. �e cost of developing more

value and delivering it to users dropped precipitously. A single individual

can build and deploy an application. �at autonomy and agency are now

a baseline expectation for software, not an exception. What became more

 ABUNDANCE 21

important was understanding user needs and �guring out how to meet

them in a commercially viable way.

What About On-Prem?

�e cloud is an exemplar of digital abundance, but sometimes costs are hid-

den. Many organizations are currently considering repatriating some work-

loads because they are concerned with performance or the spiraling costs

of cloud hosting.

When we consider abundance in the context of Progressive Delivery,

two critical factors emerge: First, simpli�ed management is a form of abun-

dance. �e cloud doesn’t just mean more infrastructure, but more managed

services as well. If developers don’t have to worry about how to manage

databases, then they have more choice and capability available to focus on

the way they are adding business value.

Second, the evidence indicates that cloud infrastructure provides the

optimal environment for Progressive Delivery. �e cloud is the key under-

pinning for abundance, autonomy, and automation. No other platform

comes close.

�ough organizations can implement Progressive Delivery patterns

and practices using on-premises infrastructure, the cloud—as delivered by

hyperscalers such as AWS, Microsoft Azure, and Google Cloud—is the most

�exible environment for software delivery. In terms of automation capabil-

ity, network routing, and the �exibility to clone and fork infrastructure, the

cloud is more �exible than on-premises.

For organizations with on-premises requirements, Kubernetes and

container-based infrastructures provide a viable alternative (they’re called

“cloud native” for a reason). While it’s certainly possible to implement

Progressive Delivery patterns using these technologies alongside modern

automation tools like Ansible and HashiCorp Terraform, the e�ort is sub-

stantial. Platform engineering teams must build and maintain much of what

cloud providers deliver as managed services. �is additional work—creating

infrastructure, managing scaling, implementing security—represents sig-

ni�cant overhead that detracts from focusing on customer value.

22 CHAPTER 2

�e willingness to embrace cloud services stands as a strong indicator

of an organization’s commitment to abundance thinking. It signals a prior-

itization of developer productivity and innovation speed over traditional

infrastructure control patterns. Even in organizations that have physical

or security constraints, virtualized systems and containers allow for more

�exibility outside of a capital-expenditure budget.

�ere will always be outliers, and if your business is operating physical

infrastructure at the scale of a public cloud provider, your teams will de�-

nitely bene�t from the same Progressive Delivery practices.

Key Principles and Applications

In physics, potential energy becomes useful only when it’s transformed into

kinetic energy, ideally with a controlled, reliable �ow. Abundance trans-

forms the physics of software delivery in much the same way that modern

electrical grids transformed society. It’s not merely about generating more

power; it’s about fundamentally changing how that power is distributed,

regulated, and used.

Abundance includes tangible resources like compute, storage, and band-

width, but its true power comes from the transformative shift in mindset

from “Why do you need that?” to “Is there any reason you shouldn’t have

that?” �is represents a profound rebalancing of forces in the system. Just

as an electrical grid with sophisticated transformers and load balancers can

maintain steady power through demand spikes without brownouts, organi-

zations with abundance thinking can absorb the jerks of rapid innovation

without disrupting their forward momentum.

In the resource-scarce past, restricting access made economic sense.

Like power rationing during shortages, the friction of approval processes

protected valuable assets. Today, however, the cost of testing often exceeds

the cost of the resources themselves. When a “test machine” represented

hardware worth more than a developer’s weekly compensation plus ded-

icated internal support, careful gatekeeping was justi�ed. Now, when the

same capability might represent just $0.73 of a multi-thousand-dollar

 ABUNDANCE 23

cloud invoice, the friction of approval creates unnecessary resistance, like

forcing users to �le paperwork before turning on a light switch.

�e following principles exemplify how abundance thinking transforms

the physics of software delivery, creating a reliable power grid of innovation

that delivers consistent value while smoothing out potentially disruptive

technological jerks.

From Getting to Using

When resources are scarce, organizations expend enormous energy simply

acquiring what they need—the “getting” phase consumes attention, bud-

get, and time. Abundance fundamentally shifts this equation. Su�ciency

lets us change our focus from getting to using—from acquiring infrastruc-

ture to creating value with it. It’s the di�erence between struggling to gen-

erate enough electricity and being able to focus on what you can build with

reliable power.

As technology matures, it changes from an end in itself to a way to get

things done. We shouldn’t think about infrastructure itself, but rather how

to use it to build an app that delivers value to users. �e existence of new

abundance, like the cloud, puts this kind of thinking into stark relief.

AWS talks about avoiding undi�erentiated heavy lifting as a core prin-

ciple. From the AWS Well-Architected Framework:

Stop spending money on undi�erentiated heavy lifting: AWS does the heavy

lifting of data center operations like racking, stacking, and powering servers. It

also removes the operational burden of managing operating systems and appli-

cations with managed services. �is permits you to focus on your customers

and business projects rather than on IT infrastructure.5

We don’t need to get information technology (IT) because IT is all

around us. �e question is how we use IT to get from A to B to C, how we

make progress in delivering applications and services. “Getting” is undi�er-

entiated heavy lifting. “Using” is creating new services and new value for

customers.

24 CHAPTER 2

Abundance and Alignment: Giving the User Options

In our equation of how the four A’s balance, we use alignment (along with

automation) to constrain abundance and autonomy from runaway growth.

�is is intended to help teams avoid building beyond the needs of the users

and delivering features that never get used. Progressive Delivery can also

include putting the user in charge of when they choose to adopt a new

service. IT creates options alongside product management, but the user

decides when to adopt them.

Just as modern electrical systems o�er user-controlled switches rather

than centrally regulated power, Progressive Delivery separates the avail-

ability of features from their activation. Imagine if the power company con-

trolled the dimmer switch in your living room. Instead, we generate and

transmit the capability, but users control when to �ip the switch.

For example, software developers can use a blue-green deployment to

test new services before moving all customers over to them. �is capability

also enables product teams to strategically roll out features to di�erent user

segments. Smart organizations today increasingly allow users to decide

when they start using a service or feature.

Google introduced Gmail Labs on June 5, 2008—an option in Gmail

that allowed users to test new features and provide feedback to Google.

�is was a fundamental step forward in cloud-based product management.

More recently, Microsoft has adopted similar approaches. Outlook, for

example, now has a “Try the new Outlook” toggle in the upper-right corner

of the classic Outlook window. Here, the user is �rmly in charge of when

and how they adopt a set of new features. �is is a great example of modern

Progressive Delivery practices.

With Atlassian, for some new features (like new boards and issue

transitions), users can opt into the new experience (and give feedback) or

stay in the classic mode for a period of time. Atlassian did a great job of

transitioning users from the old issues editor to the new using Progressive

Delivery patterns, including phased rollouts and extensive user feedback.

�e good news? �ese same experimental patterns pioneered by major

corporations are accessible to everyone. What once required massive engi-

neering investments has become standardized practice, with powerful

 ABUNDANCE 25

platforms making implementation straightforward. �e automation infra-

structure has evolved dramatically, transforming capabilities that teams

once had to build from scratch. Feature �agging systems, for instance, have

gone from custom-built solutions to robust, o�-the-shelf products with

thriving ecosystems.

We can all take advantage of abundance.

�e bad news? Today, many of us still force updates on users that annoy

them at best and, at worst, break the core experience entirely. In January

2025, Sonos CEO Patrick Spence was forced to resign after an app update

in 2024 broke core user work�ows, such as sleep timers, adding songs to

a queue, and managing WiFi connectivity.6 Users were rightly furious,

responding to a fundamental misalignment between the brand and the

market.

While it’s clear we should use feature �ags and give users options,

abundance goes even further. With abundant resources, running two ser-

vice versions simultaneously becomes a real possibility. You can maintain

the current version for mainstream users while o�ering the next version to

early adopters and supporting the legacy version for those who aren’t ready

to migrate.

�is transforms Progressive Delivery into a strategic service manage-

ment approach. We gain the power to be deliberate about managing tech-

nical debt, gracefully sunsetting outdated features rather than abruptly

removing them. �ese decisions shift from a purely technical concern to a

business alignment question.

At its core, Progressive Delivery puts users in control of their experi-

ence. When users complain about forced updates, they’re often expressing

frustration at their lack of agency. By giving them a choice in when and

how they adopt changes, we create happier users and opportunities for new

business models built on �exible, user-driven rollouts.

Abundance, Elasticity, and Optionality

In a world of digital abundance, we ask questions that embrace a variety

of possibilities and users. We’ve moved from simple motion to complex

adaptive systems that can absorb and dampen technological jerks. �us,

26 CHAPTER 2

we can build with customization and optionality in mind, understanding

that resources are not universal, and users may indeed be resource con-

strained.

Abundance creates technological shock absorbers—we expect spikes

in usage but also work to optimize and harmonize workloads when we

see that work focus has shifted. We sometimes shut things down because

abundance is most e�ective when we can clearly distinguish between what

drives us toward our goals and what no longer delivers value. �is adapt-

ability allows our systems to maintain steady momentum even when faced

with external forces trying to jerk them in di�erent directions.

In an abundance world, we don’t need to choose between A and B;

instead, we can test an entire range of possible outcomes or options simul-

taneously. In a world with elastic response to demand, you don’t need to

own a whole datacenter to handle the spike in tra�c from the Super Bowl.

Instead, you can rent that capacity from a content delivery network (CDN)

as you need it, both around predictable and unpredictable events.

Elastic scale serves in both building and operating software. During

development, it enables thorough testing with production-like loads—a

capability previously unimaginable for most organizations. Consider the

challenge of stress-testing a major system. How do you create a production

replica of a major production system and then generate a huge amount of

load across it? With cloud abundance, you can spin up environments on

demand without massive capital investment.

An abundant software world isn’t just about raw capacity and volume—

it’s directed capacity. Like an electrical grid that doesn’t just generate power

but delivers it precisely where and when needed, abundance provides both

the resources and the frameworks to guide their use. Opinionated guidance

and well-established patterns give teams con�dence when doing novel or

unusual things, ensuring they are heading in the right direction.

Recognizing Abundance Constraints

Despite this progress and abundance, not all organizations have a true

abundance mindset. You can spot this by examining how decisions are

 ABUNDANCE 27

made in your environment. When teams must justify small experiments,

when accessibility features are dismissed as “too expensive,” or when time

tracking becomes more important than user outcomes, these are symptoms

of scarcity thinking, not an abundance mindset.

�e most telling example is in how your organization responds to new

ideas. If the immediate reaction is “Can we do that? Is it allowed?” then

you’re likely operating without an abundance mindset. Other signs of low

abundance might include:

• a heavy process burden in requesting additional resources

• exaggerated organizational fear of (small) failure

• resistance to any change because of potential costs

• zero-sum thinking—“If that person gets more, I will get less.”

If you are in an organization with abundance constraints, do what you

can to create local abundance. If the organization is too resistant to creating

abundance, they are probably not organizationally prepared to work toward

Progressive Delivery.

Abundance Is Additive

Another aspect of software abundance is that we all stand on the shoul-

ders of giants. As software developers, we depend on languages, packages,

libraries, and other dependencies that have been written by others. It

doesn’t make sense to write our own stacks, from the machine code on up,

when the software is available to us at our �ngertips. In fact, few of us write

compilers or new programming languages.

At every level of software, we are building on the work of others, and

we bene�t from the abundance of this work. Because we can use the work

and standards of others, our software �ts with other software, and we

don’t have to re-create it. Like the modern electrical grid, we don’t gener-

ate our own power or build transformers from scratch; we simply connect

to standardized outlets, focusing our energy on what we’ll do with that

power.

28 CHAPTER 2

Consider a typical web application today: It might use React for the

front end (created by Facebook), run on Node.js (developed by Joyent),

store data in MongoDB (from MongoDB Inc.), authenticate users with

Auth0 (by Okta), process payments via Stripe, and deploy automatically

through GitHub Actions. Each component represents thousands of engi-

neering hours that the development team doesn’t need to replicate. Abun-

dance means there is almost always code at hand for solved problems,

which means we are free to work on unsolved problems—the unique value

our application provides to users.

AI is accelerating this abundance dramatically. Generative AI (GenAI) is

itself based on abundance. Large language models (LLMs) were trained on

vast datasets, and now they’re generating code on behalf of developers. AI

is not just �nding software to build solutions with; it’s generating the solu-

tions themselves. Some people �inch away from the thought of having so

many dependencies on other teams and companies—and indeed LLMs—

but we already exist in a mesh of dependencies

�is abundance also creates challenges, such as the danger of poten-

tial vulnerabilities in third-party libraries. But Progressive Delivery allows

security testing to be added to our pipelines before deployment and again

before rollout. It’s another layer of security. Management of dependencies

is a key aspect of modern software testing, and Progressive Delivery maps

to it quite well.

Benefits of Abundance

Engineering teams once had limited access to the software they needed to

build and deploy new services and applications. �is software is now e�ec-

tively free, available on GitHub and other repositories, with marginal costs

of zero. �is transition is akin to moving from a system with high friction

and little mass to one with low friction and increasing mass, resulting in

signi�cant momentum. Once set in motion, development becomes harder

to stop than to continue.

 ABUNDANCE 29

Distributed version control systems have removed developer depen-

dence on central repositories, again enabling abundance. �e availability

of managed services means we’re not even constrained by the cost of man-

aging infrastructure. Cloud resource limitations are e�ectively a thing of

the past—unless you count cost. �is abundance has enabled entirely new

ways of working—a fundamental change in the physics of development

that transformed jerky stop-start motion into smooth continuous delivery.

We can measure abundance both quantitatively and qualitatively. A

quantitative measurement would be how long it takes to go from request to

allocation for a particular resource. What resources are available to devel-

opers and developer teams? A qualitative measurement uses surveys and

interviews to ask developers if they have the resources they need to accom-

plish their tasks.

Today, Apple sets the bar for local machine performance. A common

proxy for abundance is the availability of recent model MacBook Pros. (If

your developers can’t use the machines they want for work, then abun-

dance may be in question.) Of course, some developers and organizations

prefer Windows, and that’s totally �ne. In that case, can a developer get the

latest AMD or Intel processors, or even ARM-based machines, and all the

RAM they desire?

Abundance within boundaries does not mean abundance without con-

straints. You can’t build anything without understanding constraints and

making trade-o�s. �ese constraints are often expressed as costs, but the

classic aphorism “Good. Cheap. Fast. Pick two.” is another expression of

constraints. Time is inelastic, and there are some things we can’t just pay

to speed up—some jerks in the system cannot be entirely eliminated, only

managed.

But abundance frees software developers to do their best work. It

removes the need to wait for permission. Organizations should get out of

the way, where possible, and allow builders to build.

�is tension between the concept of instantly responsive software and

the time, e�ort, resources, and underlying physical systems that support

it is the core of Progressive Delivery’s problem. What is meaningful to

30 CHAPTER 2

deliver? What adds value? What supports the other parts of the structure?

What do we need to change and streamline to iteratively improve the act of

delivering and the experience of receiving?

Abundance enabled a Cambrian explosion that has changed how we

think about software and product delivery. Organizations don’t have a sin-

gle integrated monolithic technology stack and may not even have a cen-

tral technology administration. Instead, di�erent parts of the organization

solve the problem at hand that is closest to them, without needing to ask

for permission. Abundance enables autonomy and radical delegation.

Challenges and Considerations of Abundance

Abundance can come with its own problems. When something is cheap,

we tend to value it less. Abundance can also lead to problems of scale in

disposal and management. Abundance creates its own form of inertia—

objects in motion tend to stay in motion, even when that motion is no

longer serving our goals. Just as a heavy vehicle with momentum requires

more sophisticated braking systems, our systems of abundance require

more sophisticated governance to prevent runaway acceleration.

Abundance can lead to carelessness in how we use resources. In the

boom times, when resources are cheap, we don’t meter them. �en, when

resources are more constrained, we don’t have the systems to use them e�-

ciently. People raised in well-watered areas do not build the habits of water

conservation that people raised in drought areas do. In a ZIRP software

boom, there is little incentive to cap spending on resources since the focus

is on growth.

Without proper control systems, the technological momentum we’ve

built can cause destructive jerks as competing forces pull in di�erent direc-

tions. Abundance is great, but it comes at a cost, even if the costs seem

lower. For example, what will it cost to move or transfer your data from one

vendor to another? Will your abundance prove illusory in the future when

your development or deployment stack changes?

 ABUNDANCE 31

An organization that doesn’t track cloud spending allows users to take

advantage of digital abundance but is wasting money that could be better

spent. Abundance and autonomy can lead to runaway spending. �e cloud,

for example, which began as a phenomenon driven by individuals with

credit cards, is now a trillion-dollar industry. It has even spawned a FinOps

foundation to help organizations spend wisely in abundance settings. Fin-

Ops being:

an operational framework and cultural practice which maximizes the business

value of cloud, enables timely data-driven decision making, and creates �nan-

cial accountability through collaboration between engineering, �nance, and

business teams.7

While we’re not going to delve deeply into cost management here—

there are many other great books on the subject—it’s worth noting how the

organization talks about its role.

FinOps is all about removing blockers; empowering engineering teams to

deliver better features, apps, and migrations faster; and enabling a cross-

functional conversation about where to invest and when. Sometimes a busi-

ness will decide to tighten the belt; sometimes it’ll decide to invest more. But

now teams know why they’re making those decisions.8

Another way to look at abundance and runaway costs is the current

debate about cloud repatriation. Some now argue that running on-premises

infrastructure is cheaper than using hyperscale cloud services. �is idea was

expressed most pithily by venture capital �rm Andreessen Horowitz in a

2022 post, “�e Cost of Cloud, a Trillion Dollar Paradox,” which claimed:

“You’re crazy if you don’t start in the cloud; you’re crazy if you stay on it.”9

Whether you agree with this thesis or not, it gets to the paradox of

cloud abundance. Convenience can increase direct costs, so it’s important

to be intentional. If abundance enables Progressive Delivery, your ability

to get the right product to the right customer at the right time, then that’s

32 CHAPTER 2

worth investing in. In some cases, enterprises will decide these costs are

not, in fact, worth it. For example, in late 2024, GEICO announced a signif-

icant cloud repatriation e�ort.10

Not all costs are monetary, such as environmental impact and access

problems that are not role-based. Not everyone has the same access to

the servers and bandwidth that technologists often take for granted. Just

because it worked on your WiFi network doesn’t mean it will work well,

and at a reasonable cost, in all parts of the world. Progressive Delivery can

enable you to understand di�erences in infrastructure ubiquity and work

with them, testing in di�erent regions and on di�erent networks. Oper-

ating in a gracefully degraded state is an important way to make sure soft-

ware is accessible to as many people as possible.

Abundance also often leads to data management problems. �e instinct

to “store everything” doesn’t necessarily improve analysis quality and often

increases cost.

�ink of your data lake as an actual hydroelectric reservoir. When prop-

erly channeled, it generates tremendous power for your organization. But

just like a real dam, sediment accumulates over time. Without proper man-

agement, your data lake �lls with silt—outdated information, duplicate

records, and irrelevant metrics—making your data lake shallower and less

valuable. Just as reservoir managers must properly control �ow and waste,

data stewards must establish retention policies and quality controls.

�e challenge is compounded because the in�ow of data is only partially

under our control, and its original quality varies widely. With abundance,

the question shifts from “Can we store this?” to “Should we store this, and

for how long?” Observability provides a clear example of the challenges of

abundance. While unlimited data collection o�ers unprecedented insights,

it comes with substantial costs, particularly when dealing with high-

cardinality datasets.

High-cardinality �elds—attributes like userIds or shoppingCartIds

that might have hundreds of thousands of unique values—can dramatically

increase storage requirements and processing overhead. When organiza-

tions complain about excessive charges from observability vendors, they’re

 ABUNDANCE 33

often experiencing the downside of abundance thinking: collecting every-

thing without strategic �ltering. �e issue isn’t necessarily the vendor’s

pricing model, but rather the absence of thoughtful indexing strategies or

the accumulation of data that provides minimal analytical value.

Abundance made modern observability possible in the �rst place. It

enabled the collection and analysis of logs, metrics, and system traces at a

scale previously unimaginable. However, this capability shift created a new

pain point where observability vendors now compete primarily on cost e�-

ciency rather than just feature sets.

�is balance between data abundance and cost management is partic-

ularly critical for Progressive Delivery. Observability provides an essential

feedback loop when testing services in production through feature �ags or

canary deployments. Without comprehensive and queryable monitoring,

teams lack the con�dence to implement progressive rollout strategies.

�e observability industry has responded to this tension with inno-

vative approaches. Increasingly, observability platforms are being built on

e�cient open-source data lakes like ClickHouse or proprietary platforms

like Snow�ake. �ese solutions enable cost-e�ective querying across com-

modity object storage instead of relying on specialized (and expensive)

time-series databases—another example of abundance driving innovation

in response to its own challenges.

Getting Started with Abundance

In a world where technological jerks have become the norm—where soft-

ware updates can disrupt work�ows without warning, and new platforms

emerge seemingly overnight—abundance o�ers both a challenge and a

solution. �e same acceleration that creates jarring experiences for users

can also provide the resources to smooth these transitions.

Software now permeates nearly every aspect of our lives, from morning

alarms to evening entertainment. Each interaction represents a potential

moment of technological jerk—an unexpected acceleration that can either

34 CHAPTER 2

delight or disorient. Progressive Delivery helps manage these moments by

leveraging abundance not just as raw computing power, but as a compre-

hensive approach to change management.

�e abundance mindset transforms the fundamental question from

“Do we have enough resources?” to “How can we best direct our virtually

unlimited resources to create smooth, controlled acceleration rather than

jarring jerks?” As we build software, we need to think past pure capacity

and bring in the wisdom to build in ways that respect users’ need for sta-

bility amid innovation—that is, how to build the right thing for the right

people at the right time.

Evaluating for Abundance

As you begin to look at your software development practices through the

lens of Progressive Delivery, understanding abundance is important. What

does abundance mean in your organization?

Here are some questions to consider as you evaluate and work to better

understand what abundance means for your team:

• What is the most constraining factor in your environment?

• How much time does it take to provision a resource?

• What is the cost of doing something in time, worked hours, or

money? How often is this activity performed per day/week? By

how many people?

• How do you handle excess capacity?

• If you had in�nite capacity in one place, where would you put it?

• What do you rely on that is mission-critical?

• What is your fail-safe mode? If something goes wrong, what hap-

pens?

• What are your core dependencies? Which are homegrown versus

outsourced? (What do you build versus buy?)

• Do you o�er developers choice and budget in their tooling, and

do you have constraints on the interoperability of their choices?

• Do you encourage developers to use AI tools, and do you provide

a budget accordingly?

 ABUNDANCE 35

• What is the abundance you are building versus the abundance

you’re renting?

• Is there a way to prune things automatically without repeated

human cognitive cost?

• How would you deliver to a mobile app that doesn’t always have

internet? (Abundance is not always universal.)

• Are you limited by what you can do or what it would cost to do it?

Tools and Processes That Enable Abundance

Many organizations use the following tools and patterns to help them suc-

cessfully manage abundance. For those interested in furthering their prac-

tices, here are some to consider:

• cloud-native computing

• elastic scaling

• open-source software

• observability

• release progression

• testing in production

• blue-green deployments

• A/B testing and experimentation

While this list is by no means exhaustive, it is a starting place to explore

as you consider what abundance means for you. Furthermore, not all of

these will necessarily solve every use case. Rather, it’s important to evaluate

your needs using the list of questions we shared earlier. From there, you can

begin to explore what tools and practices will support you in your e�orts.

Conclusion

It’s important to remember that abundance through the lens of Progressive

Delivery is not using everything all at once. It is accurately understanding

speci�c needs and building for those needs. Abundance is not just capacity

36 CHAPTER 2

and volume; it’s the ability for capacity and volume to be well-directed. �is

is alignment on the builder/developer side of the equation. We have cho-

sen to incorporate this into abundance since this type of alignment is more

about the resources used to build a company, and not about the software

being delivered to users.

Just as a skilled driver harnesses the momentum of a vehicle to navigate

smoothly without jarring accelerations or jerky stops, Progressive Delivery

harnesses the inertia of technological abundance to deliver change in a way

that users can absorb. It transforms the potentially disruptive force of rapid

technological change into a smooth, controlled acceleration that propels

organizations forward without throwing their users o� balance. In a world

where technological jerk has become commonplace, abundance, properly

managed, becomes a stabilizing force that allows us to move quickly with-

out losing our traction.

Now that we’ve explored the concept of abundance in Progressive

Delivery, let’s explore a case study that illustrates these principles in prac-

tice. We’ll see how abundance, generally, and the cloud, speci�cally, enabled

software organizations to do things that were not possible before.

37

Chapter 3

CASE STUDY: SUMO LOGIC

Sumo Logic is a great example of a company built as cloud-enabled abun-

dance arrived on the market, which in�uenced all of their decision-making

and architectural approaches. It was founded in 2010 by a team with expe-

rience in log management, big data, and security. �ey set out to create

a cloud-�rst software-as-a-service (SaaS) log analytics company, built on

AWS and designed to monitor events generated by cloud-based services.

Cloud-based monitoring is di�erent from traditional on-premises

approaches because you don’t have direct access to hardware metrics,

because, for example, the servers are running in the cloud. APIs, however,

are publishing huge amounts of data about system and application perfor-

mance. In this example, data became the problem rather than instrumenta-

tion, so the company focused squarely on data management. Data volumes

led to an abundance mindset, which also played into the company becom-

ing an advanced Progressive Delivery case study.

Sumo Logic was acquired by Francisco Partners in a private equity

transaction valued at $1.7 billion in February 2023. By then, it had carved

out a solid position as a leader in cloud-based log management.

Situation

�e �rst AWS primitives arrived in 2006. Launched in 2010, Sumo Logic

was in a position to build an architecture from scratch on top of AWS, which

38 CHAPTER 3

was swiftly maturing. Sumo Logic used its own product to provide observ-

ability, enabling feedback loops as it built, tested, and deployed new ser-

vices.

�is timing is signi�cant in the context of abundance. As discussed in

Chapter 2, the software industry has been shifting from a scarcity mindset

to an abundance mindset since the late 1990s. Sumo Logic emerged at a

perfect moment to take full advantage of the abundance the cloud provided,

without the legacy constraints that hampered established enterprises.

AWS was a capable platform, but Sumo Logic still had to build a lot

of its own infrastructure. For example, it built its own feature �ag system

and even its own infrastructure-as-code provisioning system. So, while it

was building a very sophisticated automated infrastructure for building,

testing, and deploying the platform, it was also incurring a fair amount of

technical debt. �is represents the “getting to using” transition description

in Chapter 2. Building their own tools was still necessary, but they were

focusing on how to use infrastructure rather than simply acquiring it.

�ere were several key architectural decisions at Sumo Logic that

enabled Progressive Delivery and testing in production, including:

• Adopting a service-oriented architecture (SOA) approach, with

loosely coupled services that could be updated and scaled inde-

pendently. �is provided �exibility for progressive rollouts.

• Implementing feature �ags and shadow deployments to test

changes in production without impacting all customers. �is

allowed Sumo Logic to experiment and validate changes before

full rollouts.

• Focusing on observability and cost optimization to understand

the impact of changes and manage the costs of the cloud infra-

structure.

�ese decisions directly embody the key principles and applications

of abundance. �e SOA approach means di�erent services can scale and

be tested independently while also allowing multiple versions of a service

to run simultaneously. Sumo Logic practices canary deployment and then

 CASE STUDY: SUMO LOGIC 39

looks at what sort of customers choose to use the new feature. �is practice

is made possible by their extensive use of feature �ags.

As Bruno Kurtic, cofounder of Sumo Logic, told us: “We roll out a new

service to 5% of our customers �rst. What sort of users choose to use this

feature? We roll out the service then leverage our logs to understand the

behaviors of the system and users. Logs are integral to understanding how

new code is being shipped, how you do A/B testing in production. We do

testing in production.”

Finally, Sumo Logic’s observability focus means it is constantly using

feedback loops, understanding user behaviors, and adjusting system behav-

ior accordingly. A key lesson here is that logs are integral to understanding

how new code is being shipped and can underpin A/B testing in production,

aligning the needs of users, developers, and product owners. Sumo Logic’s

approach, and focus on optionality and observability, underpinned by the

abundance of system resources, enables them to align releases with actual

user needs and behaviors.

Giving Developers Their Own Production Infrastructure

One of the best examples of cloud-enabled abundance at Sumo Logic was

how it provided images to developers. Technical leadership wanted to avoid

“But it worked on my machine.” �nger-pointing between operations and

developers, so the development environment had to be as close to produc-

tion as possible. �erefore, Sumo Logic built a minimal layer for “personal

deployments” on AWS that allowed developers to easily test their code in

what was e�ectively a production environment, including all of the micro-

services—a “mini-Sumo.”

�is approach perfectly embodies “from getting to using.” In the

pre-abundance era, developers would have spent signi�cant time acquiring

and con�guring test environments or working in test environments that

did not closely mimic production. At Sumo Logic, they could work in an

environment that was as close to production as possible.

Cloud abundance represents a dramatic transformation from the his-

torical context, where development, test, QA, and production teams were

40 CHAPTER 3

split into functional silos, each with their own infrastructure, and develop-

ers had local machines that didn’t replicate these infrastructures at all.

�is streamlined development environment greatly improved the

developer experience and the ability to test changes. �is abundance also

empowered autonomy, allowing any developer to spin up a full Sumo Logic

stack, ideally just for an hour or so.

However, giving all developers their own Sumo Logic could get expen-

sive quickly if developers didn’t turn these instances o�. After all, abun-

dance needs to be ephemeral to be cost-e�ective. At �rst, it was about

reminding developers to turn these mini-Sumos o�, but naturally, the com-

pany soon built a set of scripts, which became an internal app, to go out and

kill clusters that weren’t being used. �ey called it Reaper.

Autonomy driven by abundance is great, but automation was needed

to keep things under control, enabling alignment between the needs of the

engineer, the platform owner, and the CFO.

Cloud Bursts and Feature Optionality

Another facet of the need to maintain alignment between the business

and the availability of resources is consumption-based scaling. Sumo Logic

was architected to scale elastically, taking advantage of cloud resources

as its customers’ workloads grew. �e cloud allows organizations to take

advantage of hyperscaler abundance, even for customers that are extremely

“bursty” from a workload perspective, such as online gaming companies.

�ink of the growth of Pokémon GO or Fortnite. Load testing should rep-

licate this kind of workload �uctuation, where customers might create so

much extra tra�c that they e�ectively create a distributed denial of service

(DDoS) tra�c pattern by accident. But even with load testing, a truly unex-

pected success can drive resource utilization well above expectations.

Sumo Logic built feature optionality into its core architecture. In order

to handle system load, Sumo Logic can turn any feature in its platform on

or o�. �e company can also turn any feature in its platform on and roll it

out to one speci�c customer in a particular region for a particular use case

to test it before wider deployment. Here the cloud advantage underpin-

 CASE STUDY: SUMO LOGIC 41

ning Progressive Delivery is about easy access to sophisticated networking,

which is a form of abundance in its own right.

Progressive Delivery for Machine Learning

Driven by infrastructure abundance, Sumo Logic can conduct shadow tests

of new machine learning models in production, something that would have

been unthinkable in the pre-cloud era.

For example, a customer might complain that Sumo Logic’s pattern

recognition wasn’t working. �e danger here is that if the company changes

the algorithm for other customers, it might break their experience. �ere-

fore, Sumo Logic needed to silently spin up a couple of clusters and test the

algorithm’s performance.

Sumo Logic does candidate testing of each service it rolls out. To do

this, they have a shadow copy of Sumo Logic that is used for testing, indus-

try regulations, and so on. �e entire infrastructure is replicated—this is

literally testing in production, driven by abundance.

�e clone was deployed in a di�erent datacenter with a di�erent set

of engineers, which also created some interesting management overheads.

�is full system replication exempli�es the technological inertia we dis-

cussed in Chapter 2—the ability to build momentum and stability through

abundance. By maintaining parallel systems, Sumo Logic creates a coun-

terbalance to technological jerk, absorbing changes rather than being dis-

rupted by them.

Complications

Abundance led to sprawl being a key issue, alongside technical debt. �us,

Sumo Logic made extensive use of feature �ags. Over time, however, there

were so many feature �ags that the entire system became unwieldy. What

began as a mechanism enabling �exibility became an issue for engineering.

�e Sumo Logic team ended up rewriting the feature �ag system to make it

better adapted to modern software engineering practices with version con-

42 CHAPTER 3

trol and a Git-based work�ow. Today, they would likely choose a packaged

third-party feature �ag solution. Not all abundance arrives at once, and any

startup incurs technical debt.

By 2015, it was clear Sumo Logic needed to reduce infrastructure costs

overall. So, it spun up a group, which included a data scientist, tasked with

reducing infrastructure costs, and called them the Prosperity Team. �is

e�ort was a dramatic success, increasing margins for cost to serve from

around 30% to over 70%.

Abundance always needs to be managed. You need to be intentional, or

costs get out of control. �e question becomes how to maintain cost con-

trols and avoid sprawl while allowing abundance to underpin alignment

with the business goals of a fast-growing startup.

Question

It’s currently commonplace to say that every company is a software com-

pany. But if that’s the case, there is a whole set of practices associated with

being a software company that are really tough: managing open-source

infrastructure at scale, or dealing with software dependencies, or keep-

ing current with common vulnerabilities and exposures (CVEs). We all get

blamed for poor customer experiences—software companies certainly do.

But in terms of managing your own estate and identifying what is actually

a competitive advantage, that’s a thorny set of engineering questions with

no simple set of answers.

As Christian Beedgen, one of Sumo Logic’s founders, put it during an

interview with James Governor in February of 2025,

Our declarative deployment system was a competitive advantage…until it

wasn’t. Because it was bespoke, and we had to maintain it. Over time Sumo

Logic hired new people with a di�erent set of expectations about industry

standard infrastructure, such as HashiCorp or LaunchDarkly. �ese folks

also had skills using these platforms. So, abundance, in the case of venture

capital, meant Sumo Logic could do some incredible core engineering work.

 CASE STUDY: SUMO LOGIC 43

But it is possible to over-engineer things, and managing technical debt is

always hard.1

Beedgen’s observation highlights the transition Sumo Logic made from

building its own provisioning and feature �agging management tools to

adopting industry standards. �is illustrates both the bene�ts of abun-

dance and the challenges of maintaining bespoke solutions in an ecosystem

increasingly built on shared platforms.

Summary: Abundance as
the Organizational Forcing Factor

Abundance is a powerful forcing factor enabling new organizational

practices, working methods, and work�ows in tech. Two of the main ben-

e�ciaries of digital abundance are the developer and the engineering orga-

nization because of the autonomy it gives them. Abundance removes the

need to ask for permission, removes bottlenecks, and allows engineers

to get on with their work—no more time waiting for infrastructure to

be provisioned. Of course, greater autonomy requires new management

approaches to enable alignment, which we’ll explore in upcoming chap-

ters.

Sumo Logic exempli�es this transformation. �eir “mini-Sumo” envi-

ronments eliminated wait times for developers. �eir elastic architecture

removed the permission bottlenecks for scaling. �eir shadow deployment

capabilities allowed for testing without traditional approval gates. Each of

these innovations demonstrates how abundance transformed the physics

of their software delivery, from the jerky stop-start motion of the scarcity

era to the smooth Progressive Delivery enabled by abundance.

Autonomy, derived from abundance, allows organizations to move

faster, ship more products, and roll out new services more quickly. It also

reduces the likelihood of burnout, by increasing agency for developers and

users. �is radical delegation, as explained more in future chapters, is a fun-

damental improvement in working culture.

44 CHAPTER 3

�e Sumo Logic case study provides a concrete example of both the

possibilities and challenges of abundance as a foundational pillar of Pro-

gressive Delivery. �eir journey from founding in 2010 to acquisition in

2023 spans the maturation of cloud abundance, demonstrating how organi-

zations can harness technological inertia to create momentum while devel-

oping the necessary controls to prevent the destructive jerks of unmanaged

acceleration.

